Brigham Young University

BYU ScholarsArchive

Theses and Dissertations

2004-07-01

Dynamic Element Matching Techniques For Delta-Sigma ADCs
With Large Internal Quantizers

Brent C. Nordick
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

6‘ Part of the Electrical and Computer Engineering Commons

BYU ScholarsArchive Citation

Nordick, Brent C., "Dynamic Element Matching Techniques For Delta-Sigma ADCs With Large Internal
Quantizers" (2004). Theses and Dissertations. 134.

https://scholarsarchive.byu.edu/etd/134

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.byu.edu%2Fetd%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/134?utm_source=scholarsarchive.byu.edu%2Fetd%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

DYNAMIC ELEMENT MATCHING TECHNIQUES FOR

DELTA-SIGMA ADCS WITH LARGE INTERNAL QUANTIZERS

by

Brent C. Nordick

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering
Brigham Young University

August 2004

Copyright (©) 2004 Brent C. Nordick

All Rights Reserved

ABSTRACT

DYNAMIC ELEMENT MATCHING TECHNIQUES FOR DELTA-SIGMA ADCS WITH

LARGE INTERNAL QUANTIZERS

Brent C. Nordick
Department of Electrical and Computer Engineering

Master of Science

This thesis presents two methods that enable high internal quantizer resolution in
delta-sigma analog-to-digital converters. Increasing the quantizer resolution in a delta-sigma
modulator can increase SNR, improve stability and reduce integrator power consumption.
However, each added bit of quantizer resolution also causes an exponential increase in the
power dissipation, required area and complexity of the dynamic element matching (DEM)
circuit required to attenuate digital-to-analog converter (DAC) mismatch errors. One way
to overcome these drawbacks is to segment the feedback signal, creating a “coarse” signal
and a “fine” signal. This reduces the DEM circuit complexity, power dissipation, and size.
However, it also creates additional problems. The negative consequences of segmentation are
presented, along with two potential solutions: one that uses calibration to cancel mismatch
between the “coarse” DAC and the “fine” DAC, and another that frequency-shapes this
mismatch error. Mathematical analysis and behavioral simulation results are presented. A
potential circuit design for the frequency-shaping method is presented in detail. Circuit
simulations for one of the proposed implementations show that the delay through the digital

path is under 7 ns, thus permitting a 50 MHz clock frequency for the overall ADC.

ACKNOWLEDGMENTS

I would like to gratefully acknowledge the support and encouragement from my wife,
Andrea. To her go the official titles of “Tech Writer” and “Hyphenation-Queen” for all the
proofreading and grammar checking. (Any mistakes still present in this text are most likely
because I made some changes and didn’t ask her to check them over.)

Special thanks to my wonderful parents for their support, and for providing a roof
over our heads for a bit when it was needed. Thanks as well to my brothers and sisters for
their examples in striving for advanced degrees.

I would like to acknowledge Dr. Craig Petrie for the time he has taken to proofread
and suggest improvements for the various drafts of this thesis. I also acknowledge the other
two members of my graduate committee, Dr. Michael Rice and Dr. Brent Nelson, for their
help with my thesis. Special thanks to all three for the instruction and mentoring they have
provided during my time as a student at BYU.

I would like to thank the Electrical Engineering Department of BYU: the combination
of wonderful professors, staff, and laboratory facilities made all the difference. (Additional
thanks for the IXTEX thesis style package they provided.)

Special thanks to the Intel Research Council for funding this research.

Contents

[Acknowledgments|

[List of Tables|

[List of Figures|

(1 _Introduction|
(1.1 Thesis Overviewl. o o o e

2 Delta-Sigma ADCs|

[2.1 Introduction to Delta-Sigma ADCs
[2.2 Obtaining High Resolution|
2.3 Multi-Bit Internal Quantizationl
2.4 High Internal Quantization|.
2.5 Conclusion|. o

[3 Segmentation|

[3.1 Segmenting the Digital Word|
[3.2 Analysis of the Problem| 0.

vil

vi

xii

[N}

© N w W

12
13

14
14
17
18

6 Circuit Design|

0.1 Circuit Overviews| e,

6.1.2 ReQ Blockl.
[6.1.3 Decode Logic|
[0.1.4 DEM Logid

25
25
27
31
31

33
33
33
34
38
38
45
47

53
53
53
54

[A.5.4 D-Register Bank| 0.

[A.5.5 D-Register| .

[A.6 4-bit Decoder Logic|
[A.7 5-bit Decoder Logic|
[A.8 DEM Logic|

[A.8.1 16-line Rotate-1 Logic|

[A.8.2 31-line Rotate-1 Logic|

(Bibliography|

X

List of Tables

[2.1 Different Types of DACs| oo 11
[2.2 Example Operation of Different Types of DACs| 11
1.1 Simulated SNR Results for Segmented AYX ADC (indB)[. 20
6.1 Logic Table for 4-Bit Binary-to-Thermometer Code Conversion|. 44
[6.2 Timing Results for the Critical Pathl 47

List of Figures

[2.1 Comparison Between a Nyquist One-Bit ADC and a One-Bit AY ADC| . . . 4
[2.2 Circuit Level Block Diagram of a First-Order One-Bit A ADC|)

- - -) 5
2.4 Frequency Plot Showing Sp(e’”) and Sy(e’”) for a AX ADC|. 8
[2.5 Basic First-Order A>. ADC Block Diagram|. 10
[2.6 Graphical Explanation of DEM Operation| 12
3.1 Block Diagram: AY ADC With a Segmented DAC/DEM Structure| 15
[3.2 Mathematical Block Diagram of a Segmented A ADC|. 15
[3.3 Simulation Results: 2nd-Order A, ADC With Segmented Feedback| 16
(4.1 Block Diagram of Calibration Method|. 21
4.2 Simulated Results tor Calibrated System| 23
[>.1 Mathematical Block Diagram of ReQ Architecturel. 26
[5.2 Power Spectra Showing DC Ofiset in Ideal ReQ) Simulation| 27
(5.3 Simulated Results for ReQ) System| 32
[6.1 Overall Block Diagram of the Feedback Path tfor the ReQ) Method| 34
[6.2 Bubble Decode Circuitry oo 35
6.3 Fncoder Circuit for the MoBsl o000 36
6.4 Fncoder Circuit for the LSBsf oo 37
6.5 ReQ Circuat| 39
6.6 Full Adder Circuitl oo 40
6.7 D-Latch Circuitlo 41
[6.8 D-Register Circuit| 41
[6.9 4-Bit Binary-to-Thermometer Decoder Circuit| 42
[6.10 5-Bit Binary-to-Thermometer Decoder Circuit| 43

x1

[6.11 Block Diagram of DEM Circuitry] 45

[6.12 DEM Circuitry] 46
[6.13 Timing Simulation for Re(Q Bubble Decode Blockl 48
[6.14 Timing Simulation for ReQ) Encoder Blockl 49
[6.15 Timing Simulation for ReQ) 8-bit Subtractor Blockl. 50
[6.16 Timing Simulation for ReQ) 5-bit Subtractor Blockl. 51
[6.17 Timing Simulation for ReQ Decoder Block| 52
[A.1 Overall Schematic for Digital Feedback Path| Y4
[A.2 Bubble Decode Logic| 58
A3 Tnverted 29
(A4 Nor Gatel 60
[A.5 2’s Complement Encoder| L. 61
[A.6 Unsigned Encoder|. 62
[A.7 Requantization Logiclo 63
[A.8 8-bit Subtractor]o 64
[A.9 Full Adder Designl. 65
[A.10 5-bit Subtractor| 66
[A.11 D-Register Bank|{ 67
[A.12 D-Register| 68
AI3DTatchl oo 69
[A.14 4-bit Binary-to-Thermometer Code Decoder| 70
[A.15 5-bit Binary-to-Thermometer Code Decoder| 71
[A.16 Dynamic Element Matching Logic[. 72
[A.17 16-Input Rotate-1|.o 73
[A.18 31-Input Rotate-1| 74
[A192-to-1 Muxl 75

xil

Chapter 1

Introduction

The analog-to-digital converter (ADC) is the essential link between “real world” ana-
log signals and digital electronics. In the current digital age, they are nearly everywhere:
car sensors, home thermostats, DVD and CD players, televisions, personal computers, cell
phones, and many other common devices. As consumers expect more and more from digital
electronic devices, faster ADCs with higher resolution are needed. At the same time, cell
phones and other “mobile” technologies are demanding lower power alternatives. As such,
improving present ADC architectures is an active field of research.

The delta-sigma (AX) ADC is one architecture that is being examined for use in low-
power, high-resolution, moderate-speed applications. Conventionally, AY> ADCs are used
for low-frequency applications (< 100 kHz) requiring high resolution (> 14 bits), such as
digital audio or high-precision instrumentation [1, 2, [3]. Recent work, however, is extending
the signal bandwidths of AY ADCs into the MHz range while maintaining high resolution
[4, [5].

One method of extending the signal bandwidth of a A¥ ADC without decreasing the
resolution is to appropriately trade off internal quantization and oversampling ratio. As the
oversampling ratio is reduced, the signal bandwidth increases, but the signal-to-noise ratio
(resolution) is decreased. This can be recovered by increasing the number of bits in the
internal quantization path. Several problems arise from this approach. This thesis presents
an analysis of these problems and two potential solutions. Simulations show that near-ideal

resolution can be maintained for practical implementations.

1.1 Thesis Overview

The thesis begins with a short introduction of AY ADCs (Chapter [2). Some of the
issues involved in designing high-speed, high-resolution ADCs are presented. Increasing the
resolution of the internal quantization is shown to be a desirable step for higher bandwidth
design, and accompanying problems for quantization levels above one bit are discussed.
Problems that occur when internal quantization levels are increased too far are covered, and
a potential solution is presented: segmentation.

In Chapter 3] the proposed method of segmentation is described, along with its inher-
ent drawbacks. The method is analyzed, and the source of the main drawback is identified.

In Chapter [calibration is presented as a potential solution to the problems asso-
ciated with segmentation. A mathematical analysis is provided. An in-depth description
of how to implement the calibration solution is presented, along with the potential benefits
and drawbacks. Behavioral simulations are provided to demonstrate the performance of this
solution.

In Chapter |5, another potential solution is presented, this one adapting a method of
selecting the coarse and fine bits developed for AY DACs [6]. Again, a mathematical analysis
of this solution is presented. A description of the required hardware and its operation is
provided, again with the potential benefits and drawbacks. Simulation results are shown to
demonstrate this solution’s performance.

In Chapter [6], circuits implementing the ReQ) method are presented, with schematics
and explanations. SPICE simulations are presented showing the worst-case timing of the
design, verifying that it is fast enough to meet the design constraints.

As a conclusion, Chapter [7] reviews the research presented and then compares the
results of the two potential solutions and their respective strengths and weaknesses. Contri-

butions of this project are presented, and areas for continued research are proposed.

Chapter 2

Delta-Sigma ADCs

As a starting point for discussion, this chapter presents the key operating principles of
AY ADCs. The design parameters which can be adjusted to increase the output resolution

are presented, as well as the practical limits of their application.

2.1 Introduction to Delta-Sigma ADCs

This is not meant to be a full tutorial on AYX ADCs, but a basic summary of key
concepts to provide a common basis for further discussion. As presented in [I], a AX ADC
achieves high resolution by trading resolution in time for resolution in amplitude. The
internal circuitry of the ADC is clocked at some multiple of the required external data
rate (the oversampling ratio), providing multiple internal data points that can be digitally
processed to provide an output of much higher resolution than could be otherwise obtained.
The effective bandwidth is limited, however, to a fraction of the achievable internal frequency.

Three of the key design parameters that affect the resolution of a AY ADC are:
The oversampling ratio (OSR), the modulator order (L in the following equations), and the
number of bits of internal quantization (V). Each of these will be discussed in more depth
in Section 2.2l

Figure shows how a AY. ADC works in comparison with a “standard” (non-
oversampling or “Nyquist”) ADC architecture. Simple one-bit ADCs are used for the com-
parison, meaning that each ADC output is quantized to a single bit. The first part of the
picture shows the operation of a Nyquist ADC. The dashed line is the input to the ADC, and
the circles represent ADC outputs. The one-bit ADC is very inaccurate in its representation

of the input signal, since there are only two possible levels for the outputs: low and high.

1+ (5 - - 0_ o o -4
o . N e i
o 05* s N s
3 Ve N 7/
é_ O* \ . , 4 7
< _0.5* A AN 7 7
- - Input - e
-1H o Digital Output o ~-e"~ o R
0 10 20 30 40 50 60 70 80
One-bit delta—sigma ADC
1t — SINAn N n AAAA _
- o ~ -
Q) N
< 051 ||}) <
3 / O
s O 1
/ o
<EE_0.5V - - Input N . g
— Intermediate Values N ° o
-1H o Digital Output UL =~ - ejyuutd 1
0 10 20 30 40 50 60 70 80
Time

Figure 2.1: Comparison Between a Nyquist One-Bit ADC and a One-Bit AYX ADC

The lower portion of the figure shows the operation of a one-bit AY converter. The input
signal is the same, but the AY device generates ten intermediate values for each output.
These intermediate values are filtered to give more precise outputs. From the plot we can
see seven distinct output levels, suggesting that the one-bit ADC could have an output that
has at least three bits of accuracy.

Figure shows the circuit-level block diagram of a basic, first-order AY ADC, and

Figure |2.3| shows its equivalent z-domain model. From these it can be shown that:
Y(2)=2"'X(2) + (1-27") Q2), (2.1)

It can also be shown that the noise transfer function from Q(z) to the output is:

Y (2) o _ !
o) (1). (2.2)

Given that ¢(n) (the time domain representation of the signal Q(z)) is the quantiza-

tion noise inserted by the internal quantizer, it is limited in magnitude to one-half an LSB

x(n)
—}®—’ Integrator——3)» < ADC) y(n)

DAC

V' N

Figure 2.2: Circuit Level Block Diagram of a First-Order One-Bit A ADC

l Q(2)
X(z) 1 + +

: o Y2)
) z -1 I

Figure 2.3: Z-Domain Model of a First-Order One-Bit AY ADC

step size (the range [— %, 5 2]). In the case of one-bit quantization where the output is set to

+Vier, A is given by the following equation:

= Vius. (2.3)

If the input signal is sufficiently random, ¢(n) can be assumed to be uniformly dis-
tributed within [—%, 2]. Following this assumption, the probability density function (pdf)

of ¢(n) can be described as follows:

w\[>

<u<
P,(u) = -) (2.4)
0 elsewhere

N[>

The pdf of g(n) can be shown to be zero-mean by the following method:

p=E{Q} = [u-Pu
o1
_/guA
A
_ 1]e)e
A2 s

0.

Following a similar process, the variance of ¢(n) can be shown to be a constant:

o? = B{Q?) = /°° u? - Py(u)du

S (2.6)

The quantization noise sequence is usually modeled as a “wide-sense stationary”
(WSS) random process [7]. The power spectral density (PSD) of a WSS random process
is defined as the discrete-time Fourier transform (DTFT) of the autocorrelation function.

Given that the signal is zero-mean, this is equal to the covariance:
So(e’?) = 0. (2.7)

Notice that the power is not a function of frequency; it is equal at all frequencies. This PSD
characterizes the quantization noise added to the samples by the AY¥ ADC, and the noise
defines the accuracy, or SNR (signal-to-noise ratio), of the internal quantizer.

However, in the case of a AY ADC, the quantization error is not directly transmitted
to the output, but is shaped by the (1 — 27!) term in Equation (2.2)). The modulation noise,

or the quantization noise’s effect on the output, can be shown to be:

N(z) = (1-27)Q(2). (2.8)
The PSD of the shaped noise is then:
Sny(e?) = ’1 — ej“” o?
= (1=) (146
= [2—2cos(w)]o?. (2.9)

The modulation noise power is a function of frequency, as shown by Equation ([2.9)).
A AY. ADC is only interested in a small portion of the signal band, so the modulation noise

power in the band of interest is given by:

Sas(e) = —/ Sy (e’)dw

7 [l—2 d
= 27T/w0[— 2 cos(w)|dw
202 .
= — |wo — sin(wp)]
20 w3
~ — |Wo — Wy + E
o?w?
~ 2.10
0 (2.10)

Given that wy = ws/(2-OSR) and that ws = 27, Equation (2.10)) can be rewritten as

follows:
jw 5 1 3
Sas(e’) = o 3w
o (V) L A
V12 37 OSR?
‘/ref 2 72 1
~ —_ 2.11
(m) 3 OSR? (2.11)

Figure is a graphical comparison between the signals Q(w) and N(w) for a AY
ADC with an oversampling ratio (OSR) of 16. Notice how little power of N(w) exists in the

signal band, which is all that will remain after low-pass filtering.

2.2 Obtaining High Resolution

The resolution of a A¥ ADC is measured by its signal-to-noise ratio (SNR). As shown
in Equation (2.12)), SNR is calculated by taking the root-mean-square (RMS) signal power,
S, and dividing it by the RMS noise power in the band of interest:

SNRideal =10- lOglo (:) . (212)
0

In order to maximize the SNR, and thus the possible resolution, of the ADC, the noise power,
ng, should be minimized.

The basic modulator of Figure can be modified in several ways to increase the
resolution. The first would be to simply run the internal clock faster relative to the output
clock rate (in other words, increase the oversampling ratio). A second way is to increase the

aggressiveness of the noise shaping by adding additional integration stages (this increases

T T T T T T T T T T
51 | B
I
: Quantization Error
0 |
I j
S
|
5 | i
I
o Signal Band |)
Z | S (elw)
5 -10F | N i
?: : Modulation Noise
[}
2 -151 | 4
b4 I
I
|
-20 | b
I
I
|
-25 | -
I
I
|
-30 1 n in " 10
10 10

Frequency

Figure 2.4: Frequency Plot Showing Sg(e/*) and Sy(e’*) for a First-Order AY ADC With
an OSR of 16.

the modulator order). A third method is to increase the number of bits used in the feedback
path, N.
Equation (2.11]) can be generalized to give an approximation of the ideal quantization

noise in a AY ADC:
2« Vit 7wl 1
7 oN12 V2L +1 OSRE0Y

(It should be noted that this derivation assumes that the AY ADC is using (1 — z')* noise

(2.13)

shaping. Other noise transfer functions are possible.) This equation is comprised of the
three aforementioned parameters: oversampling ratio (OSR); modulator order, L; and the
number of bits of internal quantization, N. As each is increased, the ideal resolution of the
ADC is increased because the overall noise signal is reduced. However, an increase in any of
the three can also adversely affect power dissipation, design complexity, area required, and

system stability.

The OSR is the ratio of how fast the internal digital circuitry must run (sampling
frequency, fs) compared to the Nyquist rate (2f,):

fs 1

OSR=or = apnr

(2.14)

The higher the OSR, the more aggressive the digital filtering (lower cutoff frequency) that
can be done to remove more of the noise, and thus the higher the potential output resolution.
However, increasing the OSR can only be done by either increasing the internal modulator
frequency (which is limited by realizable device speeds), or decreasing the output bandwidth.
For designs requiring high bandwidths, the OSR is limited to relatively small numbers.

The modulator order is generally the number of integration stages in the analog for-
ward path of the AY ADC. Increasing the modulator order will increase the ADC resolution,
but at the cost of more circuitry. This leads to a more complex design that requires more
power and more chip area. Higher-order modulators are also more difficult to make stable,
which sacrifices some of the aggressiveness of the noise shaping.

The internal quantization level is the number of bits of resolution the internal quan-
tizer uses. The previous discussions in Section used one-bit internal quantization. More
internal quantization levels provide an increased resolution to the internal data points, re-
sulting in higher overall resolution. It can also improve the overall system stability. However,
this causes the internal quantizer to become more complex, increasing the chip area and re-
quired power. Perhaps more importantly, any quantization above one bit requires a DAC
which must be as accurate as the overall ADC, as discussed in Section [2.3] For this reason,

traditional A¥ modulators have used strictly two-level (one-bit) internal quantization.

2.3 Multi-Bit Internal Quantization

The problem with internal quantization greater than one bit is caused by the digital-
to-analog conversion required in the AY modulator feedback path. As shown in Figure [2.5]
the ADC output code passes through a DAC and then is summed into the analog forward
path of the modulator. Any errors introduced by this DAC are added directly to the input
signal and are then transmitted directly to the output along with the input. Because of this,

the feedback DAC must have a resolution equal to the overall required ADC resolution. This

v

Digital Output
p@} Integrator——3p < ADC Low Pass—p

Filter

DAC |4

Figure 2.5: Basic First-Order AY ADC Block Diagram

is easily done for one-bit DACs, which have inherently perfect linearity. However, multi-bit
DACs have various internal element mismatches which prevent them from realizing such high
resolutions given achievable matching in typical VLSI fabrication processes.

This problem is overcome by various noise-shaping algorithms generally known as
“dynamic element matching” (DEM) techniques. DEM algorithms operate on the signal at
the input to the DAC, and take advantage of the oversampling inherent in AY, devices and
attempt to shape the noise generated by the DAC, shifting the noise to frequencies that are
out of the band of interest. The low-pass filter present at the output of the AY modulator
will then remove this error. DEM noise shaping is similar to AY noise shaping. However,
DEM is done digitally where the AY noise shaping discussed earlier is analog, and DEM
operates on noise generated from DAC element mismatches, while AY noise shaping operates
on the quantization noise.

To understand DEM, the various DAC architectures must be described. Table
shows the three main categories of interest for this discussion. “Binary-weighted” DACs
have one element for each of the input bits. A 4-bit DAC would have exactly four elements,
each weighted according to the binary place value of each bit: 1:2:4:8. A “unit-element”
or “thermometer-coded” DAC has as many elements as it has input codes (minus one): a
4-bit unit-element DAC would have 2* — 1 = 15 elements, all weighted equally. “Segmented”
DAC:s are a split between binary-weighted and unit-element DACs. A 4-bit segmented DAC
may have the two least significant bits realized by 22 —1 = 3 elements, of weight “1”, and the
two most significant bits realized by 3 elements of weight “4”. Table shows how various
input codes would be realized by a 4-bit DAC from each category.

10

Table 2.1: Different Types of DACs

Thermometer-Coded or
Unit-Element DAC

Segmented DAC

Binary-Weighted DAC

2N _ 1 elements

2k _ 1 MSB elements

2 Groups:

2! — 1 LSB elements
k+1l=N

N elements

all elements
identically weighted

weighting of MSB to LSB

oN-k . 1

binary weighting
oN—=1.21 . 290

Table 2.2: Example Operation of Different Types of DACs

Input Code | Unit-Element DAC | 2-2 Segmented DAC | Binary-Weighted DAC
[
5 AT
I NNE 4 4|
[8
[
. TEEET]
T 11T 2 4| 2]
| 8

11

Input Code =2 Input Code =3 Input Code =5

0NN nnn 1fafafaf1]1]1] 111112]1]1]
11 11 11

Figure 2.6: Graphical Explanation of DEM Operation

DEM algorithms generally use unit-element DACs. Each element of the DAC is
designed to be exactly the same size, but there is always some mismatch present. Standard
unit-element DACs have a fixed error for a given input code because the same unit elements
are used each time to form that code. A code of “1” will be formed with the first unit
element, while a code of “4” would use the first four unit elements. DEM changes the
element selection process, using different unit elements to form the same code in order to
create a time-varying error.

There are several different DEM algorithms, varying mostly in how they choose which
unit elements to use. The method chosen for this research is a data-weighted averaging
(DWA) method, also referred to as barrel-shifting. This method keeps track of the last
element used in the previous code, and uses the next group of elements sequentially. Figure
demonstrates how this works. For a code of “2” followed by a code of “3” and a code
of “5”, the algorithm would use the first two unit elements in the DAC for the first code,
followed by elements three through five for the second code. The subsequent code would
then begin at the sixth element. This selection method turns each element on and off rapidly.
The end result is that the DAC error is first-order noise shaped with most of the noise power

at higher frequencies, as shown in [, [0].

2.4 High Internal Quantization

While such DEM algorithms work well for relatively low quantization levels (two to
five bits), they begin to present significant problems when internal quantization levels are
extended farther. Each additional bit of internal quantization causes an exponential increase
in the complexity, size, and power dissipation of the DEM logic and DAC. This is because
DEM algorithms work with unit-element DACs. The DAC must have 2V —1 elements (where

12

N is the number of bits of internal quantization), and the DEM logic must deal with the
control signals feeding those 2 — 1 unit elements.

Increasing the internal quantization level also increases the size, complexity, and
power usage of the internal quantizer. Fortunately, there are some architectures available
that will reduce these effects, two of which are folding and two-step ADC architectures. These
both generate the digital word in two parts, a “coarse” resolution and a “fine” resolution,
allowing the internal quantizer to be smaller and use less power. The drawback of these
architectures is that the time required to perform the quantization increases, potentially
destabilizing the AY modulator. A folding ADC, with its lower latency, would be the first
obvious choice. Recent research has also shown that it is possible to incorporate two-step
ADCs within a single-loop modulator, potentially maintaining loop stability [10] [1TT].

Efficient DEM algorithms are needed to accommodate the high level of quantization
achieved with folding, two-step, or other coarse/fine quantizers. Research has shown that
DEM algorithms based on a tree structure can be adapted for use with a segmented DAC
structure [12]. An approach was desired, however, that utilizes the DWA (barrel-shifting)

DEM method in search of a potentially simpler solution.

2.5 Conclusion

The tradeoffs involved in achieving high resolution in A¥X ADCs usually lead to low
internal quantization levels and high oversampling rates. In order to achieve higher band-
widths, the OSR needs to be lowered and the internal quantization level increased. New
DEM algorithms are needed to enable internal quantization levels over 5 or 6 bits while

keeping chip size and power dissipation within reasonable bounds.

13

Chapter 3

Segmentation

Technological advancement is always calling for faster, higher resolution ADCs. In
order to have both high bandwidth and high resolution in A ADCs, an efficient DEM
algorithm is required to insure the accuracy of the ADC feedback path. This chapter presents

one potential method of achieving such an efficient DEM application.

3.1 Segmenting the Digital Word

As mentioned in Section [2.4] a folding or two-step architecture for the internal quan-
tizer can solve some of the problems arising from increasing the internal quantization level
beyond 5 bits. Since these architectures provide the digital data in two sections, “coarse
bits” and “fine bits”, a logical way to interface with the DEM is to simply perform DEM
independently on the coarse and fine DAC banks, as illustrated in Figure 3.1 With this
method there is no need to encode and recombine the coarse and fine thermometer-coded
signals generated by the quantizer, resulting in simple and fast feedback path circuitry.
(Thermometer code is a method of encoding N binary bits using 2 signal lines. To create
an output code of k, the first k lines are set high and the rest are set low, similar to mercury
in a thermometer.) The quantizer produces N¢ bits as the coarse signal and Np bits as the
fine signal, for a total of N bits (N = Ng + Np).

Figure [3.2] shows a mathematical representation of the segmented architecture from
Figure[3.1] The two-step quantizer resolves the N coarse bits, and then subtracts this value
from the input and generates the Ny fine bits from this signal. The gain of 2-(V=Ne) inside

the quantizer represents a binary right shift to insure the correct place value of the bits,

since the coarse bits are the Ng most significant bits of an N-bit signal.

14

Coarse

Thermometer
Input Code Output
Two Ste I
— Integrator * ADC P " Encoder —<«—)
L4
¥ - Fine N:NC+N F
Thermometer
Code ZNC
Coarse oNe
Fine DEM |4
DAC l 2: Ny M

Figure 3.1: Block Diagram of a AY ADC With a Segmented DAC/DEM Structure

Coarse/Fine ADC
T - T T T - === [
| QC |
' N-Ng) ! (N-N¢)
X S N .
()| He) e |>—'—<>—’{>—:@—’
I I +a
AR | i |
[[
- +
| + 4 | Y,
() 2
l_ _ _ _ _=—___<Z 2
Coarse DAC DEM
\(1g2®NO T
| | | 4 :
L - - L -~
CoT o C
| ! | 4!
| ‘ [N
R Lo 1
Fine DAC DEM

Figure 3.2: Mathematical Block Diagram of a A¥X ADC With a Segmented DAC/DEM
Structure

15

SNR vs Element Mismatch

1021

100

SNR (dB)
S

86

8411 o - Reference
—6— Uncalibrated
T | | | |
0 02 04 06 0.8 1
% Fine Element Mismatch (Coarse is ~1/4 this value)

82

Figure 3.3: Simulation Results For a Second-Order AY ADC With a Segmented Feedback
Path

The coarse and fine outputs are each applied to separate DACs using smaller, inde-
pendent DEM circuits, significantly reducing DEM complexity. Since DEM does not change
the digital signal, but only operates on the error within each DAC, the DEM blocks can be
represented as a simple gain of unity, as seen in Figure [3.2] The coarse DAC transfer func-
tion is weighted 2V ~N¢ times that of the fine DAC to represent the place value of the coarse
bits relative to the fine. In practice, this is done by making the elements of the coarse DAC
2N=Ne times larger than those of the fine DAC. The quantization noise, ¢, present in both
signals Yo and Yr, ideally will cancel when the coarse and fine signals are summed together
at the modulator input. This result should be the same as if a single DEM circuit with a
single DAC had been in the feedback path. With perfect DACs (0% mismatch), MATLAB
behavioral simulations indicate that this system operates well, as shown in Figure [3.3] But,
as shown in the same Figure, with the addition of unit-element mismatch, the overall SNR

of the system drops much faster than the full 256-element reference case.

16

Unless otherwise noted, all simulations performed for comparison in this thesis use a
second-order AY, ADC architecture with an OSR of 20 and 8 bits of internal quantization.
The reference case is a non-segmented (single-path) architecture, and the others use some
variation of the segmented architecture, splitting the feedback signal into 4 bits for each
of the coarse and fine paths. The percent mismatch of the coarse unit elements is scaled
assuming they are 2V=N¢ times larger than the fine unit elements, which is typically the
case in a practical application. Random element sizes are generated using the MATLAB
“rand” function. To account for the randomness of the element mismatch, the average of 21

different simulations is taken, with new element values generated for each run.

3.2 Analysis of the Problem

The previous explanation of the system’s operation neglected an important point.
The weighting of the coarse DAC as compared to the fine DAC depends on the relative sizes
of the unit elements. Since the unit elements vary in actual size, the weight of the coarse
DAC will not be exactly 2V~"¢ but will be off by the factor 1 — ¢, as shown in Figure .
Because of this gain mismatch between the coarse and fine DAC banks, the quantization
noise, ()¢, will not completely cancel when the coarse and fine signals are summed together,
as they would in the ideal case. The non-canceled portion of the quantization noise will be
added directly to the input signal, and thus be transmitted to the output of the ADC.

The output, Y, of the ADC in Figure can be derived as follows:

2~ VN Qo(2) + (X (2) — Vi(2)) H(2)]
1+ (1—e)H(z)
(—Qc(2) + Qr(2)) [1 + (1 —) H(2)]
1+ (1—€e)H(z)
Y(2) = Yo(z)-287Ne £ Yi(2) (3.3)
X(2)-H(z) | Qe(z)
1+(1—¢)H(z) 1+(1—€H(z)

Desired Signal Expected Noise

€ (Qc(2) — Qr(2))H(z)
T a—ouHe B4

Extra Noise Term

17

For comparison, a non-segmented (single-path) approach would lead to:

X(2):-H(z) Q)
1+ H(z) | 1+ H(2)

Desired Signal Expected Noise

Y(2) = (3.5)

A comparison of Equations and shows that the coarse/fine system has the error
term “e-(Qc — Qr)” present in addition to normal quantization noise. The values of Q¢
and Qr are dependent on the number of bits used in the coarse and fine signals (N and Ng
respectively) and the current input signal. In normal implementations, Q¢ >> Qr because
the LSB step size of the coarse bits is much larger than the LSB step size of the fine bits, so
Qc — Qr =~ Qc¢. The value of the mismatch term, €, changes with each clock cycle due to
the operation of the DEM. Its magnitude depends on the mismatch between coarse and fine
DACs, which is a function of mismatch between unit elements. For realistic unit-element
mismatch values, € is small, but still large enough to significantly affect the SNR of the
system. Simulations show that a segmented AY ADC, as described in this section, with a
unit-element mismatch of 1.0% has an SNR of 84 dB as compared to almost 99 dB for the
reference case (see Figure .

3.3 Conclusion

Handling the coarse and fine data separately is an appealing option. It requires very
little hardware, can be very fast, and is simple and intuitive. However, simulations and
mathematical analysis show that this method has some serious problems and will degrade
the overall SNR of the system. The problem lies in the mismatch between the coarse and fine
DACs. Because the unit elements in each DAC will each have an element of random error in
their size, the ratio of the coarse DAC weighting to that of the fine will not be the desired
value, and will even vary with time due to the DEM circuitry’s operation. This results in

coarse quantization noise leaking to the output, which degrades SNR substantially.

18

Chapter 4

Calibration

Using a segmented feedback DAC with separate DEM is a potential method to sim-
plify the DEM block and allow it to operate on highly-quantized signals. However, error is
introduced by another mismatch problem, namely, the mismatch between the coarse and fine
DAC banks. As the title suggests, this chapter presents a method to remove that mismatch

using calibration.

4.1 The Motivation For Calibration

The mismatch term, €, from Equation (3.4]) represents the deviation from the desired
gain ratio of the coarse and fine DACs. As mentioned in the previous section, each DAC’s
gain changes with every cycle due to the DEM operation. However, since AY ADCs use
oversampling, the average gain of the DAC over time is more important than any instanta-
neous value. For an N-bit, fully-differential DAC with M = 2 — 1 unit elements, each of

value D;, the output corresponding to an input code of “n” in the range [0, N] is equal to:

n

Fp(n)=>_D; — 3 D;. (4.1)

i=n+1
In words: the output is equal to the sum of the first n elements minus the sum of the

remaining elements. The difference between two successive input codes is then given by:
Fp(k) — Fp(k —1) =2- Dy. (4.2)

Since the DAC gain is equal to the average slope of the transfer function, the average gain

of the DAC (A) can be written as:

B -Fk-1) _ D
A= = 4.3
2-Dref Dref, ()

19

Table 4.1: Simulated SNR Results for Segmented A¥ ADC (in dB)

Unit-Element % Mismatch

0.0 0.5 1.0

Reference 100.8 99.6 98.4

Segmented 100.8 89.5 83.8
Segmented with

Adjusted DAC Gain 100.8 99:5 8.0

where 2D, represents the ideal output step size (corresponding to an input LSB change)
and D; is the average unit-element value.

Equation states that the average gain of the coarse or fine DAC is equal to the
normalized average element size. So the mismatch, €, from Equation can be reduced
by matching the average element values between DACs with the ratio of 2¥=N¢ : 1. The
individual DAC element values are not important, as long as the average element values
meet this ratio. The (1 — €) factor will be zero on average and the coarse quantization noise
will not leak to the output. Simulated results shown in Table demonstrate this. The
first row is the SNR of the reference AY ADC at various unit-element mismatch values.
The second row shows the standard segmented case. The third row is the same segmented
case, with a single fine unit element adjusted such that the average unit-element value in
the coarse DAC is exactly 16 times larger than the average unit-element value in the fine
DAC (287 : 1 =16 : 1). At 1% mismatch, the segmented ADC without equalized DAC
gains has an SNR 14.6 dB lower than the reference (non-segmented) case. In comparison,
the ADC with adjusted DAC gains has an SNR only 0.4 dB lower than the reference case.
Such adjustment of the DAC gains can be acheived through calibration.

4.2 The Calibration Method

Figure is a block diagram of a proposed calibration architecture. This method
performs the calibration as an initialization step. During calibration, the connections from

the coarse/fine ADC to the feedback path are broken and a single-bit path provides the

20

Additional
Input CAL , Stages C . Output
— 4 1 oarse/)
'@’ﬂ_’[* ¢ * It Pkinc ADC ;G‘) '
#\T \ T T T One-Bit
© . o o ADC i
N N

A

v

[]

~ 1-bit Cal| | <
~ ~
3\ [pAC [\F Synck
T Filter
Fine Coarse and
, . .
DAC DAC Callbra.tlon
A & T CAL Logic
DEM —
g 3
Kl S\ CAL
2150 DEM
=
- CAL_ Test
Signal

Figure 4.1: Block Diagram of Calibration Method

modulator feedback. A one-bit quantizer is used because it is immune to the mismatch that
plagues multi-bit quantizers. The modulator input is grounded and a fixed, DC test signal
is presented to the coarse and fine DACs through the DEM circuitry. The output is sent
to an averaging sync” filter, and then measured for each DAC individually, with the other
DACs disconnected from the circuit. The relative measurement between coarse and fine
DAC banks can then be used to make the necessary adjustment to match the ratio of the
average DAC element values. Simulations show that the calibration routine must measure
coarse and fine average capacitor values to within 2.5% of their nominal values to keep SNR
penalties below 2 dB. This means that the one-bit modulator must measure the calibration
signal to within 0.0098% of full scale (13 to 14-bit accuracy); this is feasible for a one-bit
modulator with high oversampling.

Correction must be applied to one of the DACs to complete the calibration. Due
to the averaging effect of the DEM algorithm, the required adjustment does not have to
be added to all the unit elements in the bank. Simulations show that it is sufficient to

manipulate a single fine unit element to achieve the required average unit-element ratio.

21

Similarly adjusting a coarse bank element is not effective; two possible explanations for this
are as follows: 1) the mismatch between individual coarse bank elements may be increased,
reducing the effectiveness of coarse-bank DEM, and 2) the coarse DAC input data is more
strongly patterned than the fine DAC input data, therefore DEM averaging is performed
less efficiently in the coarse DAC.

4.3 Drawbacks and Benefits

A distinct advantage of the calibration method is the low complexity of the feedback
path. For an 8-bit quantizer, two independent, 4-bit DEM implementations are required.
These DEM algorithms can be constructed so that only a four-stage pass-gate structure is
required in the signal path to shuffle the thermometer-coded ADC outputs [13]. Thus both
the complexity and the timing delay of the digital feedback path are minimal.

The necessity of having a separate calibration mode is a significant drawback. The
device is not ready for immediate use, and cannot track changes in circuit behavior relating
to temperature and other time-varying effects. A possible solution is to use a background
calibration routine, such as one that uses an out-of-band DAC test sequence as proposed
n [I4]. Another drawback is that the calibration circuitry can be quite complex and large,
requiring a lot of control circuitry and memory to compute and apply the required calibration
adjustment. Also, as separate DACs are generally used for each integration stage in AY
modulators, each set of DAC banks must be calibrated individually, which adds to the time
required to calibrate high-order modulators. Exactly how to apply the calibration adjustment

in such a way that does not add additional error is also a non-trivial problem.

4.4 Behavioral Simulation Results

Figure[4.2shows simulation results for both calibrated and uncalibrated systems com-
pared to the reference case for various unit-element mismatch percentages. In the calibration
simulation, a “calibration mode” is simulated using a 1-bit ADC and feedback path, and
alternately applying a test signal to the coarse and fine DAC to measure their individual
effects on the output. These individual measurements are then compared and used to cal-

culate how much a single fine element must be adjusted to insure an average element size

22

SNR vs Element Mismatch

1021
100>
98
A
96} R
® A
o 94 R
E | oo
o 92 $
) R
90 s_
-6
88 RN o
86 N
-0- Reference CTe
841 —+ calibration Y
-6 Uncalibrated
T L L I

8 0.2 0.4 0.6 0.8
% Fine Element Mismatch (Coarse is ~1/4 this value)

Figure 4.2: Simulated Results for Calibrated System

ratio of 16:1. The simulation then continues normal operation with this calibration amount
in place.

For the uncalibrated system and 1% mismatch, using independent coarse/fine DEM
results in a 14.5 dB degradation in SNR from the ideal case. For the calibrated simulation,
one of the fine DAC elements was adjusted to correct the gain ratio between the coarse and
fine DACs. This small adjustment achieved an SNR within 0.5 dB of the reference case.

(Note that this does not take into account errors in applying the calibration adjustment.)

4.5 Conclusion

Calibration can significantly improve the SNR of the subdivided system, and can be
done in a way to minimally affect the overall operation of the ADC. The method proposed
adds a one-bit calibration path and extra circuitry that are active during an initialization
step to perform the calibration, and a small bit of logic to vary one of the fine unit elements.
It does not add extra logic to the feedback path, and does not change the normal operation of
the ADC. As such, it is fairly simple, and can be quite accurate. However, it is unable to track
changes in the unit-element values that can occur over time, and the calibration measurement

and adjustment circuitry can be complex. Also, the calibration must be performed for

23

each group of DAC banks, meaning that increasing the order of the AY modulator will
significantly increase the time required to fully calibrate the ADC.

24

Chapter 5

Requantization

The previous chapter showed that calibration is a viable option for eliminating the
error added by the segmented DEM approach. However, the operation of the DEM blocks
themselves suggests another solution. The DEM blocks function not by removing the error
in the DAC elements, but by shifting the noise caused by that error away from the band of
interest. This chapter presents a noise-shaping method that attempts to do the same with

the noise caused by the coarse and fine DAC bank mismatch.

5.1 The Noise-Shaped Requantization (ReQ) Method

This method was initially proposed in [6] for a AYX DAC; this work extends this
concept to AYX ADCs. The basic idea is to generate a new coarse signal with a digital AY
modulator and use this coarse signal to generate a new fine signal. This insures that both
the coarse and fine signals are individually noise shaped, which is performed in a way that
causes the quantization error leakage to be noise shaped as well. Even though it does not
completely cancel errors due to DAC mismatch, the quantization error noise power will be
outside the signal band. The process is explained below, and is modeled in Figure |5.1]

First, the coarse and fine signals from the ADC internal quantizer are encoded into
binary and concatenated to form a 2’s complement N-bit signal, Y’. This signal is then
requantized to N¢ bits to form a new coarse signal using a digital first-order AY modulator.
This coarse signal is subtracted from the original N-bit signal to form the new fine signal,

comprised of Np+1 bits. After requantization, the new coarse and fine signals are:

Yo(z) = 27V Y(2) + Qp(e) (1 - 7)) (5.1)

25

Coarse/Fine ADC

X—;@—» H()

Coarse DAC DEM I iQ'c
_______ 1| L, (V- N¢)

N.

|

|
(120N Ty Ny 200V e |
Lj' lj' e ©.+: |

|

(N-No) sy 2NN T
|
. O

Figure 5.1: Mathematical Block Diagram of ReQ Architecture

Yi(z) = —Qu(2)-(1—271).

(5.2)

Signals Y/ (z) and Y/(z) then pass through independent DEM blocks and DACs and are

summed at the input of the modulator. With first-order requantization (ReQ), the quan-

tization error that is not completely cancelled due to coarse/fine DAC mismatch (as in

Equation (3.4])) is noise-shaped away from the signal band. The output of the system with

ReQ as in Figure |5.1] is derived as follows:

Yo(z) = 27N [Qo(z) + (X (2) = (1 - €2V N Y(2) - Yii(2)) H(z))]

Vr(2) = —Qc(z)+Qr(2)
Y'(z) = Yo(z)-2Y7N0 4 Yp(2)

= X(2)HE) - [(1- 9Qu(2) - Qu(2)] (1 - 7)

+Qr(2) — (1 —)H(2)-Y'(2)
X()HG) | Qe
1+ (1—€¢H(z) 1+ (1—-¢€H(2)

Desired Signal Expected Noise

26

Power Spectra

100 100
50 50
o O 0
=
(@]
o -50 -50
-100 -100
-150 -150
10° 10° 10" 10° 10° 10"
Frequency Frequency

Figure 5.2: Comparison of an Ideal Segmented A ADC (as in Figure and an Ideal AY
ADC Using the ReQ Block Showing DC Offset

(€-Qu(2) (1 - 27") H(2)
14+ (1—¢)H(z) .

Extra Noise Term

+ (5.3)

A comparison of Equation and Equation shows that the desired signal and ex-
pected noise terms are almost the same, but the extra noise term in Equation is
now multiplied by (1 — z71), which causes first-order noise shaping. Simulations show that
higher-order ReQ is not necessary; first-order ReQ sufficiently suppresses coarse/fine mis-

match errors below the noise shaped by the DEM within each DAC.

5.2 Drawbacks and Benefits

Although the need for calibration is eliminated, the ReQQ method contains several
minor drawbacks. An extra fine bit is required because of the final addition operation before
the DEM blocks in Figure [5.1], requiring slightly larger DEM and DAC implementations.
The total number of bits of information is still the same (NN bits); the coarse and fine signals
Y/ and Y}, overlap by one bit. Another potential drawback is a slight reduction in signal
range due to the possibility of overflow in the ReQ circuitry. Simulations show that the SNR
is not adversely affected by potential overflow if the input is limited to about 90% of full

scale.

27

A third drawback comes in the form of a DC error that occurs when using the ReQ
method. Even when simulations are performed using ideal unit elements, some DC offset is
present. Figure demonstrates this. The left half of the picture shows the power spectrum
for a segmented AY ADC with ideal elements. The right half shows the same signal, this
time from a AY ADC with ReQ operating in the feedback path. The ReQ signal shows
first-order noise shaping of the quantization noise leakage, but it also has a DC component.
This DC offset arises due to the difference between Y and Y. The signal Yz is an unsigned
number (the lower bits of a 2’s complement number), while Y/ is a 2’s complement number,
which can be either positive or negative. An analysis of the source of this DC error follows.

In a system using unsigned numbers (positive integers), a fully-differential DAC can

be modeled by the following equation:

DY) = 21\‘r/rif 1 (Y) - szre_f 1 [(ZN N 1) B (Y)} ' (5.4)

(A fully-differential DAC is one that always uses all of the elements, each in either the
“positive” or the “negative” sense.) In a 2’s complement DAC, the equation for D(Y') is

slightly different:

DY) = (v #2170 1) - (v 2V)] (5.5)

)

The first term represents the elements that are “on,” or added, and the second term rep-
resents the elements that are “off,” or subtracted. In these equations, V.. is the reference
voltage for the DAC, and 2V — 1 is representative of how many individual levels the DAC
can represent. The term Y + 2V~! in Equation ((5.5) results from the need to convert the
2’s complement number “Y” to a positive number representing how many unit elements to
use in the “positive” sense (the rest are “negative”, as shown by the second term in the

equation). Through some simplification it is easy to show that the 2’s complement DAC

equation reduces to:
V;“ef

2N —1

D(Y) = (2-Y +1). (5.6)

28

For a basic coarse/fine system with no ReQ step inserted, as in Figure since Y¢ is
a 2’s complement number, and Yz is an unsigned number, the following equations describe

the output of the DACs:

V;ef : 2N7Nc

De(Yo) = W(YC+2NC*1)
S e - (er2e)] 6
Drp(Yr) = Ji(yp)—kl[(2NF—1)—(YF>}. (5.8)

The sum of the output of these two DACs with the input of Y and Yy should be the same
as the output of a single DAC with the input of Y (see Equation (5.6)):

Vie _ _
De(Ye) + De(Yr) = oy - . [2-2V7Ne (Yo + 2V71) + 2(YV)

—oN=Ne (gNe — 1) — (2Nr —1)]

VL (2 Yo g2)

@)= ()

Viet N1 N
- 2N—1[2<Y+2) - (2¥-1)]
- zye_fl(ZYJrl). (5.9)

This shows that the two separate DACs together perform exactly the same function that a
single DAC (as in the reference design) would do: D(Y) = De(Ye) + Dp(Yr).

When this same analysis is applied to the ReQ system (as in Figure , a slightly
different result is obtained. Both Y/, and Y} are 2’s complement numbers, and Y}, has one

more bit than Y. So the DAC equations are:

Doy = T o)
I e) - ()]
Dp(Y) = sy (Ve)
- QX_f . (2 1) = (v +27)] . (5.11)

29

The sum of D (Y() and D%(Y}) should be the same as a single DAC with an input of Y.

However, it is not. The sum is instead given by:

D (Yh) + Dip(YE) = ij_f . [2-2V7Ne (VY 4 2V t) + 2 (Y] + 2VF)
e e 1) - (21 1)
V;ef

= [2 (2 Ne Y4 4 v 2N Ne e

—(2V = 1) + (2- 28 4 2N Ne — gNe)]

= (2V = 1) + (2Nt — 2]

(
(
_ 2 (2VNe Y 4 vy 4+ 28
(
(

= (2 - (Y- 1) + (2%)
_ QX_f S Y+ 1)+ QX_f . (2). (5.12)
Desired Signal Offset

The offset term is added to the input node of the AY¥ ADC, causing a DC offset in the output.
It is caused by the fact that Y} is a signed number, whereas before, Y was unsigned. (The
examples given were for a 2’s complement number representation. It can be shown that
the same DC offset is present for other signed numbering systems, such as offset or sign-
magnitude notation.)

The DC offset is the same magnitude as the step caused by one coarse unit element.
To counter this offset, one extra unit element was added to the coarse DAC. Given the fully-
differential nature of the system, the additional unit element will effectively be subtracted
from the DAC output signal, removing the DC bias. With unit-element mismatch present, it
does not fully remove the DC offset, but does so accurately enough to not noticeably affect
the overall SNR of the ADC.

Since the ReQ method adds significant logic to the feedback path, it can potentially
limit the maximum possible clock speed of the device. If a folding ADC quantizer is used,
one-half clock cycle (less the ADC comparator latching time) is available for this digital
computation. As an example, the design presented later in this work has a target clock rate

of 50 MHz, permitting about 10 ns for the computation. Recent developments show that a

30

two-step ADC architecture can be used while still allowing this same amount of propagation
time for the logic [10], 11]. With careful design, the delay through this path should be small
enough, and as CMOS technology scales, the delay will continue to decrease, permitting
faster clock rates.

The benefits to offset these drawbacks are few, but significant. First, there is no
startup mode required, providing “instant-on” functionality. Second, since this method of
removing the DAC mismatch error is completely digital, the actual chip should operate very
close to the simulation. In the case of calibration, there are additional inaccuracies that
will be present in physical silicon (such as the circuits to apply the calibration change and a
limited number of bits to represent the measurements) that were not taken into account in
the simulations. So the ReQ method is potentially easier to implement and easier to achieve

functionality in silicon.

5.3 Behavioral Circuit Simulation Results

Figure compares the performance of the calibration and ReQQ methods against the
ideal (full DEM) case. For the case of 1% fine element mismatch, the ReQ method achieves
an average SNR of 96.5 dB, which is only 2 dB less than the full 8-bit DEM reference case.
The calibration method acheives slighty superior performance in simulation, but would be

much harder to effectively implement in silicon.

5.4 Conclusion

The ReQ method applies techniques developed for AY DACs to the ADC feedback
path. The coarse and fine signals are reassigned using a first-order digital modulator, and
then applied to the DEM and DAC circuits. The resulting system has slightly worse SNR
performance than the calibration method previously discussed, but it does not require any
special initialization or setup in order to work, and is potentially easier to implement.

This method adds significant delay to the feedback path, and adds some area and
power consumption for the required circuitry. However, operation very near the reference
case is achieved, and no additional steps or circuitry are required to use this method with

higher-order AY. modulators.

31

SNR (dB)

101.5

101]

100.5

100

99.5

99

98.5

98

97.5

97H

96.5

SNR vs Element Mismatch

-0 - Reference

—— REQ
—+ Calibration
I

0 0.2

1 1 1 |
0.4 0.6 0.8 1

% Fine Element Mismatch (Coarse is ~1/4 this value)

Figure 5.3: Simulated Results for ReQ System

32

Chapter 6

Circuit Design

Both the calibration and requantization methods previously discussed are successful
and efficient methods to implement a segmented DEM architecture. The physical realization
of the calibration method depends on analog circuits to apply the calibration. The ReQ
method, however, is completely digital in its implementation. As such, the physical operation
of the ReQ method should be closer to its simulated performance than that of the calibration
method. For this reason, the ReQQ method was chosen as the solution for the current research
application. This chapter presents the circuit designs to implement the ReQ method in

silicon.

6.1 Circuit Overviews

The ReQ circuits presented in this chapter are designed to meet the following system
specifications in a TSMC 0.25 pm process: fourth-order AYX ADC, 50 MHz clock rate,
Ne = 4, and Np = 4. Straight-forward designs were used (circuits without many speed
optimizations) to see if standard circuits could be used to meet the time delay constraints.
Due to the lack of available synthesis tools, the designs were done by hand, instead of using
RTC. The overall block diagram of the feedback path is shown in Figure [6.1] Each block

will be explained in turn, and full schematics for each can be found in Appendix [A]

6.1.1 Encoder

The first blocks in the feedback path are the two encoders. These identical blocks
first convert the thermometer code output of the ADC quantizer into a “one-hot” signal (a

signal in which only one wire is asserted at any given time). In order to do this, the circuitry

33

Additional
Output

Input Stages Coarse/ N
v
S Z’_’I: RN]_’ Fine ADC FC_D_’

T T oNe 2NF
Fine Coarse
DAC | | DAC ¢ Encoders
V' N V' N
2Ne Decoders Ne Nrp
oNc Nc
oNr+ DEM |4 q q
ReQ
DEM |4 ¢ Blockl¢
ZNF+1 Np+1

Figure 6.1: Overall Block Diagram of the Feedback Path for the Re(QQ Method

looks for the edge of the thermometer code - a sequence of “0 0 1”7. A three-input detection
allows the circuit to eliminate a spurious code of “1 0 17 (referred to as a “bubble”). The
circuit is comprised of 3-input nor gates and inverters. Figure shows this part of the
design.

After this, the encoders convert the “one-hot” signals to binary. Since the output
of these two blocks represent, respectively, the four most significant bits and four least
significant bits of the 2’s complement binary number, the circuits are slightly different: the
encoder block for the most significant bits has an extra inverter on the MSB to make it
output 2’s complement signed numbers. Figure [6.3| shows the circuit design for the encoder
handling the most significant bits, and Figure [6.4] shows the circuit design for the encoder
handling the least significant bits. The circuits were designed using weak p-type pull-up
devices to hold the outputs high, unless pulled low by strong n-type devices controlled by

the input signals.

6.1.2 ReQ Block

The ReQ circuit (see Figure is comprised of two 8-bit subtractors, a 5-bit sub-

tractor, and an 8-bit register. The lower right part of Figure[5.1|shows a block diagram view

34

vdd

?)
vdd i TC<15> in out kel
gnd I inverter_1b
s
3 TC<10> vt
TC<15:1> b
" TC<9> one_high<8>
B one_high<15:1> © NOR3

TC<8> out

TC<14> one_high<15>

inverter_1b o

TC<13>_in “
inverter_1b N
one_high<7>
o
°
5 TC<7>
Teets B inverter_1b]
<15>
—C) £
TC<14> one_high<14> % 3 -g
inverter_1b >
- s
E g 3 TC<8> £ N
5 2 o .
e one_high<6>
TC<13> in 0 NOR3
TC<6>
inverter_1b
w inverter_1b g
o
2
© o
o| €
3| o
B
- "
3 TC<15> o
2
TC<14> one_high<13>
——0Q) one_high<5>
TC<13> out

inverter_1b
inverter_1b

TC<14>

TC<13>
piE—y

out

one_high<12>
one_high<4>
TC<12>

inverter_1b

inverter_1b

TC<13>

TC<12>
=12 o

out

one_high<11>
one_high<3>
TC<11> 1<

<3>
inverter_1b

inverter_1b

TC<12>
R e
TostIy, g

out

one_high<10>

one_high<2>

inverter_1b
inverter_1b

TC<11>

TC<10>,
1

out

one_high<9>
one_high<1>
TC<9>

TC<1>

inverter_1b

inverter_1b

Figure 6.2: Bubble Decode Circuitry

35

vdd

gnd

one_high<15:1> e

vdd i
gnd»

- bit<3:0>

one high<15:

one Jhigh<14;

5

orT«»

one _high<12

1 1]

one_high<11

g

one_high<10;

i

one_high<9>

g

one_high<8>

one_high<7>

one_high<6>

one_high<5>

one_high<4>

one_high<3>

one_high<2>

one_high<1>

[bit<0>

Both N and P type devices in
array are w/I=540n/240n.

Inverters are
P:w/I=1.74u/240n
N:w/I=1.16u/240n.

Figure 6.3: Encoder Circuit for the MSBs

36

vdd
and

bl L

one_high<15:1> e

vdd i
gnd»

- bit<3:0>

one high<15:

one_high<14
orT«»
one _high<12

"~ bit<2>

[bit<0>

1 1]

one_high<11

o Both N and P type devices in
? array are w/I=540n/240n.
o hlm Inverters are
onegng P:w/lI=1.74u/240n
L{ N:w/I=1.16u/240n.
one_high<9>
one_high<8>

one_high<7>
one_high<6>

one_high<5>

one_high<4>

one_high<3>

one_high<2>

one_high<1>

Figure 6.4: Encoder Circuit for the LSBs

37

of the ReQ. The path including the register and the two 8-bit subtractors makes up a first-
order digital modulator to form a new noise-shaped coarse signal, and the 5-bit subtractor
is used to form the new noise-shaped fine signal.

The subtractors are a simple ripple-carry design. Since they are only 8 or 5 bits wide,
the potential speedup of carry lookahead circuits is small, and does not seem to offset the
drawback of the increased size and power requirements. The basic full adder circuit is shown
in Figure [6.6]

The D-flip-flops are a standard design, such as can be found in textbooks and web
tutorials. Each flip-flop is made up of two anti-parallel inverters connected in a loop, with
pass gates to break the feedback and connect the input signal when the controlling clock
is high. Register setup and hold times are difficult to simulate without accurate transistor

models, so care was taken to allow a generous amount of time for setup and hold. The circuit

used in this design is shown in Figures [6.7 and [6.8|

6.1.3 Decode Logic

The decode logic is a collection of complex gates to realize the conversion from 4-
or 5-bit binary to thermometer code. The logic was generated by hand using standard
logic tables and k-maps. As an example, Table [6.1] shows the desired operation of the 4-bit
binary-to-thermometer code conversion. The table for the 5-bit binary-to-thermometer code
conversion follows the same pattern.

Since larger devices require more power, the transistors in the complex gates are
all minimum size. This slows down the logic somewhat, but it is still fast enough for this

application. Figures and [6.10] show the schematics of the two decoder blocks.

6.1.4 DEM Logic

The DEM logic was designed using the methods presented in [13]. Figure shows
the basic operational blocks of the DEM logic for the coarse path: the rotate block and the
rotate control. The rotate control logic takes the binary output signal from the ReQ logic

and adds it to the current value stored in the pointer register. Since the current input code

38

pub.

o

Nv__o.|llmv__
[— LPIo

bie qg Jaysibal-p

>a <0:y>0

pub‘pub‘pub‘pub‘<y:/>0s1800

g rub
@ rrA

<{:/>981B0D
<{:/>0s1eod

<0:/>Ul

pub‘pub‘pub‘pub‘<py>asie00

<0:v>

t

ircul

ReQ Ci

Figure 6.5

39

Sum . Sum

PM13

PM12

PM9
PM10

PM11

5
g

5
3
(]
=
3
o
o
s
z
- S 4
b 2 °
- s 2
z z z

Al

7 PM8
Cin |
I_+

?

Pi5
B
)

VDDT

el

e

All P-type devices:

1=240n
w=1.74u

i

e

All N-type devices:
1=240n
w=580n

- NM8
Cin ”J
I_}

i

]

PM3

PM4

NMm4

NM6
[
A g) B
GNDJ

NM3

]

] Irjpmz
5

PMO

PM1

*
o]

7
3

NM1

e

Figure 6.6: Full Adder Circuit

NMO

Cin

Cin|

E)+-—o

A

] 2

P oo
vdd .
All devices: 2 2
4 we360n
o [P i ———Po
5
lb—I{
g g
clk . } }
2 3
3
2
M
2
X
2
g
Figure 6.7: D-Latch Circuit
3
>
| |
3 3
> >
D F D Q_bar = D Q_bar—.—. Q
d-latch d-latch
clk1 F clk Q L clk Q H—. Q_bar
° kel
2 2
(=] (=]
clk2
| | | |

gnd .

Figure 6.8: D-Register Circuit

41

vdd®»

gnd®
b<3:0> e b3_NOT.
=P TC_bar<14:0>

b<0>

All devices:
1=240n
w=580n

b3 NOT 4

TC_bar<10>

TC_bar<8>

nd

nd b<0>

TC_bar<4>

)
2
)

)
2
)
S
b<1>
b<0>, 1€ vdd
b<1> vdd
b<2> /< vdd
TC bar<2> TC_bar<1>
B
2
@ b3_NOT_jJgnd b<2> gnd b3 NOT, gnd b3_NOT_ r€ vdd

TC_bar<0>

€ b3 nor Fand beos %ﬂi b<1>%@ b<0>%ﬂj
El

Figure 6.9: 4-Bit Binary-to-Thermometer Decoder Circuit

42

Figure 6.10: 5-Bit Binary-to-Thermometer Decoder Circuit

43

Table 6.1: Logic Table for 4-Bit Binary-to-Thermometer Code Conversion

b3 b2 bl bO|14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o 1 1 14,1 1 1 1 1 1111111111
o 1 1 0,0 1 1 1 1 1 111111111
o 1 o0 140 o0 1 1 1 1 111111111
o 1 o0 o0(0 o0 o0 1 1 1111111111
o o0 1 140 O O o0 1 1111111111
o 0 1 0,0 O O O o 1111111111
o o0 o0 140 O O O O O0O1 11111111
o o o0 o0y,0 O O O o o0o011T11T1T1F1:1
111 10 O O O O OOOT11111T1T1:1
i1 11 00O O O O O OOOOT1T1T1T1TT1:1
11 o0 1,0 O O O O OOOOOTI1TT1T1T171
1 1r 0o o0}0 O O O O O0OO0OO0OO0OO0OO0OT1T1T1:1
1o 1 1}0 0 O O O OOOOOOOTI1T11
1o 1 0}0 O O O O OOO0OO0OO0OTO0OO0OTO0OT11
1o o0 170 O O O O OOOOOOOO0OO0T1
10 o oj0 O O O O 0O0OO0OO0OO0OO0OO0OO0OO0OO0

is used to calculate the control signal for the following cycle, this computation is performed
outside the loop of the modulator and has no bearing on the critical path of the overall ADC.

The current value in the pointer register is used as the control signal to the rotate
block, which rotates the thermometer-coded output from the decoder a fixed number of digit
positions in response to the pointer control value. The rotate block is made up of 4 separate
rotate cells that each conditionally rotate by a fixed amount, depending on the pointer value.
For example, the “rotate 2” block passes the input unchanged to its output if bit 1 of the
pointer control signal is not asserted, or rotates the input signal by 2 positions if the control
bit is asserted. In other words, the “rotate 2”7 cell passes bit 0 of its input to bit 2 of its
output, bit 1 of its input to bit 3 of its output, and so on, as illustrated on the right hand
side of Figure[6.11] Each rotate cell is designed with transmission gates. The Figure actually
shows the block diagram for the 4-bit coarse case. The 5-bit fine DEM has a 5-bit pointer
and an extra rotate cell that rotates by 16. Figure shows the DEM schematics.

44

From Decoder) /| In Position | Out Position
15{ , P1=0 | P1=1
FromR P /
rom ReQ —»0 Rotate 1| 0 0 2
— { T 1 1 |3
P, 2 2 4
Adder — | Rotate 2 3 3 5
P i [)
2 \ °
4 — | Rotate 4| o
A4 < \ 13 13 | 15
Ptr Re P
9 > 3 [Rotate 8 AL 14 | 0
| 15 15 | 1
L To DAC

Figure 6.11: Block Diagram of DEM Circuitry

6.2 Circuit Simulations

The target clock rate for this design is 50 MHz. Due to the design used for the two-
step quantizer and integrators, the computations in the digital feedback must be completed
during one-half clock cycle. This requires a worst-case delay of less than 10 ns. The “feedback
path” includes the encoder blocks, the ReQ, the decode blocks, and the DEM logic. (A small
amount of extra time must be allotted for the comparators in the internal quantizer at the
beginning and the DACs at the end, so the actual time available is less than 10 ns.) The
critical path for the digital feedback involves the following: a 4-bit bubble decode, a 4-bit
thermometer code-to-binary encoder, an 8-bit adder and a 5-bit adder in the ReQ block,
a 5-bit binary-to-thermometer decoder, and a 31-line DEM consisting of 5 stages of pass
gates. Achieving a transistor-level simulation in which all of these elements operated in the
worst-case condition proved to be very difficult, as the resulting output from a worst-case
simulation of some blocks did not allow for the worst-case simulation of connected blocks.

To simulate an absolute maximum delay, simulations were run on each block separately,

carefully loading each block to mimic its connected operation. Figures|6.13] 6.14] [6.15] [6.16]
and show timing diagrams for each of the blocks in the critical path, and Table

shows the overall results of these simulations. The overall delay should be acceptable; more

45

Figure 6.12: DEM Circuitry

46

Table 6.2: Timing Results for the Critical Path

Block Equivalent Worst-
Name Fan Out Case Delay
1) Bubble Decode 1 inverter 0.15 ns
2) Therm-to-Bin Encoder 8 inverters 0.23 ns
3) 8-bit Subtractor 25 inverters 1.94 ns
4) 5-bit Subtractor 35 inverters 1.46 ns
5) Bin-to-Therm Decoder | 5 layers of muxes
and 31-line DEM | and 2 inverters 250 ns
’ TOTAL: ‘ ‘ ~6.28 ns

simulations that take into account delays of the analog components involved are needed to

thoroughly verify this.

6.3 Conclusion

The circuits presented in this chapter are basic circuit designs such as one could find
in basic textbooks. A few blocks, such as the decoders, were done as complex logic gates

using basic design methods. The design has an overall worst-case delay of under 7 ns, which

is less than the maximum allowable delay of 10 ns.

47

W0Z88 'z~ :2do|s

(NSLy LIy - dvEg vil) @1 ISP

(€£6¥T "L U6¥T 091)
(5105T 'L uy0ol '091)

|
v

uy 091

(s)an
ug o9l uz 09l ul 09l uo ‘091

T 0°lL-
0°0
0l
0°¢C
. P . . _ . ' _ ' _ ' _ . o = . 0°¢

+ 0 falw=319 e LCw=119 v L€.=119 =119 p LSw=119 o '.9.,=119 N

W=31g s ix ‘u6.,=319 G+ WOL,=319 0 WAl=119 WSZL=3g Y JEL=319 A JSJL=119 0
r — e e . T —— — T T—T— T 0°0
] 0l

v

] 0°¢C
. . PR . , , — . . - . . _ T 0°€

20 L= WCh=119 v . Sub=119 0 o WGw=11q e u9.,=119 N

B R i B WOL,=319 =0 Wl=319 WJZL=31g iV WEL=319 A JSJL=319 0

asuodsay 1uaisuelu]

€00C TE€:£0:9L 0E 30

> 1jeuayds Bu w 13qyTapod3pTa [qand 4 117Xy

)
Figure 6.13: Timing Simulation for ReQ Bubble Decode Block

A

48

MrglL oLg :odo|s (9045T "L uLSsLzOL) 4
(ng/¥0 "0£ d978 'STT) 1 ISP (6695 "L UE6¥0 0OL) ¥
(s)an
uy ‘oL ug ‘oL uz ‘oL uip oL uo ‘oL uo6 ‘6

— — — 0°L-

0°0
] 0°L =

9
E 0°¢C

<p:g>ndino/1,0,=119
<p:g>ndino/1,z,=11q9

<0:g>wndno/ 1, =119 =
<0:g>wndno/,g,=319 A

= e L o B I o B = e S S
0,310 :0 L= fe 7=l Y g.=319 A p,=11
N g,=1lg ix o 6,=319 G+ L=3g 0 L=319 = 1,=11q

€00C SS:0T:9L 0€ 120

asuodsay jud Isuedy

‘o =119
v L.=319

PO 9.,~119 ‘N
A L.=39 O

: 5 1jRUaYDS Buw 13Tsz g U 19 oYWy ous gl Dav

Figure 6.14: Timing Simulation for ReQQ Encoder Block

49

M609°zee :odojs ((2162°)L uLy0'zl) g
(n222'SH9 UBBS6' L) 1BNepI(90LGZ L ULLOL'OL) 'Y

uz ‘ol uos '6

£:0>C¥®uU/,0,~319
£:0>7¥BU/ Ly ,=319

£:0>T¥U/ L, L,=3 19 =
£:0>T¥BU/,6,=319 o

£:0>7¥BU/ L, T,=3 g Y
£:0>T¥U/1,9,=319 N

o>zdu/ =319 A
o>zu/L,=319 TS

N~

>peo | 01/:,0,=39
>peo |03}/, v,=314

>peo | 01/:,l,=319 ‘=
>peo | 01/:,5,=319 ‘¢

asuodsay ud Isuedl

>peo | 01/:,7,=319 'V
>peo | 01/:,9,=319 ‘N

>peo | 0}/:,£,=319 A
>peo | 01/:,L,=319 b

£00Z 05 :6Y:9L OE 320 2 1leudyd>s Buw13717qgTans g 11 3av

(A

ing Simulation for ReQ 8-bit Subtractor Block

1m

T

Figure 6.15

50

M.829 ¥S- :edojs [1(200ST | ugzgs'Ll) g
(n2056°08- UEBL8Y'L) BHSP

0(L0G2°L UL0L'0L) ¥

s () aull
up ‘el ug 'zt uo i us ‘ol uz ‘ol uos ‘6
, ————] 0°L-
E 00
E 0°lL <
q]
E 0t
B <0 :y>peo | 01/1,0,=319 10 <0 :y>pO |01/ !, L, =31q . 0°¢ —
<Q:p>peo|01/:,C7.,~¥9 vV <0 :p>peO| 03}/ ,€,=31Q ‘A <0:>peo| 0}/ p,=31d DO
] 0°0
] oL S
v]
E 0T
Lwu/n,0,=319 1 Lu/i,L,=319 = Lwu/i,z,=39 v Lwu/E,=319 A Lwu/l =319 = 0t
L3du/,0,=319 0 Lu/i,L,=319 = Lwu/i,z,=319 v Lwu/,E,=319 A Lwu/l =319 o
asuodsay 1jualsued]
p00Z L1:8E:07 8 0G24 © O 11wudyds BuwTgTagTans qiiaav

ing Simulation for ReQ 5-bit Subtractor Block

1m

T

Figure 6.16

51

M696v0°Y :2dojs [1(L00G2 L UGEPLL) 8
(NGEOL"0) UBBYEY'Z) Bep T(GT') USG8LLL) IV

s () aull
uztl ugil ugiLi uyll ugll uzil utptl
T T ——— T 0°L-
0°0
0°lL <
= 0°¢
i
0,319 ‘0 L.=319 = z.=3q v €.=319 A v.~=319 O S.=31q 9,~119 X_\ ot
L,=319 b 8.=119 X 6.~319 i+ L=3a 0 L=319 ‘= L=319 'V L=319 A L,=31q9 O -
L=319 L.=319 N =319 L.=3d L.=319 : =39 z.=3q z.=1q
¢.~=3Yq9 Z.~=%1q Z.~=%1q Z.~¥9 ‘N z.=3q & Z.~=Y19 ix z.~=Y19 €.~=3119 [
| !
T T T T] 0°'L-
ik \ 00
E 0°L =
E 0
<p:0>8LIdU/1,0,=319 D <y :0>8LIdU/ !, L,=319 to ot
<y:0>8lIdu/:,T.=119 v <y :0>8lLIdU/,E.=319 Ao <p:0>8lL¥du/ ¥, =319 O
ssuodsay 1udisueld]
£007 0£:00:17 8 god4 : d>11eusyds Buw 117qgspodTauisyl g |oav

ing Simulation for ReQQ Decoder Block

1m

T

Figure 6.17

92

Chapter 7

Conclusion

7.1 Contributions

The intended contributions of this research are as follows:

e A new presentation and mathematical analysis of the problems involved with segment-

ing the digital word in a AYX ADC feedback path.

e Design of two potential methods to overcome these problems: a calibration method

and a requantization method.

e Simulations for these two potential solutions, along with an analysis and comparison.

e Designs for the circuits of the ReQ method to be used with a 50 MHz AY ADC design
with 8-bit internal quantization and a desired output resolution of over 15 bits, along

with timing and functional simulations.

A paper presenting this work has been accepted for publication at the 2004 IEEE

International Symposium on Circuits and Systems [15].

7.2 Summary of Results

Chapter [3] presented that segmentation of the DAC structures in the feedback path
of AY. ADCs is desirable. It simplifies circuitry and allows for higher levels of internal
quantization. However, the mismatch between the two DAC banks adds an additional source
of error to the system, significantly reducing the effective SNR of the overall modulator. Two

potential solutions were proposed: one to calibrate the DAC banks and remove the mismatch,

53

and the other to requantize the segmented signals and frequency shape the error resulting
from the mismatch away from the band of interest.

The calibration method described in Chapter |4 adds no extra logic to the feedback
path of the A¥ ADC, insuring that the feedback path does not limit the overall clock speed.
It does, however, add an initialization routine to set the calibration values, which must be
run before regular operation can occur. This calibration routine must calibrate the DACs
for each stage of the AY modulator, increasing the time required to perform calibration for
high-order modulators. In the test case of a second-order modulator with an OSR of 20,
an internal quantization of (4+4)-bit, and the coarse and fine percent mismatches scaled
assuming a 16:1 size ratio between coarse and fine elements, the calibration method achieves
an average SNR of 98dB at a mismatch of 1%. This is only 0.5dB less than the SNR of the
full 8-bit DEM reference case.

The ReQ method described in Chapter |5 does add logic to the feedback path, but it
requires no initialization or startup routine. The critical path through the required logic is
fairly short, and can be optimized to limit the effect of the feedback path logic on the overall
clock speed. The DC offset inserted by the ReQ logic can be removed by a small change in
the DAC structure, and the overall SNR of this method is acceptable, if a little worse than
that of the calibration method. In the standard test case at 1% fine element mismatch, the
ReQ method achieves an average SNR of about 96dB, which is only 2dB less than the SNR
of the full 8-bit DEM reference case.

The ReQ method scales better for use with higher-order modulators. It also has fewer
implementation-related random factors to influence its actual operation in silicon, as it is
completely digital. For these reasons, it is the chosen method to use for the specific AY
design. The circuits were designed (discussed in Chapter @, and shown in full in Appendix
to minimize power consumption while still meeting the timing goals. The total delay
achieved through the feedback path was about 7 ns.

7.3 Areas for Potential Future Research

Some areas of suggested research on the material presented in this thesis are:

o4

Further develop and verify the analysis of the DC offset introduced by the Re() method.
More specifically identify its source and how to avoid or more completely remove it,

preferably using a digital method.

Adapt a higher-order DEM algorithm that does not introduce significant additionally
delay for use in the ADC. This would permit the use of a higher-order ReQ circuit and

provide higher output resolution.

Expand existing background calibration methods that calibrate DAC elements into one

which will provide background calibration between the coarse and fine banks [14].

Further optimize the digital circuitry of the AY feedback path. This includes higher-
order or more efficient methods of performing the ReQQ modulation, as well as more

efficient circuits to implement all functions.

95

Appendix

56

Appendix A

Complete Circuit Schematics

A.1 Top Level Schematic

vdd I
ond D

coarse<15:1>Ip

fine<15:1>Ip

ki
k2

3
14
15
vad -
bubble_decode_4b v
coarse<i5itp oo ong_high<15:1> bit<3:05]
one_high<{5:7> enc_therm_to_bin_4_bit 25
;\d gnd
o B *
16
7
vad
ci51o] bubble_decode_4b vdd
fne<tg:t>| Lo o ong_high<15:1> bit<3:0:
one_highd15:1> enc_therm_to_bin_4_bi
gnd gnd

g 26<3:0> thermo_code_convert_db
S
b<3:0> TC_barf14:0>
0 2
3 E
e | o F comser, +
ReQ g &
ol nefc 0 %
L P
L H l, =
5
thermo_code_convert_5b
E 20<40> [p<ai0> TC_bark30:0>

d

yo<T:4>
[gyesTs

yi<3:0>
[g <8

J

20<3:0>
==

2i<4:0>
e

"
comrse bn<30> V&
coarse_ou
thetdo>
coarse. oo
fine_bin<4:0> fine_ou
fine_th<a0:0> W ot ag

15:0>

k2
k2, |

Figure A.1: Overall Schematic for Digital Feedback Path

57

1<30:0>
=

I coarse_DAC_bar<15:0>

[fine_DAC_bar<30:0>

A.2 Bubble Decode

vdd
and

TC<15:1>

B one_high=<15:1>

TC<14>

one_high<15>

inverter_1b

vdd

TC<15>

one_high<13>
TC<13>

inverter_1b

|

gnd

2
one_high<12>
TC<12> »
inverter_b

gnd

vdd

one_high<11>
TC<1,

1=

inverter_1b

ond

TC<3>

vdd

one_high<10>
TC<105,

=

inverter_1b

gnd

TC<2>

N .
3
one_high<9>
TC<g> »
inverter_1b

and

Figure A.2: Bubble Decode Logic

58

TC<5>

TC<4>

gnd &

vdd

one_high<g>

inverter_1b

gnd &

vdd

one_high<7>
TC<7>

inverter_1b

gnd

vdd

one_high<6>
TC<6>

inverter_1b

gnd &

3
b
Te<e> one_high<5>
in| out
inverter_b
w
b
2
5

vdd

one_high<4>

inverter_1b

gnd T

vdd

one_high<3>

inverter_1b

gnd ©

vdd

one_high<2>

inverter_1b

one_high<1>

inverter_tb

A.2.1 Inverter

vdd

MO
"hoh?

1:240.0n

w=1.74u

fingers=3

m:1

in . o ® . out

Figure A.3: Inverter

59

A.2.2 3 Input Nor

P-type devices:
1=240n

B . w=5.22u

N-type devices:
1=240n

C . w=580n
vdd .
gnd .

.

.

.

gnd

r

Figure A.4: Nor Gate

gnd

60

A.3 2’s Complement Encoder

one_high<15:1> e

vdd
and

-— bit<3:0>

L&

7
1

]

3, 3
3]

[bit<3>

one Jhigh<15

one high<14:

one_high<13>

ne high<12:

| Y oy

one_high<11

one high<10:

L

one_high<9>

one_high<8>

&

one_high<7>

&7

ne_high<6>

"~

one_high<5>

1 ki

ne_high<4>

o

ne_high<3>

°
{J
e

one_high<2>

Both N and P type devices in
array are w/I=540n/240n.

Inverters are
P:wi/I=1.74u/240n
N:w/I=1.16u/240n.

Figure A.5: 2’s Complement Encoder

61

A.4 Unsigned Encoder

L&

one_high<15:1> e

]

7
1

vdd
and
— bit<3:0>
one high<15

one high<14:

one_high<13>

ne high<12:

| Y oy
L

one_high<11

Both N and P type devices in
array are w/I=540n/240n.

Inverters are
P:wi/I=1.74u/240n
N:w/I=1.16u/240n.

one high<10:

e
R

one_high<9>

g7

one_high<8>

&

one_high<7>

&7

ne_high<6>

"~

one_high<5>

1 ki

ne_high<4>

o

ne_high<3>

°
{J
e

one_high<2>

Figure A.6: Unsigned Encoder

62

A5 ReQ

]

>a

1o E

qg ™ Jeysibal-p

<0:4>0

<0:LRY PPA

pub‘pub‘pub’pub<y:/>es1200

<0:>

<p:/>0s1200 4

<0p>ul; 4

<p:/>051800

<0:€>8S1B00'<p:/>8SIB0D

<0:

MOIHIBAQ

pub

NS

<0:7>Wng <0Y>8 " pup pubpubpub’<p>asie0o

qs ans
[r—

MOLIBAD <gr>v <0:p>

ppPA

@ rub
arrr

1C

Log

ion

1zat

Requant

Figure A.7

63

A.5.1 8-bit Subtractor

il
s gl

Figure A.8: 8-bit Subtractor

64

A.5.2 Full Adder

PP Py
PMS
PM11
PM12

il

\/|:>|3.l

A—-{I«. B—-ﬁj %E{J it

—g!

4

All P-type devices:
1=240n
w=1.74u

All N-type devices:
1=240n
w=580n

e
T

oo
PM3
PM4

° .

&

o
g
H
<
© <
=
s <

Figure A.9: Full Adder Design

65

GNDJ

o
)

A.5.3 5-bit Subtractor

B<4:0>

4 oo

4 o

Q) epenu!

opn | G0N
no

Q) "sevenul
pub
ano

opn | 997
no

<p>8
L 7sepenuU]
pub
ano

overtiow f———<

Figure A.10: 5-bit Subtractor

A
&
3
< o
4]
s
S
no
] 5 ns <o>uing
3
2
<oy VY 3
qan @an faNo ano
3
3
S
no
a 5 funs <l>ung
2
<V Y s
Qan Gan faneane
3
S
<
S
0
B 5 ns <z>uing
3
2
vV 3
qan | @an fano ane
El
3
3
o
] 5 ns <g>ung
3
2
<€V v 2
qan QA [No ane
3
3
3
S
] 5 ns <pjung
3
3
<
<p>) v s
= E
[[NO ano
3
S
g o
—— —a—
aan i . ano

sum<4:0> 4}

A.5.4 D-Register Bank

4 v
A oo

p<r.0- Po<ro>
D<7> Q<7>
—8—D QpF—=8—
ckt ki diregister
——a—{ clk1 iQ_bar——a
clk2
a P —a—ck2 2
D<6> Q<6>
—a—D Q—=—
okt diregistdr
——a—{cki Q_bar—a
clk2
clk2
3
D<5> Q<5>
—=—D oF—=—
oK1 diregistdr
—a—{ ckl iQ_bar—a
clk2

—a— ck2

D<4> Q<4>
—=—{D QF—a—
kit diregistdr
clk1 Q_bar—u
clk2,

—Lg—ck2

D<3> Q<3>
—a—{D of—a——
diregistdr

clk1 clk1
—a— \Q_bar—u
ok g lake
5
D<2> Q<2>
—a—D Q—=——
i diregistdr
clk1 Q_ba—m
clk2

——a— ck2

D<1> a<t>
—a—D of—a—
diregistdr

ki A
LS Q_bar—m
clk2

JRELCI)

D<0> Q<0>
—a—D of—a——
- d-registér
e Q_bar—m
clk2
clk2

Figure A.11: D-Register Bank

67

A.5.5 D-Register

. vdd

|]
kel e
° ©
> >
o pm—io Q_bar = = D Q_bar = P
d-latch d-latch
okt [p—— o Q—H clk Q = D o
© el
c =
j=2} o
clk2
|]

gnd .

Figure A.12: D-Register

68

A.5.6 D-Latch

. Q_bar
vdd .

All devices:
1=240n
o I w=580n
=
S
D L 4 . Q
°
2
5
o
o)
3 2
L 4
x
S

inverter_1b

vdd

gnd

Figure A.13: D-Latch

69

A.6 4-bit Decoder Logic

3 B
3 3
vdd» - b3_NOT.
d b<2> “J [H vdd b<2> “J vdd —=
gndm 1 L L
be<g:0>Bemm s ot dvas | betzyd vao b3 NOT g vdd [btz vad
=B TC_bar<14:0> TC bar<14> TC bar<13>

b0y

All devices:
1=240n
3 w=580n

TC bar<9>

b3_NOT,

nd bet>,

b3_NOT, <4 vdd
TC bar<s>

bets Hhond
b2z and b3_NOT_y I
L L L

B

TC bar<a>

gne

b<2z yraand

b3_NOT,

TC_bar<0>

Figure A.14: 4-bit Binary-to-Thermometer Code Decoder

70

A.7 5-bit Decoder Logic

¥

¥

Thermometer Code Decoder

-to-

Figure A.15: 5-bit Binary

71

A.8 DEM Logic

u

. . § ¢ |
I H H
T o1 H i
o 90 I
[||

EL
a Al aa l N
B EREE B

Figure A.16: Dynamic Element Matching Logic

72

A.8.1 i
16-line Rotate-1 Logic

&
D 3
g |t
s |
) 8
g
Juf—a——
— IR <gl>ul
L prg
ou f—m——
Y <0>ul
~.2&
8l |8
=
v
—— i
<o i ”
i x|
ofi———
W |e
| 5]« <L>ul
L&
T~
8 P
) 8
=
g
v
<1>u
<g>ino .
Lpig [
ofi————
ke
L <zl
T
P
v
<g>ino -
Loz [xni
oft
<g>ul

8
[8
g &
8 |a
Dl |3
g
Luf————
_ <e>ul
iz xn|
ouf————
Q
P <rou
& |
gl |4
2|
H
— " <pur
ﬁ iz [xn
e prsm
T
g| |o
= [E
g
3
_ <g>ul
Lpiz[xni
L | ot
|z o
NNE
I~
2| g
| £
g
L
<o~
A\.‘hv_:o ino. o
Loz xnN
L. U

jos

105

N
o

<g>1no
Lpiz xni
1 17) I —
9
Lgs <g-ul
ﬁll
gl [s
5 I3
g
W
—]
— <g>ul
o ————
E
U gl <e>ul
8|
I~
2| |o
- 2
g
W——
—
- b | <6>ul
iz pen
o -
5
U gl ur
~NE
I~
gl o
I Ly
o
g
v
<01
no o "
Loz fxon
o —a——
2
LE . LU
5
~E&|

&
o |8
g |®
2 |e
I 13
=
g
Luyf—————
<gi>ino o
iz xn
oul p——_———
™
/M < <zi>u
2|
8 2
,M)3
g4
H
o] xn
o
L3l g
ﬁlm/
8l |
,W 2
g
r
— <gl>ul
Lpig[xni
o
e
| &, <pi>ur
12| 5|
T
<00 fff
8 |g
,m . . Jeq fes
, a-
—a—)
<G|>Ino " "
Loz xnin
™ @ <osi>u
L, <1>ur
S
s
s s -

16-Input Rotate-1

Figure A.17

73

A.8.2 31-line Rotate-1 Logic

==

,,,,,

AAAAA

,,,,,

AAAA

,,,,,

,,,,,,

AAAAAA

Figure A.18: 31-Input Rotate-1

74

A.8.3 2-to-1 Mux

vdd .
gnd .

in0 .
fingers:1

fingers:1

W=580.0n W=580.0n fingers:1

1:240.0n w=580.0n

sel_bar 1:240.01 1_b:
:240.0n a
" . dd gnd % '

sel .
selkbar.

out

Do

Figure A.19: 2-to-1 Mux

5

Appendix B

MATLAB Code

B.1 Reference Case Code

function out = second_order_reference(mismatch, iterate)

% 2nd order 8-bit sigma-delta model and noise analysis
% include DAC mismatch and regular, barrel-shifting DEM

% Craig Petrie 6/24/2002
% Modified by Brent Nordick

start_time = clock;
format long g

% model parameters

bin = 13; % number of sine wave cycles to capture (i.e., fft bin number)
ptspc = 1040; % number of points per cycle to plot

amp = 0.8; % sine wave amplitude

ref = 1.0; % reference voltage (full-scale analog input, positive side)
levels = 256; % number of internal quantizer levels

init = 4; % initialization points

0OSR = 20; % oversampling ratio

dacmm = 0; % percent mismatch (in %) of dac elements

sigbins = 1; % bins on either side of signal to lump with signal

NODEM = 0; % set to 1 to turn off DEM

loop_iterate = 1; %set up to run this many times for averaging

showme = 1; %variable to control display of values and plots

%startup as function necessary stuff
if nargin > O
dacmm = mismatch;
end
if nargin > 1
loop_iterate = iterate;
end
if nargout > O
showme = 0;
end

% Initial calculations

pts = bin*ptspc;
norm_factor = ptspc/(2*0SR) ;

76

% calculate parameters for internal adc function
Iml = levels - 1;

m = 1lml/2/ref; % slope

b = 1m1/2; % offset

%set up loop for averaging purposes
for lop = 1:loop_iterate

x = amp*sin(2*pi*bin*[0:pts-1+init]/pts); ¥ exactly ’bin’ cycles of

% ’pts’-point sine wave x=A*sin(2*pixw*t)
%x = -1%ones(1,length(x)); #%DC input for testing purposes
elml = getdac(levels,ref,dacmm); % retrieve dac element values for dac #1
elm2 = getdac(levels,ref,0); % retrieve dac element values for dac #2

% main delta-sigma loop

u=20; v=0; % initialize integrator outputs

demptr = 0; % initialize DEM pointer

y = zeros(l,pts+init); % allocate and initialize output vector
oneelm = zeros(l,pts+init); % examine frequency content of a single

% element signal
for i = 1:pts+init
[z,y(i)] = idealq(v,m,b,1ml); % quantize using second
% integrator output before 2nd
% integration
if (NODEM)
demptr = 0;
end % remove DEM pointer memory to turn off DEM
[dacvec,demptr] = dem(z,lml,demptr); % call DEM (Dynamic Element
% Matching) algorithm
oneelm(i) = dacvec(l); % look at first element
v = v + 2x(u - sum(dacvec.*elm2)); % 2nd integration, use 1st
% integrator output before 1st integration
u=1u+ 0.5%(x(i) - sum(dacvec.*elml)); % 1st integration
end

% plot waveforms, spectrum

x = x(init+1:pts+init); % grab last part of data - ignore init portion
y = y(init+1l:pts+init); % grab last part of data - ignore init portion
ptsv = 1l:pts;

yspec = mypsd(y);

% calculate snr
sigtonoise = mysnr(yspec,bin,0SR);
sig_to_noise(lop) = sigtonoise; hvector of values to average

% compare with ideal snr of 2nd-order modulator
sigi = amp/sqrt(2); % rms voltage of sine wave
noisei = 2xref/levels/sqrt(12)*(pi)~2/sqrt(5)/(0SR)"2.5;
% theoretical rms quantization noise voltage
sigtonoisei = 20%*1loglO(sigi/noisei);

% calculate sfdr

sigv = yspec(max([1, (bin-sigbins)]) :bin+sigbins); % signal plus spectral bleed

noisev = [yspec(l:bin-sigbins-1) yspec(bin+sigbins+1:pts/2/0SR)]; % vector of
% bins used to calculate noise

7

sfdr = 10*loglO(max(sigv)/max(noisev));
avg_sfdr(lop) = sfdr;
end

%calculate values for looping

if (loop_iterate = 1)
sig_to_noise = sort(sig_to_noise);
out_sig_to_noise(1) = sig_to_noise(1l);
out_sig_to_noise(2) = mean(sig_to_noise);
out_sig_to_noise(3) = sig_to_noise(loop_iterate);

avg_sfdr = sort(avg_sfdr);
out_sfdr(1l) = avg_sfdr(1);
out_sfdr(2) = mean(avg_sfdr);
out_sfdr(3) = avg_sfdr(loop_iterate);
else
out_sig_to_noise = sigtonoise;
out_sfdr = sfdr;
end

if (showme)

%Plot

figure(2);
%subplot(2,2,1);
plot(ptsv,x,ptsv,y);
title(’Time domain waves - sampled and quantized’);
legend (’sampled wave’,’quantized wave’);
xlabel (’time’);
ylabel(’voltage’);

figure(3);

subplot(2,1,1);
semilogx (10*1loglO(yspec));
title(’Power Spectrum’);
xlabel (’Frequency’) ;
ylabel (*Power’);

% look at spectra of single elements
oneelm = oneelm(init+1:pts+init);
subplot(2,1,2);
ospec = mypsd(oneelm) ;
semilogx (10%1log10(ospec));
title(’Single Element Power Spectrum’);
xlabel (’Frequency’);
ylabel(’Power’) ;

figure(1);

%subplot(2,1,1)
semilogx (10*1loglO(yspec));
title(’Power Spectrum’);
xlabel(’Frequency’);
ylabel (’Power’);

78

% display avg/max/min on looping, or just the output when not
sigtonoisei
out_sig_to_noise
out_sfdr
else
%output of the function
out = out_sig_to_noise;
end

elapsed_time = etime(clock, start_time)
function elmvec = getdac(levs,fs,mm)

% calculate random element values for the dac; each element either added or
% subtracted

% levs output levels generated by the dac; there are (levs-1) elements

% fs full scale output value, positive side

% mm desired dac element mismatch, in percent

% elmvec output vector containing (levs-1) dac element values

nom = fs/(levs-1); % ideal dac element value (mean
% of output array)

elmvec = nom*(1 + 0.0l*mm*randn(l,levs-1)); % 1-by-(levs-1) array of random

% element values

function [intout,dubout] = idealq(in,m,b,maxin)

% ideal quantization using pre-calculate slope and intercept values
% in value to be quantized

% m input multiplier before rounding

% b input offset before rounding

% maxin output code forced to be in range [0,maxin]

% codout output integer quantized value

% dubout output double quantized value (with same input range as ’in’)
intout = round(m*in + b);

intout = max([intout,0]);

intout = min([intout,maxin]);

dubout (intout - b)/m;

function [vecout,ptrout] = dem(code,lml,ptrin)
% perform barrel-shifing dem algorithm
% code input integer code
% 1m1 (# dac output levels) - 1; number of dac elements
% ptrin position where elements start getting used this time, in range
% [0,levs-1]
% vecout boolean output vector (+1 or -1) corresp to ’on’ elements in the DAC
% ptrout position where elements start getting used next time, in range
% [0,levs-1]
ptrout = mod(ptrin+code,lml);
if ((ptrout > ptrin) | (code == 0))
vecout = [repmat(-1,1,ptrin),repmat(l,1,code),repmat(-1,1,1lml-code-ptrin)];
else % (ptrout < ptrin) | (code == 1ml)
vecout =
[repmat (1,1, code+ptrin-1ml) ,repmat(-1,1,1ml-code),repmat(1l,1,lml-ptrin)];
end

79

B.2 Calibration Code

function out = second_order_calibrate(mm_fine, iterate)
% 2nd order sigma-delta model and noise analysis

% include DAC mismatch and course/fine DEM

% Craig Petrie 6/24/2002

% Brent Nordick 12-10-03

start_time = clock;
format long g

% model parameters

bin = 13; % number of sine wave cycles to capture (i.e., fft bin number)

ptspc = 1040; % number of points per cycle

amp = 0.8; % sine wave amplitude

ref = 1.0; % reference voltage (full-scale analog input, positive side)

clevs = 16; % number of course levels (output codes) in two-step internal
% quantizer

flevs = 16; % number of fine levels in internal quantizer

init = 4; % initialization points

OSR = 20; % oversampling ratio

dacmmc = 0; % percent mismatch (in %) of course dac elements

dacmmf = 0; % percent mismatch (in %) of fine dac elements

sigbins = 1; % bins on either side of signal to lump with signal

NODEM = 0; % set to 1 to turn off DEM

loop_iterate = 1; YMake it loop to get average StoN

showme = 1; %variale to control display of values and plots

%startup as function necessary stuff
if nargin > 0O
dacmmf = mm_fine;
end
if nargin > 1
loop_iterate = iterate;
end
if nargout > O
showme = 0;
end

% Initial calculations
pts = bin*ptspc;
norm_factor = ptspc/(2%0SR);

% calculate parameters for internal two-step adc function

% for fine quantization, input signal is in the range [-ref/clevs,+ref/clevs]
olevs = clevsxflevs; % number of overall levels in internal quantizer
olml = olevs - 1;

clml = clevs - 1;

flml = flevs - 1;

mc = olml/2/flevs/ref; 7 slope for course quantization

bc = clml/2; % offset for course quantization
mf = olml/2/ref; % slope for fine quantization
bf = flml/2; % offset for fine quantization

80

%set up
for lop
x =

[elmlc,elmif]

[elm2c,elm2f] =

loop for averaging purposes
= 1:loop_iterate

amp*sin(2*pi*binx*[0:pts-1+init]/pts);

getdac2(clevs,flevs,ref,dacmmc,dacmmf) ;

getdac2(clevs,flevs,ref,0,0);

% exactly ’bin’ cycles of
% ’pts’-point sine wave

% retrieve dac

% element values for dac #1
% retrieve dac

% element values for dac #2

%hcompute averages and adjust fine values so that the average is the same
%this translates to same average gain

sum(elmlc) /size(elmlc,2);
sum(elmif)/size(elmif,2);
deltaf = (avgc/16-avgf);

deltac = (avgf*16-avgc);
avg_cap_calculated = [avgc avgf];
%save for analysis
delta_list(lop)=deltaf;
avgc_list(lop) = avgc;
avgf_list(lop) = avgf;

avgc =
avgf =

% main delta-sigma loop

u =

demptrc = 0; demptrf = O;

0; v = 0;

% initialize integrator outputs
% initialize DEM pointers
% allocate and initialize output vector

examine frequency content of a single

% course element signal

examine frequency content of a single fine

% element signal

y = zeros(1l,pts+init);

mydisp = 1;

corselm = zeros(l,pts+init); yA
fineelm = zeros(l,pts+init); %
yc = zeros(l,pts+init); %
yf = zeros(l,pts+init); yA
%cal length and M for third order sync
% 868 289

% 2170 723

% 4123 1374

% 8680 2893

%16492 5497

%Calibration routine
figure(2);
subplot(2,1,1);

cal_

for

length = 16492;
lopl = 1:2
for lop2 = 1l:cal_length

%hlzc,zf,y(lop2) ,yc(lop2) ,yf(lop2)] =
idealq2(v,mc,bc,mf,bf,clml,flml);

if (lopl == 1)
zc = 1;
zf = 1;
end

81

examine course adc output signal
examine fine adc output signal

% two-step quantization; use
% second integrator output 1st

if (lopl == 2);
zc = 1;
zf = 1;
end
zcal(lop2) = idealq_1b(v);
if (lopl ==1)

[dacvecc,demptrc] = dem(zc,clml,demptrc);

v = v + 2x(u - sum(dacvecc.*elm2c) - zcal(lop2));

% 2nd integration

u=1u+ 0.5%(0 - sum(dacvecc.*elmlc) - zcal(lop2));

else

[dacvect,demptrf] = dem(zf,flml,demptrf);

% 1st integration

v = v + 2%(u - sum(dacvecf.*elm2f) - zcal(lop2));

% 2nd integration

u=u+ 0.5x(0 - sum(dacvecf.*elmlf) - zcal(lop2));

end
end
plot([1:cal_length],zcal)
axis([0,cal_length,-1.1,1.1]);

output_cal(lopl,:) = zcal(l:cal_length);
title(’Coarse Calibration Routine’);

subplot(2,1,2);
end

title(’Fine Calibration Routine’);

%Calibration values
M = 5497;

b = [1 zeros(1,M-1) -3 zeros(1,M-1) 3 zeros(1,M-1) -1];

a= (M"3)*[1 -3 3 -1];

yprime(l,:) = filter(b, a, output_cal(l,:));
yprime(2,:) = filter(b, a, output_cal(2,:));

figure(3)

plot(yprime(1,:))

hold on

plot(yprime(2,:),’r’)

hold off

legend(’coarse’,’fine’)
avg_y(1) = yprime(1l,cal_length);
avg_y(2) = yprime(2,cal_length);
havg_filtered = avg_y

Jremove ; for displaying
avg_cap = ((avg_y ./ 13)) =*[[1/1 0];

[0 1/111;

error(lop,:) = avg_cap - avg_cap_calculated;
delta_cap =[(avg_cap(2)*flevs - avg_cap(1)) (avg_cap(1l)/(flevs) -

avg_cap(2))];

%elmlc(1l) = elmlc(1) + (clevs-1)*delta_cap(1);
elm1f (1) = elmlf(1) + (flevs-1)*delta_cap(2);

helmic = elmlc + delta_cap(l);
%elmlf = elmif + delta_cap(2);

82

% 1lst integration

% 3rd order sinc filter

end

%Standard operation

u=20; v=0; % initialize integrator outputs
demptrc = 0; demptrf = 0; % initialize DEM pointers
y = zeros(l,pts+init); % allocate and initialize output vector
for i = 1:pts+init
[zc,zf,y(i),yc(i),yf(i)] = idealq2(v,mc,bc,mf,bf,clml,flml); % two-step
% quantization; use second integrator output 1st
if (NODEM) % remove DEM pointer memory to turn off DEM
demptrc = 0; demptrf = O;
end
[dacvecc,demptrc] = dem(zc,clml,demptrc); % call DEM (Dynamic
% Element Matching) algorithm for course dac
[dacvecf ,demptrf] = dem(zf,flml,demptri); % call DEM (Dynamic
% Element Matching) algorithm for fine dac
corselm(i) = dacvecc(l); % look at first element
fineelm(i) = dacvecf(1); % look at first element
v = v + 2x(u - sum(dacvecc.*elm2c) - sum(dacvecf.*elm2f));
% 2nd integration
u=u+ 0.5%¥(x(i) - sum(dacvecc.*elmlc) - sum(dacvecf.*elmif));
% 1lst integration
end
% plot waveforms, spectrum
x = x(init+1:pts+init); % grab last part of data
y = y(init+1:pts+init); % grab last part of data
ptsv = 1l:pts;
yspec = mypsd(y);

% calculate snr

sigv
nois
sig
sigt
sig_
% co
sigi

nois

sigt

= yspec(max([1, (bin-sigbins)]) :bin+sigbins);
% signal plus spectral bleed
ev = [yspec(l:bin-sigbins-1) yspec(bin+sigbins+1:pts/2/0SR)];
% vector of bins used to calculate noise

= sum(sigv); noise = sum(noisev);

onoise = 10*loglO(sig/noise);

to_noise(lop) = sigtonoise; %vector of values to average
mpare with ideal snr of 2nd-order modulator

= amp/sqrt(2); % rms voltage of sine wave
ei = 2*ref/clevs/flevs/sqrt(12)*(pi)~"2/sqrt(5)/(0SR)"2.5;

% theoretical rms quantization noise voltage
onoisei = 20%loglO(sigi/noisei);

% calculate sfdr
sfdr = 10xloglO(max(sigv)/max(noisev));

avg_

sfdr(lop) = sfdr;

%calculate values for looping
if (loop_iterate = 1)

83

sig_to_noise = sort(sig_to_noise);
out_sig_to_noise(1l) = sig_to_noise(1l);
out_sig_to_noise(2) = mean(sig_to_noise);
out_sig_to_noise(3) = sig_to_noise(loop_iterate);

avg_sfdr = sort(avg_sfdr);

out_sfdr (1) avg_sfdr(1);
out_sfdr(2) mean (avg_sfdr) ;
out_sfdr(3) = avg_sfdr(loop_iterate);

%delta results

avgc_list = sort(avgc_list);
out_avgc(l) = avgc_list(1);
out_avgc(2) = mean(avgc_list);
out_avgc(3) = avgc_list(loop_iterate);

avgf_list = sort(avgf_list);
out_avgf (1) = avgf_list(1);
out_avgf(2) = mean(avgf_list);
out_avgf(3) = avgf_list(loop_iterate);

delta_list = sort(abs(delta_list));
out_delta(l) = delta_list(1);
out_delta(2) = mean(delta_list);
out_delta(3) delta_list(loop_iterate);

out = out_sig_to_noise;
else
out_sig_to_noise = sigtonoise;
out_sfdr = sfdr;
%delta results
out_avgc = avgc;
out_avgf = avgf;
out_delta = deltaf;
end

if (showme)
%Plots
figure(22);
plot(ptsv,x,ptsv,y);
title(’Time domain waves - sampled and quantized’);
legend(’sampled wave’,’ideal quantized wave’);
xlabel(’time’);
ylabel(’voltage’);

figure(1);
%hsubplot(2,1,2);
semilogx (10%1logl0(yspec)); % plot it
title(’Power Spectrum of output signal (using FFT) (y) - Dual DEM with
Gain Equalization’);
xlabel(’Frequency’);
ylabel(’Power’) ;
axis([1070 1074 -150 100]1)

84

% look at spectra of course and fine elements and signals
corselm = corselm(init+1l:pts+init);

fineelm = fineelm(init+1:pts+init);

yc = yc(init+1:pts+init);

yf = yf(init+1l:pts+init);

figure(23);
subplot(2,2,1);

cspec = (abs(fft(corselm)))."2; % power spectrum using fft

cspec
semilogx (10%1logl0(cspec)); % plot it
title(’Single Element Course Power Spectra (corselm)’);
xlabel (’Frequency’);
ylabel(’Power’) ;

subplot(2,2,3);

cspec(2:pts/2+1); % only interested one side, forget dc

fspec = (abs(fft(fineelm)))."2; % power spectrum using fft
fspec = fspec(2:pts/2+1); % only interested one side, forget dc

semilogx (10*1loglO(fspec)); % plot it
title(’Single Element Fine Power Spectra (fineelm)’);
xlabel (’Frequency’) ;

ylabel (’Power’);

subplot(2,2,2);
cspec = (abs(fft(yc)))."2; % power spectrum using fft

cspec = cspec(2:pts/2+1); % only interested one side, forget dc

semilogx (10*1logl0(cspec)); % plot it
title(’Course Output Power Spectra (yc)’);
xlabel (’Frequency’);
ylabel (’Power’) ;
subplot(2,2,4);
fspec = (abs(fft(yf)))."2; % power spectrum using fft

fspec = fspec(2:pts/2+1); % only interested one side, forget dc

semilogx (10*1loglO(fspec)); % plot it
title(’Fine Output Power Spectra (yf)’);
xlabel(’Frequency’);

ylabel (’Power’);

% display avg/max/min on looping, or just the output when not
norm_factor
sigtonoisei
out_sig_to_noise
out_sfdr
out_avgc
out_avgf
out_delta
else
houtput of the function
out = out_sig_to_noise;
end

elapsed_time = etime(clock, start_time)

function [out] = idealq_1b(in)

85

%ideal 1 bit quantization for calibrate routine
% in value to be quantized
% Simple comparator
if (in > 0)
out = 1;
else
out = -1;
end

function [elmc,elmf] = getdac2(clevs,flevs,fs,mmc,mmf)

% calculate random element values course and fine dac arrays; each element
% either added or subtracted

% clevs course output levels generated by the dac; there are (clevs-1)
% course elements

% flevs fine output levels generated by the dac; there are (flevs-1) fine
% elements

% Is full scale output value, positive side
% mmc desired course dac element mismatch, in percent
% mmf desired fine dac element mismatch, in percent
% elmc output vector containing (clevs-1) course dac element values
% elmf output vector containing (flevs-1) fine dac element values
%randn(’state’,sum(100*clock)); %randomly reset random number seed
nomc = fsxflevs/(clevs*xflevs - 1); % ideal course dac element value
% (mean of output array)
nomf = fs/(clevs*flevs - 1); % ideal fine dac element value
% (mean of output array)
%elmc = nomc*(1 + 0.0l*mmc*randn(1l,clevs-1)); % 1-by-(clevs-1) array of
% random element values
elmf = nomf*(1 + 0.0l*mmf*randn(l,flevs-1)); % 1-by-(clevs-1) array of

% random element values
for lop = 1l:clevs-1
elmc(lop) = sum(nomf*(1 + O0.0l*mmf*randn(l,flevs)));

end
%stdev_f = std(elmf)/nomf
%stdev_c = std(elmc)/nomc

%hcalc_stdv = sqrt(sum((elmc-nomc)."2)/16) / nomc

function [outc,outf,dubout,dubc,dubf] = idealq2(in,mc,bc,mf,bf,maxc,maxf)

% ideal 2-step (course,fine) quantization using pre-calculated slope and
% intercept values

% in value to be quantized

% mc course input multiplier before rounding

% mf fine input multiplier before rounding

% Dbc course input offset before rounding

% Dbf fine input offset before rounding

% maxc course output code is forced to be in range [0,maxc]

% maxf fine output code is forced to be in range [0,maxf]

yA outc course output integer quantized value

% outf fine output integer quantized value

% dubout output double quantized value (with same input range as ’in’)

% dubc course quantized value (with same input range as ’in’)

% dubf fine quantized value (with same input range as ’in’, but scaled
% to be fine)

outc = round(mc*in + bc); % 1st (course) quantization step

86

outc = max([outc,0]);

outc = min([outc,maxc]);

dubc = (outc - bc)/mc;

outf = round(mf*(in - dubc) + bf); % 2nd (fine) quantization step
outf = max([outf,0]);

outf = min([outf,maxf]);

dubf = (outf - bf)/mf;

dubout = dubc + dubf;

function [vecout,ptrout] = dem(code,lml,ptrin)
% perform barrel-shifing dem algorithm

% code input integer code

% Im1l (# dac output levels) - 1; number of dac elements

% ptrin position where elements start getting used this time, in range
% [0,levs-1]

% vecout boolean output vector (+1 or -1) corresp to ’on’ elements in the
% DAC

% ptrout position where elements start getting used next time, in range
% [0,levs-1]

ptrout = mod(ptrin+code,lml);
if ((ptrout > ptrin) | (code == 0))
vecout =
[repmat(-1,1,ptrin) ,repmat(1l,1,code) ,repmat(-1,1,1lml-code-ptrin)];
else % (ptrout < ptrin) | (code == 1ml)
vecout =
[repmat(1,1,code+ptrin-1ml) ,repmat(-1,1,1lml-code) ,repmat(1,1,lml-ptrin)];
end

87

B.3 ReQ Code

function out = second_order_ReQ(mm_caps, iterate)

% 2nd order 8-bit sigma-delta model and noise analysis
% include DAC mismatch and coarse/fine DEM

% Craig Petrie 6/24/2002

% Modified by Brent Nordick

start_time = clock;
format long g

% model parameters

bin = 13; % number of sine wave cycles to capture (i.e., fft bin number)

ptspc = 1040; % number of points per cycle

amp = 0.8; % sine wave amplitude

ref = 1.0; % reference voltage (full-scale analog input, positive side)

clevs = 16; % number of coarse levels (output codes) in two-step internal
% quantizer

flevs = 16; % number of fine levels in internal quantizer

clevs_ReQ = 16; % number of coarse levels (output codes) in ReQ circuitry -
% flevs_ReQ is automatically calculated

%flevs_ReQ = 32; % number of fine levels in ReQ circuitry (total of the ReQ bits

% should be 1 extra for the overlap)

init = 4; % initialization points

0OSR = 20; % oversampling ratio

dacmmc = 0; % percent mismatch (in %) of coarse dac elements
dacmmf = 0; % percent mismatch (in %) of fine dac elements
sigbins = 1; % bins on either side of signal to lump with signal
NODEM = 0; % set to 1 to turn off DEM

loop_iterate = 1; YMake it loop to get average StoN

showme = 1; %variable to control display of values and plots

%startup as function necessary stuff
if nargin > O
dacmmf = mm_caps;
end
if nargin > 1
loop_iterate = iterate;
end
if nargout > O
showme = 0;
end

% Initial calculations

pts = bin*ptspc;

norm_factor = ptspc/(2*0SR) ;
flevs_ReQ] = 2*clevs*xflevs/clevs_ReQ;

% calculate parameters for internal two-step adc function
% for fine quantization, input signal is in the range [-ref/clevs,+ref/clevs]

olevs = clevsx*flevs; % number of overall levels in internal quantizer
olml = olevs - 1;
clml = clevs - 1;
flml = flevs - 1;

88

mc
bc
mf
bf

Yset
for

= olml/2/flevs/ref; Y, slope for coarse quantization

clml/2; % offset for coarse quantization
olml/2/ref; % slope for fine quantization
flm1/2; % offset for fine quantization

up loop for averaging purposes
lop = 1:loop_iterate
x = amp*sin(2*pi*bin*[0:pts-1+init]/pts); ¥ exactly ’bin’ cycles of
% ’pts’-point sine wave

[elmlc,elmlf] = getdac2(clevs,flevs,clevs_ReQ,flevs_ReQ,ref,dacmmc,dacmmf) ;

% retrieve dac element values for dac #1
getdac2(clevs,flevs,clevs_ReQ,flevs_ReQ,ref,0,0);

% retrieve dac element values for dac #2

[elm2c,elm2f]

% main delta-sigma loop

u=20; v=0; % initialize integrator outputs

demptrc = 0; demptrf = O; % initialize DEM pointers

y = zeros(l,pts+init); % allocate and initialize output vector

mydisp = 1;

corselm = zeros(l,pts+init); % examine frequency content of a single
% coarse element signal

fineelm = zeros(l,pts+init); % examine frequency content of a single fine
% element signal

yc = zeros(1l,pts+init); % examine coarse adc output signal

yf = zeros(1l,pts+init); % examine fine adc output signal

zerr = 0;

dub_err = 0;

maxf = 0;

minf = O;

for i = 1:pts+init
[zc,zf,y(i),yc(i),yf(i)] = idealq2(v,mc,bc,mf,bf,clml,flml); % two-step
% quantization; use second integrator output 1st
if (NODEM) % remove DEM pointer memory to turn off DEM
demptrc = 0; demptrf = O;
end

Jnoise shape gain error between DAC’s
dub_mod = y(i)-dub_err;
%dub_mod (i)=min ([max([dub_mod(i),-11),11);
%limit to allowable range

z_mod_8_b = min([max([round((olm1)/2*(dub_mod) + (olmi)/2),0]),0lm1]);
z_mod_4_b = floor(z_mod_8_b/(flevs_ReQ/2));
zCc = z_mod_4_b;
zc = max([zc 0]);
zc = min([zc 15]);
z_mod_4_b_1ls = z_mod_4_b * (flevs_ReQ/2);
dub_4_b_1s = (z_mod_4_b_1s - ((olm1)/2))/((olm1)/2);

dub_err dub_4_b_1ls-dub_mod;

%dub_err=min([max ([dub_err,-1]1),1]); %limit to allowable range

dub_fine = y(i) - dub_4_b_ls;
z_fine_8b = min([max([round((olml)/2*dub_fine+(olm1)/2),0]),0lml1]);

89

end

zf = z_fine_8b-(olevs-flevs_ReQ)/2;
%this converts from 8 bit to 5 bit bias number

zf = max([zf 0]);
zf = min([zf 31]);
yc(i) = (zc * (flevs_ReQ/2) - ((olm1)/2))/((olml)/2);
yf(i) = (zf + (olevs-flevs_ReQ)/2 - ((olm1)/2))/((olml)/2);
%end noise shape stuff
[dacvecc,demptrc] = dem(zc,clevs_ReQ-1+1,demptrc); % call DEM (Dynamic
% Element Matching) algorithm for coarse dac
[dacvect ,demptrf] = dem(zf,flevs_ReQ-1,demptrf); % call DEM (Dynamic

% Element Matching) algorithm for fine dac

corselm(i) dacvecc(1); % look at first element
fineelm(i) dacvecf (1); % look at first element
v = v + 2%x(u - sum(dacvecc.*elm2c) - sum(dacvecf.*elm2f));
% 2nd integration
u=u+ 0.5%(x(1) - sum(dacvecc.*elmlc) - sum(dacvecf.*elmlf));
% 1st integration

end

% plot waveforms, spectrum

x = x(init+1:pts+init); % grab last part of data
y = y(init+1l:pts+init); % grab last part of data
ptsv = 1l:pts;

yspec = mypsd(y);

% calculate snr
sigv = yspec(max([1, (bin-sigbins)]) :bin+sigbins); % signal plus spectral bleed
noisev = [yspec(1l:bin-sigbins-1) yspec(bin+sigbins+1:pts/2/0SR)];
% vector of bins used to calculate noise
sig = sum(sigv);
noise = sum(noisev);
sigtonoise = 10%loglO(sig/noise);
sig_to_noise(lop) = sigtonoise; %hvector of values to average

% compare with ideal snr of 2nd-order modulator
sigi = amp/sqrt(2); % rms voltage of sine wave
noisei = 2*ref/clevs/flevs/sqrt(12)*(pi)~2/sqrt(5)/(0SR)"2.5;
% theoretical rms quantization noise voltage
sigtonoisei = 20%loglO(sigi/noisei);

% calculate sfdr
sfdr = 10*loglO(max(sigv)/max(noisev));
avg_sfdr(lop) = sfdr;

%calculate values for looping
if (loop_iterate = 1)

sig_to_noise = sort(sig_to_noise);
out_sig_to_noise(1) = sig_to_noise(1l);
out_sig_to_noise(2) = mean(sig_to_noise);
out_sig_to_noise(3) = sig_to_noise(loop_iterate);

90

avg_sfdr = sort(avg_sfdr);
out_sfdr(1) = avg_sfdr(1);
out_sfdr(2) = mean(avg_sfdr);
out_sfdr(3) = avg_sfdr(loop_iterate);
else
out_sig_to_noise = sigtonoise;
out_sfdr = sfdr;
end

%0utput
if (showme)
% Plots
figure(22);
plot(ptsv,x,ptsv,y);
title(’Time domain waves - sampled and quantized’);
legend (’sampled wave’,’ideal quantized wave’);
xlabel (’time’);
ylabel(’voltage’);

figure(1);
%subplot(2,1,2);
semilogx (10*1loglO(yspec)); % plot it
title(’Power Spectrum (using FFT) (y) - Dual DEM with segmented noise
shaping’);
xlabel (’Frequency’);
ylabel (’Power’) ;
axis([1070 1074 -150 100])

% look at spectra of coarse and fine elements and signals
corselm = corselm(init+1:pts+init);

fineelm = fineelm(init+1:pts+init);

yc = yc(init+1l:pts+init);

yf = yf(init+1l:pts+init);

figure(23);

subplot(2,2,1);
cspec = mypsd(corselm);
semilogx (10*1loglO(cspec)); % plot it
title(’Single Element Coarse Power Spectra (corselm)’);
xlabel (’Frequency’) ;
ylabel (’Power’) ;

subplot(2,2,3);
fspec = mypsd(fineelm);
semilogx (10*1loglO(fspec)); % plot it
title(’Single Element Fine Power Spectra (fineelm)’);
xlabel (’Frequency’) ;
ylabel (’Power’) ;

subplot(2,2,2);
cspec = mypsd(yc);
semilogx (10*1logl0(cspec)); % plot it
title(’Coarse Output Power Spectra (yc)’);

91

xlabel (’Frequency’);
ylabel (’Power’) ;
subplot(2,2,4);
fspec = mypsd(fspec);
semilogx (10*1logl0(fspec)); % plot it
title(’Fine Output Power Spectra (yf)’);
xlabel (’Frequency’);
ylabel (’Power’) ;

% display avg/max/min on looping, or just the output when not
norm_factor
sigtonoisei
out_sig_to_noise
out_sfdr
else
%output of the function
out = out_sig_to_noise;
end

time_elapsed = etime(clock, start_time)

function [elmc,elmf] = getdac2(clevs,flevs,clevs_ReQ,flevs_ReQ,fs,mmc,mmf)

% calculate random element values coarse and fine dac arrays; each element
% either added or subtracted

% clevs coarse output levels generated by the dac;

% flevs fine output levels generated by the dac;

% clevs_Rel Coarse output levels from the ReQ circuitry; there are
% (clevs_ReQ-1) coarse elements (plus one for offset)

% flevs_ReQ Fine output levels from the ReQ circuitry; there are
% (flevs_ReQ-1) fine elements

% fs full scale output value, positive side

% mmc desired coarse dac element mismatch, in percent

% mmf desired fine dac element mismatch, in percent

% elmc output vector containing (clevs-1) coarse dac element values

% elmf output vector containing (flevs-1) fine dac element values
%randn(’state’,sum(100*clock)); %randomly reset random number seed

nomc = fs*(flevs_ReQ/2)/(clevs*flevs - 1); % ideal coarse dac element value

% (mean of output array)
nomf = fs/(clevs*flevs - 1); % ideal fine dac element value
% (mean of output array)

%elmc = nomc*(1 + 0.01*mmc*randn(l,clevs_ReQ-1+1)); % 1-by-(clevs-1) array
% of random element values
elmf = nomf*(1 + 0.01l*mmf*randn(1,flevs_ReQ-1)); % 1-by-(clevs-1) array of

% random element values

for lop = 1l:clevs_ReQ-1+1
elmc(lop) = sum(nomf*(1 + O0.0l*mmf*randn(l,flevs_ReQ/2)));

end
%stdev_f = std(elmf)/nomf
%stdev_c = std(elmc)/nomc

%hcalc_stdv = sqrt(sum((elmc-nomc)."2)/16) / nomc
function [outc,outf,dubout,dubc,dubf] = idealq2(in,mc,bc,mf,bf,maxc,maxf)

% ideal 2-step (coarse,fine) quantization using pre-calculated slope and
% intercept values

92

% in value to be quantized

% mc coarse input multiplier before rounding

% mf fine input multiplier before rounding

% bc coarse input offset before rounding

% bf fine input offset before rounding

% maxc coarse output code is forced to be in range [0,maxc]

% maxf fine output code is forced to be in range [0,maxf]

% outc coarse output integer quantized value

% outf fine output integer quantized value

% dubout output double quantized value (with same input range as ’in’)

% dubc coarse quantized value (with same input range as ’in’)

% dubf fine quantized value (with same input range as ’in’, but scaled
% to be fine)

outc = round(mc*in + bc); % 1st (coarse) quantization step

outc = max([outc,0]);

outc = min([outc,maxc]);

dubc = (outc - bc)/mc;

outf = round(mf*(in - dubc) + bf); % 2nd (fine) quantization step
outf = max([outf,0]);

outf = min([outf,maxf]);

dubf = (outf - bf)/mf;

dubout = dubc + dubf;

function [vecout,ptrout] = dem(code,lml,ptrin)
% perform barrel-shifing dem algorithm

% code input integer code

% 1lml (# dac output levels) - 1; number of dac elements

% ptrin position where elements start getting used this time, in range
% [0,1levs-1]

% vecout boolean output vector (+1 or -1) corresp to ’on’ elements in the
% DAC

% ptrout position where elements start getting used next time, in range
% [0,levs-1]

ptrout = mod(ptrin+code,lml);
if ((ptrout > ptrin) | (code == 0))
vecout =
[repmat (-1,1,ptrin) ,repmat(1,1,code) ,repmat(-1,1,1lmi-code-ptrin)];
else % (ptrout < ptrin) | (code == 1ml)
vecout =
[repmat(1,1,code+ptrin-1ml) ,repmat(-1,1,1lml-code) ,repmat(1,1,lml-ptrin)];
end

93

B.4 Manual Calibration Code

function out = second_order_man_calibrate(mm_fine, iterate)
% 2nd order 8-bit sigma-delta model and noise analysis

% include DAC mismatch and course/fine DEM

% Craig Petrie 6/24/2002

% Modified by Brent Nordick

start_time = clock;
format long g

% model parameters

bin = 13; % number of sine wave cycles to capture (i.e., fft bin number)

ptspc = 1040; % number of points per cycle

amp = 0.8; % sine wave amplitude

ref = 1.0; % reference voltage (full-scale analog input, positive side)

clevs = 16; % number of course levels (output codes) in two-step internal
% quantizer

flevs = 16; % number of fine levels in internal quantizer

init = 4; % initialization points

OSR = 20; % oversampling ratio

dacmmc = 0; % percent mismatch (in %) of course dac elements

dacmmf = 0; % percent mismatch (in %) of fine dac elements

sigbins = 1; % bins on either side of signal to lump with signal

NODEM = 0; % set to 1 to turn off DEM

loop_iterate = 1; YMake it loop to get average StoN

showme = 1; %variale to control display of values and plots

%startup as function necessary stuff
if nargin > 0O
dacmmf = mm_fine;
end
if nargin > 1
loop_iterate = iterate;
end
if nargout > O
showme = 0;
end

% Initial calculations
pts = bin*ptspc;
norm_factor = ptspc/(2%0SR);

% calculate parameters for internal two-step adc function

% for fine quantization, input signal is in the range [-ref/clevs,+ref/clevs]
olevs = clevsxflevs; % number of overall levels in internal quantizer
olml = olevs - 1;

clml = clevs - 1;

flml = flevs - 1;

mc = olml/2/flevs/ref; 7 slope for course quantization

bc = clml/2; % offset for course quantization
mf = olml/2/ref; % slope for fine quantization
bf = flml/2; % offset for fine quantization

94

%set up loop for averaging purposes
for lop = 1:loop_iterate

x = amp*sin(2*pi*bin*[0:pts-1+init]/pts); ¥ exactly ’bin’ cycles of
% ’pts’-point sine wave
[elmlc,elmlf] = getdac2(clevs,flevs,ref,dacmmc,dacmmf); % retrieve dac
% element values for dac #1
[elm2c,elm2f] = getdac2(clevs,flevs,ref,0,0); % retrieve dac

% element values for dac #2

%hcompute averages and adjust fine values so that the average is the same
%this translates to same average gain

avgc = sum(elmlc)/size(elmlc,2);
avgf = sum(elmlf)/size(elmlf,2);
deltaf = (avgc/16-avgf);

deltac = (avgf*16-avgc);

%make adjustments

%elmlf = elmlf + deltaf; %add some to each cap
%elmlc = elmlc + deltac;
elm1f(1) = elmif(1) + (flevs-1)*deltaf; % Add all adjustment to one
% fine cap
%elmlic(1l) = elmlc(1l) + (clevs-1)*deltac; % Add all adjustment to one
% coarse cap
%elmif = elmif * (1 + 0.01/100); % create mismatch in ideal
% gain-match - fine
%elmic = elmlc * (1 + 0.05/100); % create mismatch in ideal
% gain-match - coarse
%elmlf = elmlf - (ref/(clevs*flevs-1)) *(0.01/100); Jmismatch by
% constant value - all - fine
%elmif (1) = elmif(1) * (1 + .08/100); Jmismatch by

% constant value - one - fine
%save for analysis
delta_list(lop)=deltaf;
avgc_list(lop) = avgc;
avgf_list(lop) = avgf;

hrecalculate averages to verify that it worked
%avge = sum(elmlc)/size(elmlc,2)

%havgf = sum(elmlf)/size(elmlf,2)

%delta = (avgc/16 - avgf)

% main delta-sigma loop

u=0; v=0; % initialize integrator outputs

demptrc = 0; demptrf = O; % initialize DEM pointers

y = zeros(1l,pts+init); % allocate and initialize output vector

mydisp = 1;

corselm = zeros(l,pts+init); % examine frequency content of a single
% course element signal

fineelm = zeros(l,pts+init); % examine frequency content of a single fine
% element signal

yc = zeros(1l,pts+init); % examine course adc output signal

yf = zeros(l,pts+init); % examine fine adc output signal

for i = 1:pts+init

95

end

end

% pl
x =
y:
ptsv
yspe

[zc,zf,y(1),yc(i),yf(i)] = idealq2(v,mc,bc,mf,bf,clml,flml); % two-step

% quantization; use second integrator output 1st

if (NODEM) % remove DEM pointer memory to turn off DEM
demptrc = 0; demptrf = 0;

end
[dacvecc,demptrc] = dem(zc,clml,demptrc); % call DEM (Dynamic Element
% Matching) algorithm for course dac
[dacvecf ,demptrf] = dem(zf,flml,demptrf); % call DEM (Dynamic Element
% Matching) algorithm for fine dac
corselm(i) = dacvecc(l); % look at first element
fineelm(i) = dacvecf(1); % look at first element

v = v + 2%x(u - sum(dacvecc.*elm2c) - sum(dacvecf.*elm2f));

% 2nd integration
u=1u+ 0.5%x(x(i) - sum(dacvecc.*elmlc) - sum(dacvecf.*elmif));

% 1lst integration

ot waveforms, spectrum

x(init+1:pts+init); % grab last part of data

y(init+1:pts+init); % grab last part of data
= 1:pts;

¢ = mypsd(y);

% calculate snr

sigv
nois

sig
sigt

sig_

% co
sigi
nois

sigt

= yspec(max([1, (bin-sigbins)]) :bin+sigbins); % signal plus spectral bleed
ev = [yspec(l:bin-sigbins-1) yspec(bint+sigbins+1:pts/2/0SR)];
% vector of bins used to calculate noise

= sum(sigv); noise = sum(noisev);

onoise = 10*loglO(sig/noise);

to_noise(lop) = sigtonoise; %vector of values to average
mpare with ideal snr of 2nd-order modulator

= amp/sqrt(2); % rms voltage of sine wave
ei = 2xref/clevs/flevs/sqrt(12)*(pi) ~2/sqrt(5)/(0SR)"2.5;

% theoretical rms quantization noise voltage
onoisei = 20*loglO(sigi/noisei);

% calculate sfdr
sfdr = 10*loglO(max(sigv)/max(noisev));

avg_

sfdr(lop) = sfdr;

%calculate values for looping

if (loop_iterate "= 1)

sig_to_noise = sort(sig_to_noise);
out_sig_to_noise(1) = sig_to_noise(1);
out_sig_to_noise(2) = mean(sig_to_noise);

out_sig_to_noise(3)

sig_to_noise(loop_iterate);

avg_sfdr = sort(avg_sfdr);
out_sfdr(1) = avg_sfdr(1);
out_sfdr(2) = mean(avg_sfdr);

96

out_sfdr(3) = avg_sfdr(loop_iterate);

hdelta results

avgc_list = sort(avgc_list);
out_avgc(l) = avgc_list(1);
out_avgc(2) = mean(avgc_list);
out_avgc(3) = avgc_list(loop_iterate);

avgf_list = sort(avgf_list);
out_avgf (1) = avgf_list(1);
out_avgf(2) = mean(avgf_list);
out_avgf (3) = avgf_list(loop_iterate);

delta_list = sort(abs(delta_list));
out_delta(l) delta_list(1);
out_delta(2) = mean(delta_list);
out_delta(3) = delta_list(loop_iterate);

out = out_sig_to_noise;
else
out_sig_to_noise = sigtonoise;
out_sfdr = sfdr;
%delta results
out_avgc = avgc;
out_avgf = avgf;
out_delta = deltaf;

end

if (showme)
%Plots
figure(22);
plot(ptsv,x,ptsv,y);
title(’Time domain waves - sampled and quantized’);
legend (’sampled wave’,’ideal quantized wave’);
xlabel (’time’);
ylabel(’voltage’);

figure(1);
%subplot(2,1,2);
semilogx (10*1logl0(yspec)); % plot it
title(’Power Spectrum of output signal (using FFT) (y) - Dual DEM with
Gain Equalization’);
xlabel (’Frequency’);
ylabel (’Power’) ;
axis([1070 1074 -150 100])

% look at spectra of course and fine elements and signals
corselm = corselm(init+1:pts+init);

fineelm = fineelm(init+1:pts+init);

yc = yc(init+1l:pts+init);

yf = yf(init+1l:pts+init);

figure(23);
subplot(2,2,1);

97

cspec = (abs(fft(corselm)))."2; % power spectrum using fft

cspec = cspec(2:pts/2+1); % only interested one side, forget dc
semilogx (10*1loglO(cspec)); % plot it
title(’Single Element Course Power Spectra (corselm)’);
xlabel(’Frequency’) ;
ylabel (’Power’) ;
subplot(2,2,3);
fspec = (abs(fft(fineelm)))."2; % power spectrum using fft
fspec = fspec(2:pts/2+1); % only interested one side, forget dc
semilogx (10*1logl0(fspec)); % plot it
title(’Single Element Fine Power Spectra (fineelm)’);
xlabel (’Frequency’);
ylabel (’Power’) ;
subplot(2,2,2);
cspec = (abs(fft(yc)))."2; % power spectrum using fft
cspec = cspec(2:pts/2+1); % only interested one side, forget dc
semilogx (10*loglO(cspec)); % plot it
title(’Course Output Power Spectra (yc)’);
xlabel (’Frequency’) ;
ylabel (’Power’);
subplot(2,2,4);
fspec = (abs(fft(yf)))."2; % power spectrum using fft
fspec = fspec(2:pts/2+1); % only interested one side, forget dc
semilogx (10*1loglO(fspec)); % plot it
title(’Fine Output Power Spectra (yf)’);
xlabel (’Frequency’);
ylabel (’Power’) ;

% display avg/max/min on looping, or just the output when not
norm_factor
sigtonoisei
out_sig_to_noise
out_sfdr
out_avgc
out_avgf
out_delta
else
%output of the function
out = out_sig_to_noise;
end

elapsed_time = etime(clock, start_time)

function [elmc,elmf] = getdac2(clevs,flevs,fs,mmc,mmf)
% calculate random element values course and fine dac arrays; each element
% either added or subtracted
% clevs course output levels generated by the dac; there are (clevs-1)
% course elements
% flevs fine output levels generated by the dac; there are (flevs-1) fine
% elements

% fs full scale output value, positive side
% mmc desired course dac element mismatch, in percent
% mmf desired fine dac element mismatch, in percent

98

% elmc output vector containing (clevs-1) course dac element values

% elmf output vector containing (flevs-1) fine dac element values
Y%randn(’state’,sum(100*clock)) ; %randomly reset random number seed
nomc = fs*xflevs/(clevs*flevs - 1); % ideal course dac element value
% (mean of output array)
nomf = fs/(clevs*flevs - 1); % ideal fine dac element value
% (mean of output array)
%elmc = nomc*(1 + 0.0l*mmc*randn(l,clevs-1)); % 1-by-(clevs-1) array of
% random element values
elmf = nomf*(1 + O0.0l*mmf*randn(1,flevs-1)); % 1-by-(clevs-1) array of

% random element values
for lop = 1l:clevs-1
elmc(lop) = sum(nomf*(1 + O0.0l*mmf*randn(l,flevs)));

end
%stdev_f = std(elmf)/nomf
%stdev_c = std(elmc)/nomc

%hcalc_stdv = sqrt(sum((elmc-nomc)."2)/16) / nomc

function [outc,outf,dubout,dubc,dubf] = idealq2(in,mc,bc,mf,bf,maxc,maxf)
% ideal 2-step (course,fine) quantization using pre-calculated slope and
% intercept values

% in value to be quantized

% mc course input multiplier before rounding

% mf fine input multiplier before rounding

% Dbc course input offset before rounding

% bf fine input offset before rounding

% maxc course output code is forced to be in range [0,maxc]

% maxf fine output code is forced to be in range [0,maxf]

% outc course output integer quantized value

% outf fine output integer quantized value

% dubout output double quantized value (with same input range as ’in’)

% dubc course quantized value (with same input range as ’in’)

% dubf fine quantized value (with same input range as ’in’, but scaled
% to be fine)

outc = round(mc*in + bc); % 1st (course) quantization step

outc = max([outc,0]);

outc = min([outc,maxc]);

dubc = (outc - bc)/mc;

outf = round(mf*(in - dubc) + bf); % 2nd (fine) quantization step
outf = max([outf,0]);

outf = min([outf,maxf]);

dubf = (outf - bf)/mf;

dubout = dubc + dubf;

function [vecout,ptrout] = dem(code,lml,ptrin)
% perform barrel-shifing dem algorithm

% code input integer code

% 1lml (# dac output levels) - 1; number of dac elements

% ptrin position where elements start getting used this time, in range
% [0,levs-1]

% vecout boolean output vector (+1 or -1) corresp to ’on’ elements in the
% DAC

% ptrout position where elements start getting used next time, in range
% [0,levs-1]

99

ptrout = mod(ptrin+code,lml);
if ((ptrout > ptrin) | (code == 0))

vecout =

[repmat(-1,1,ptrin) ,repmat(1l,1,code) ,repmat(-1,1,1lmi-code-ptrin)];

else % (ptrout < ptrin) | (code == 1ml)

vecout =

[repmat(1,1,code+ptrin-1ml) ,repmat(-1,1,1lml-code) ,repmat(1,1,lml-ptrin)];

end

100

B.5 Additional Functions
B.5.1 mypsd

function out = mypsd(signal)
% Attempt to create a "mypsd" function
% Brent Nordick 01/17/03

pts = length(signal);

hann = 0.5*%(1 - cos(2*pix(0:pts-1)/pts)); %hann window

spec = abs(fft(signal.*hann))."2; W/ (pts/4); %windowed FFT

spec = spec(2:pts/2+1); %Choose only lower half (also omits DC?)

%Either output the value from the function or print to screen
if (nargout == 1),

out = spec,;
elseif (nargout == 0),

figure;

semilogx (10*1loglO(spec));

title(’Power Spectrum of signal’);

xlabel (’Frequency’) ;

ylabel (’Power’);

pA hold on;

%compare w/ the PSD function - for now

% [xspec,fvec] = psd(signal,pts,50e6,pts-1); % power spectrum estimate
% using MATLAB’s psd, hanning window

% xspec = xspec’;

% semilogx (10*1loglO(xspec),’g’); % plot it with frequency x-axis

end

101

B.5.2 mysnr

function out = mysnr(signal,bin,0SR)

% Attempt to create a "mysnr" function to calculate the signal-to-noise ratio
% of a given signal

% Brent Nordick 01/22/03

%signal: the signal to be analized
%bin: number of bins to divide the signal into

%temp or needed to pass?
sigbins = 1;
pts = size(signal);

sigv = signal(max([1, (bin-sigbins)]) :bin+sigbins); % signal plus spectral bleed
noisev = [signal(1l:bin-sigbins-1) signal(bin+sigbins+1:pts(2)/0SR)];
% vector of bins used to calculate noise
%aparently wants pts/2/0SR to be an integer
sig = sum(sigv);
noise = sum(noisev);
sigtonoise = 10*loglO(sig/noise);

%Either output the value from the function or print to screen
if (nargout == 1),
out = sigtonoise;
elseif (nargout == 0),
disp(’SNR’);
disp(sigtonoise);
end

102

Bibliography

1]

S. R. Norsworthy, R. Schreier, and G. C. Temes, Delta-Sigma Data Converters: Theory,
Design, and Simulation, IEEE Press, New York, 1997.

e. a. D. R. Welland, “A stereo 16 bit delta-sigma A /D converter for digital audio”, in
J. Audio Eng. Soc, 1989, vol. 37, pp. 476-485.

K. Yamamura, A. Nogi, and A. Barlow, “A low power 20 bit instrumentation delta-
sigma ADC”, in Proceedings of the IEEE 1994 Custom Integrated Circuits Conferenc,
1994, pp. 23.7.1-23.7.4.

Y. Geerts, A. M. Marques, M. S. J. Steyaert, and W. Sansen, “A 3.3-v, 15-bit, delta-
sigma ADC with a signal bandwidth of 1.1 MHz for ADSL applications”, in IEEE
Journal of Solid-State Circuits, Jul. 1999, vol. 34, pp. 927-936.

R. Jiang and T. S. Fiez, “A 1.8v 14b delta-sigma A /D converter with 4Msamples/s con-
version,”, in Digest of Technical Papers, IEEE 2002 International Solid-State Circuits
Conference (ISSCC), Feb. 2002, vol. 31, pp. 220-461.

R. Adams, K. Nguyen, and K. Sweetland, “A 113-dB SNR oversampling DAC with
segmented noise-shaped scrambling”, in IEEE Journal of Solid-State Circuits, Dec.
1998, pp. 1871-1878.

H. Stark and J. W. Woods, Probability and Random Processes with Applications to
Signal Processing, Prentice Hall, Upper Saddle River, New Jersey, third edition, 2002.

R. T. Baird and T. S. Fiez, “Linearity enhancement of multibit delta-sigma A/D and
D/A converters using data weighted averaging”, in IEEE Trans. Circuits Syst. II, Dec.
1995, vol. 42, pp. 753-762.

103

[9]

[10]

[11]

[12]

[15]

O. Nys and R. K. Henderson, “A 19-bit low-power multibit sigma-delta ADC based on
data weighted averaging”, in IEEE Journal of Solid State Circuits, July 1997, vol. 32,
pp- 933-942.

S. Lindfors and K. A. I. Halonen, “Two-step quantization in multibit delta-sigma

modulators”, in IEEE Trans. Circuits Syst. I, Feb. 2001, vol. 48, pp. 171-176.

Y. Cheng, C. Petrie, and B. Nordick, “A 4th-order single-loop delta-sigma ADC with
8-bit two-step flash quantization”, in Accepted to Proc. 2004 IEEE International Sym-
posium on Circuits and Systems (ISCAS), May 2004.

A. Fishov, E. Siragusa, J. Welz, E. Fogleman, and I. Galton, “Segmented mismatch-
shaping D/A conversion”, in Proc. 2002 IEEE International Symposium on Clircuits
and Systems (ISCAS), May 2002, vol. 4, pp. IV-679-1V-682.

M. R. Miller and C. S. Petrie, “A multibit sigma-delta ADC for multimode receivers”,
in IEEE J. Solid-State Clircuits, Mar. 2003, vol. 38, pp. 475-482.

C. Petrie and M. R. Miller, “A background calibration technique for multibit delta-sigma
modulators”, in Proc. 2000 IEEE International Symposium on Circuits and Systems

(ISCAS), May 2000, vol. 2, pp. 29-32.

B. Nordick, C. Petrie, and Y. Cheng, “Dynamic element matching techniques for delta-
sigma ADCs with large internal quantizers”, in Accepted to Proc. 2004 IEEE Interna-
tional Symposium on Clircuits and Systems (ISCAS), May 2004.

104

	Dynamic Element Matching Techniques For Delta-Sigma ADCs With Large Internal Quantizers
	BYU ScholarsArchive Citation

	Title Page
	Copyright Page
	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Introduction
	Thesis Overview

	Delta-Sigma ADCs
	Introduction to Delta-Sigma ADCs
	Obtaining High Resolution
	Multi-Bit Internal Quantization
	High Internal Quantization
	Conclusion

	Segmentation
	Segmenting the Digital Word
	Analysis of the Problem
	Conclusion

	Calibration
	The Motivation For Calibration
	The Calibration Method
	Drawbacks and Benefits
	Behavioral Simulation Results
	Conclusion

	Requantization
	The Noise-Shaped Requantization (ReQ) Method
	Drawbacks and Benefits
	Behavioral Circuit Simulation Results
	Conclusion

	Circuit Design
	Circuit Overviews
	Encoder
	ReQ Block
	Decode Logic
	DEM Logic

	Circuit Simulations
	Conclusion

	Conclusion
	Contributions
	Summary of Results
	Areas for Potential Future Research

	Complete Circuit Schematics
	Top Level Schematic
	Bubble Decode
	Inverter
	3 Input Nor

	2's Complement Encoder
	Unsigned Encoder
	ReQ
	8-bit Subtractor
	Full Adder
	5-bit Subtractor
	D-Register Bank
	D-Register
	D-Latch

	4-bit Decoder Logic
	5-bit Decoder Logic
	DEM Logic
	16-line Rotate-1 Logic
	31-line Rotate-1 Logic
	2-to-1 Mux

	MATLAB Code
	Reference Case Code
	Calibration Code
	ReQ Code
	Manual Calibration Code
	Additional Functions
	mypsd
	mysnr

	Bibliography

