
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Theses and Dissertations 

2004-03-17 

A Forbidden Subgraph Characterization Problem and a Minimal-A Forbidden Subgraph Characterization Problem and a Minimal-

Element Subset of Universal Graph Classes Element Subset of Universal Graph Classes 

Michael D. Barrus 
Brigham Young University - Provo 

Follow this and additional works at: https://scholarsarchive.byu.edu/etd 

 Part of the Mathematics Commons 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Barrus, Michael D., "A Forbidden Subgraph Characterization Problem and a Minimal-Element Subset of 
Universal Graph Classes" (2004). Theses and Dissertations. 125. 
https://scholarsarchive.byu.edu/etd/125 

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please 
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarsarchive.byu.edu%2Fetd%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/125?utm_source=scholarsarchive.byu.edu%2Fetd%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


A FORBIDDEN SUBGRAPH CHARACTERIZATION PROBLEM AND A

MINIMAL-ELEMENT SUBSET OF UNIVERSAL GRAPH CLASSES

by

Michael David Barrus, Jr.

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mathematics

Brigham Young University

April 2004





Copyright c© 2004 Michael D. Barrus, Jr.

All Rights Reserved





BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Michael D. Barrus, Jr.

This thesis has been read by each member of the following graduate committee and

by majority vote has been found to be satisfactory.

Date Wayne W. Barrett, Chair

Date Rodney W. Forcade

Date David A. Clark





BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Michael D.

Barrus, Jr. in its final form and have found that (1) its format, citations, and bibli-

ographical style are consistent and acceptable and fulfill university and department

style requirements; (2) its illustrative materials including figures, tables, and charts

are in place; and (3) the final manuscript is satisfactory to the graduate committee

and is ready for submission to the university library.

Date Wayne W. Barrett

Chair, Graduate Committee

Accepted for the Department

Tyler J. Jarvis

Graduate Coordinator

Accepted for the College

G. Rex Bryce, Associate Dean

College of Physical and Mathematical Sciences





ABSTRACT

A FORBIDDEN SUBGRAPH CHARACTERIZATION PROBLEM AND A

MINIMAL-ELEMENT SUBSET OF UNIVERSAL GRAPH CLASSES

Michael David Barrus, Jr.

Department of Mathematics

Master of Science

The direct sum of a finite number of graph classes H1, ...,Hk is defined as the

set of all graphs formed by taking the union of graphs from each of the Hi. The

join of these graph classes is similarly defined as the set of all graphs formed by

taking the join of graphs from each of the Hi. In this paper we show that if each Hi

has a forbidden subgraph characterization then the direct sum and join of these Hi

also have forbidden subgraph characterizations. We provide various results which in

many cases allow us to exactly determine the minimal forbidden subgraphs for such

characterizations. As we develop these results we are led to study the minimal graphs

which are universal over a given list of graphs, or those which contain each graph

in the list as an induced subgraph. As a direct application of our results we give an

alternate proof of a theorem of Barrett and Loewy concerning a forbidden subgraph

characterization problem.
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1 Introduction

Given a nonempty class C of graphs, a graph G is said to be C-free, or to be an

element of G(C), if none of its induced subgraphs is isomorphic to an element of C.

If a collection H of graphs is such that H = G(C) for some collection C of graphs,

we say that H has a forbidden subgraph characterization. Many important classes of

graphs have forbidden subgraph characterizations. For example, if C is the collection

of graphs homeomorphic to K5 or K3,3, then G(C) is the class of planar graphs [K].

If C = {2K2, C4, C5}, then G(C) is the class of split graphs, those whose vertex sets

may be partitioned so as to form an independent set and a clique [FH]. Of recent

note, Seymour et. al. have proved [CRST] that the perfect graphs, those for which

the chromatic number equals the clique number in any given induced subgraph, are

the C-free graphs, where C denotes the class of cycles on 2n + 1 vertices (n > 1) and

their complements. For a survey of results on forbidden-subgraph classes, see [BLS].

As we will note, the properties of many classes provide for the existence of for-

bidden subgraph characterizations, but such characterizations may be hard to find.

In some cases, a given graph class may be described in terms of forbidden subgraphs

in different ways. For example, in a paper recently submitted for publication [BL],

Barrett and Loewy found one characterization for a class of graphs important in a

matrix rank minimization problem, in terms of a list of forbidden subgraphs. The

paper’s referees found a different characterization, involving graphs formed by taking

the union of elements from two different forbidden-subgraph classes. The question

arises, then, of whether a forbidden subgraph characterization must exist for a class

of graphs whose elements are unions of elements from forbidden-subgraph classes.

Stated more precisely, if H1,H2, ...,Hk are arbitrary nonempty classes of nonempty
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graphs and we define their direct sum

G(H1) ⊕ G(H2) ⊕ · · · ⊕ G(Hk)

= {G a graph | G = G1 ∪ G2 ∪ · · · ∪ Gk, where Gi ∈ G(Hi) for i = 1, 2, ..., k} ,

must G(H1)⊕G(H2)⊕ · · · ⊕ G(Hk) have a forbidden subgraph characterization, and

if so, what is it?

In this thesis we will show that G(H1)⊕G(H2)⊕ · · · ⊕ G(Hk) does indeed have a

forbidden subgraph characterization, and we will consider in depth the special case of

this problem in which each Hi consists of a single nonempty graph Hi. We will give

a “best possible” forbidden subgraph characterization of this class when each Hi is

connected, and will discuss various simplifications of a forbidden subgraph character-

ization in the case when one or more Hi are disconnected. We finish by applying our

results to various examples, including the characterizations of Barrett/Loewy and the

referees, showing that the two are equivalent.
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2 Definitions and Elementary Results from Graph

Theory

This section contains many definitions and basic results from graph theory that will

be important in the sections ahead. For further definitions and results, see [M] or [W].

A graph G = (V,E) is a pair consisting of a vertex set V , also denoted V (G),

and an edge set E, also denoted E(G). The vertex set, whose elements are called

vertices, is usually defined to be a nonempty finite set; though our vertex sets will

always be finite, for our purposes it will be useful at times to allow the vertex set to

be empty. Such a graph G = (∅, ∅) is called an empty, or null graph. Adopting a

convention followed in [M], we denote by A(2) the collection of all two-element subsets

of a set A. Then the edge set E(G) can be any subset of V (G)(2). As a notational

convenience, we may denote an edge of G by uv or vu instead of {u, v}. Graphs thus

defined are called simple graphs; graphs that are not simple (i.e., that allow loops

and multiple edges) are treated in [B].

A graph may be represented pictorially by drawing a circle or point correspond-

ing to each vertex of G and drawing an arc joining the two points corresponding

to vertices u and v if uv is an edge of G. For example, let V = {a, b, c, d, e} and

E = {ab, bc, bd, cd, ce, de}. Then we can draw G = (V,E) as the following:

a b

c

d

e
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Of course, by placing vertices in different relative positions we may draw infinitely

many different representations of any given graph.

Given two graphs G and H, an isomorphism from G to H is a bijective map

ϕ : V (G) → V (H) such that ϕ(u)ϕ(v) is an edge of H if and only if uv is an edge

of G. If an isomorphism exists from V (G) to V (H), we write G ∼= H. The binary

relation ∼= is an equivalence relation, and we call the associated equivalence classes

isomorphism classes. An isomorphism ϕ : V (G) → V (G) is called an automorphism.

We say that G is vertex-transitive if for any vertices u, v ∈ V (G) there exists an

automorphism φ : V (G) → V (G) such that φ(u) = v.

Given two vertices u, v ∈ V (G), we say that u and v are adjacent, or that they

are neighbors, if uv ∈ E(G). For any vertex v ∈ V (G), define the neighborhood of

v in G, denoted NG(v), or N(v), to be the set of all vertices of G that are adjacent to v.

A subgraph of G is a graph H = (W,F ), where W ⊆ V (G) and F ⊆ E(G)∩W (2).

We say that H is a proper subgraph of G if W is properly contained in V (G). If

F = E(G)∩W (2) we say that H is an induced subgraph of G, and we write H = G[W ].

If G is a graph and v ∈ V (G), we denote by G − v the graph G[V (G)\{v}], and we

say that G − v is the graph obtained from G by deleting v. If J is isomorphic to an

induced subgraph of G, we often say that G induces J , or that J is induced in G.

Throughout the text we will use the words “contain” and “induce” interchangeably.

The complement of G = (V,E), denoted Gc, is the graph (V, V (2)\E).

The union of a finite number of graphs G1 = (V1, E1), G2 = (V2, E2), ...,

4



Gk = (Vk, Ek), where the Vi are all disjoint, is denoted by G1 ∪ · · · ∪ Gk, or by
⋃k

i=1 Gi, and is the graph (V1 ∪ · · · ∪ Vk, E1 ∪ · · · ∪Ek). We often write nG to denote

the graph G ∪ G ∪ · · · ∪ G (n times).

In a graph G = (V,E), a set W ⊆ V is said to be a clique if the vertices of

W are all pairwise adjacent, and an independent set if the vertices of W are all pair-

wise nonadjacent. A subgraph of G is said to be complete if the vertex set of the

subgraph forms a clique.

A path in a graph is an alternating sequence of vertices and edges (v0, e1, v1, e2, ...,

ek, vk) such that vi−1 and vi are adjacent for all i = 1, 2, ..., k, no vertex appears

more than once in the sequence, and ei = vi−1vi for i = 1, 2, ..., k. We often simplify

notation by writing the path as v0 − v1 − · · · − vk. We call v0 and vk the endpoints

of the path, and v1, v2, ..., vk−1 the intermediate vertices of the path. We define the

length of the path to be k, the number of edges in the sequence. We say that a graph

G is a path if there exists a path in G containing each vertex and each edge of the

graph. The distance between u and v in G, denoted d(u, v), or dG(u, v), is the length

of the shortest path in G having u and v as its endpoints, if one exists, and is defined

to be infinite otherwise. We consider the sequence (v) as a path of length zero, and

hence d(v, v) = 0 for any v ∈ V (G).

Proposition 2.1. If u = p0 − p1 − · · · − pk−1 − pk = v is a shortest path from u to v

in G, then G[{p0, ..., pk}] is a path.

Proof: If G[{p0, ..., pk}] is not a path, then there exists some edge pipj ∈ E(G) with

i < j and j − i > 1. Then

p0 − p1 − · · · − pi−1 − pi − pj − pj+1 − · · · − pk
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is a path of length i + (k − j) + 1 = k − (j − i) + 1 < k − 1 + 1 = k and is therefore a

shorter path from u to v, a contradiction. Hence G[{p0, ..., pk}] is a path. ¤

A walk is an alternating sequence of vertices and edges (v0, e1, v1, e2, ..., ek, vk) such

that vi−1 and vi are adjacent for all i = 1, 2, ..., k, and ei = vi−1vi for i = 1, 2, ..., k.

Notation similar to that used for paths is also used for walks.

Proposition 2.2. [W, page 21] Every walk contains a path as a subsequence.

A component C of G is a maximal nonempty induced subgraph of G such that

for any two vertices u, v ∈ V (C), there exists a path in G whose vertices all belong

to V (C) and whose endpoints are u and v. Alternatively, a component is a maximal

nonempty induced subgraph C such that the distance between any two vertices of C

is finite. A graph is said to be connected if it consists of at most one component. A

cutvertex of G is a vertex v ∈ V (G) such that G − v has more components than G

does.

Proposition 2.3. [W, page 29] Every graph on n ≥ 2 vertices has at least two vertices

that are not cutvertices.

Proposition 2.4. [H, pages 27, 30] The following statements are equivalent:

(1) v is a cutvertex of G;

(2) There exist vertices u,w of G distinct from v such that v lies on every path from

u to w;

(3) There exist neighbors u,w of v in G such that v lies on every path from u to w.

Proposition 2.5. [CEJZ] For any graph G = (V,E), given a vertex u ∈ V , let v be

a vertex of G such that d(u,w) ≤ d(u, v) for all w ∈ N(v). Then v is not a cutvertex

of G.
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A dominating vertex of G is a vertex that is adjacent to every other vertex in

G. A pendant vertex is a vertex having exactly one neighbor. It is immediate from

Proposition 2.4 that a pendant vertex is not a cutvertex.

Given an arbitrary nonempty class C of nonempty graphs, a graph G is said

to be C-free if G induces none of the elements of C. If F ∈ C we may write that G is

F -free, or if C = {F1, ..., Fk}, we often write that G is (F1, ..., Fk)-free. We let G(C)

denote the class of graphs that induce no member of C, and we write G(A1, ..., Aj) in

place of G({A1, ..., Aj}). We note now that the empty graph is an element of G(C)

for every class C of nonempty graphs. If H is a class of graphs, we say that F is a

forbidden subgraph for H if no element of H induces F . If H = G(C) for some class C

of graphs, we say that H has a forbidden subgraph characterization.

We end this section by cataloguing a few graphs by name that we will use through-

out the thesis. They are as follows:

Pn - the path on n vertices.

Kn - the complete graph on n vertices.

Kn1,...,nk
- the complete k-partite graph with partite sets of orders n1, ..., nk (alterna-

tively, the complement of Kn1
∪ · · · ∪ Knk

).

Sn - the star on n vertices (alternatively, K1,n−1).

Cn - the cycle on n vertices.
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P3 P4 K3 (C3, triangle) K4

paw diamond bull dart

⋉ K3,3 S4 (K1,3) S5 (K1,4)

C4 bowtie
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3 The Existence of a Forbidden Subgraph Charac-

terization

To begin this section, we first define an important property of certain graph classes

and then prove a result that allows us to resolve our question about the existence of

a forbidden subgraph characterization for G(H1) ⊕ G(H2) ⊕ · · · ⊕ G(Hk).

Definition 1. A class C of graphs is said to be hereditary if G ∈ C implies that every

induced subgraph of G also belongs to C.

The following lemma was proved in Greenwell et. al. in [GHK]. We give a proof

of it here, as the proof will be instructive in what is to follow.

Lemma 3.1. A graph class C has a forbidden subgraph characterization if and only

if it is hereditary.

Proof: Suppose C = G(D) for some class D of graphs. Let G be an arbitrary graph

in C. Then for any induced subgraph H of G and any induced subgraph I of H, I is

also an induced subgraph of G and is therefore not isomorphic to any element of D.

Then by definition we have H ∈ G(D), so C is a hereditary class.

Suppose conversely that C is an arbitrary hereditary class of graphs, and define D

to be the set of all graphs not in C. Then C and D partition the class of graphs. Let

G be an arbitrary element of C. Then every induced subgraph of G belongs to C, so

no induced subgraph of G is isomorphic to an element of D; thus C ⊆ G(D). Now let

H be an arbitrary element of G(D). Then no induced subgraph of H is isomorphic

to an element of D; in particular H itself is not an element of D. Then by definition

we have that H ∈ C, so G(D) ⊆ C, and we conclude that C = G(D). Thus C has a

forbidden subgraph characterization. ¤
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Example 3.1. As mentioned in the introduction, a split graph is a graph whose

vertex set can be partitioned into a clique and an independent set. For example,

a

b

c

d e

is a split graph, since {a, d} is a clique and {b, c, e} is an independent set. We claim

that the class of split graphs is a hereditary class. Suppose G is any split graph, and

let V1, V2 be a partition of V (G) such that V1 is a clique and V2 is an independent

set. Then for any induced subgraph H of G, we have that V1 ∩ V (H), V2 ∩ V (H) is

a partition of V (H) into a clique and an independent set. Hence H is split, and the

class of split graphs is a hereditary class. By Lemma 3.1, the class of split graphs

thus has a forbidden subgraph characterization. ¤

Example 3.2. A graph G is said to be eulerian if there exists some sequence

v0, v1, ..., vn of vertices of G such that vn = v0 and v1v2, v2v3, ..., vn−1vn is a sequence

of edges of G such that each edge of G appears exactly once in the sequence. Let C

denote the class of eulerian graphs. Then C is not a hereditary class. For example,

in Figure 1, graph (i) is eulerian, while graph (ii) is an induced subgraph of (i) and

is not eulerian. Hence, by Lemma 3.1, the class of eulerian graphs does not have a

forbidden subgraph characterization. ¤

(ii)(i)

Figure 1: (i) eulerian; (ii) non-eulerian

Applying Lemma 3.1 to the problem at hand, we obtain the following:
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Theorem 3.2. For any nonempty classes H1,H2, ...,Hk of nonempty graphs, the

class G = G(H1) ⊕ G(H2) ⊕ · · · ⊕ G(Hk) has a forbidden subgraph characterization.

Proof: We will show that G is a hereditary class and then apply Lemma 3.1.

Suppose G ∈ G is arbitrary, and let G1, G2, ..., Gk denote vertex-disjoint subgraphs

of G such that Gi ∈ G(Hi) for i = 1, ..., k, and G = G1∪· · ·∪Gk. Also let Vi = V (Gi)

for i = 1, ..., k. If G′ is any induced subgraph of G, then there exists V ′ ⊆ V (G) such

that G′ = G[V ′]. Define G′
i = Gi[V (Gi)∩ V ′] for i = 1, ..., k. Then G′

i ∈ G(Hi) for all

i, since G′
i is an induced subgraph of Gi, which is an element of the hereditary class

G(Hi). Now

G′ = G′
1 ∪ · · · ∪ G′

k ∈ G(H1) ⊕ G(H2) ⊕ · · · ⊕ G(Hk) = G,

and we see that G is a hereditary class. Then by Lemma 3.1, G has a forbidden

subgraph characterization. ¤

Note that while Lemma 3.1 guarantees the existence of a forbidden subgraph

characterization for a class such as G, its proof suggests only a very crude way of

obtaining one—namely, taking as the set of forbidden subgraphs the set of all graphs

not in the class. This forbidden set is necessarily infinite, and thus in most cases

unwieldly to work with; and, in fact, much smaller lists of forbidden subgraphs may

serve to characterize the graph class. To return to Example 3.1 again, we note that

each of the following six graphs is not contained in, and hence is a forbidden subgraph

for, the class of split graphs.

Thus, the split graphs form a subset of G(2K2, C4, 2K2 ∪K1, P5, C5, bowtie). Can we

conclude, though, that the class of split graphs equals the set G(2K2, C4, 2K2∪K1, P5,
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C5, bowtie)? And if so, is each graph of these six necessary as a forbidden subgraph

to characterize the split graphs, or may we omit any?

We note that each of 2K2∪K1, P5, and the bowtie graph induce 2K2, so if a graph

is 2K2-free, it must be free of these graphs as well. In general, we have the following:

Observation 3.3. If C is an arbitrary nonempty collection of graphs and D ⊆ C is

such that every graph in C induces an element in D, then G(C) = G(D).

This reduces our list above to the graphs 2K2, C4, and C5. Do these graphs form

a forbidden-subgraph collection large enough to characterize the split graphs, or must

we include more forbidden subgraphs? In answer to this question, Foldes and Hammer

showed [FH] that the split graphs are exactly the class of (2K2, C4, C5)-free graphs,

so our original infinite list of forbidden subgraphs for the split graphs (every graph

that is not a split graph) can be reduced to this list of three graphs.

This will be the focus of our study for the remainder of the thesis: given arbitrary

nonempty graphs H1, H2, ..., Hk, in what ways can we reduce our list of forbidden

subgraphs of G(H1) ⊕ G(H2) ⊕ · · · ⊕ G(Hk) to something more convenient to work

with, and what properties will the graphs in our reduced list possess?

12



4 The Classes CU and CU∗

4.1 Definitions and Elementary Results

Before returning to the problem at hand, we establish some results concerning induced

subgraphs. In particular, we introduce a class of graphs that will be important to our

solution.

Definition 2. Given a nonempty collection H of graphs, a graph G is said to be

universal over H if every graph in H is isomorphic to an induced subgraph of G.

The concept of a universal graph was first introduced by Rado in [R]. In his and

others’ papers, a universal element of a graph class is defined to be an element of

the class that contains all other elements of the class as subgraphs. With such a

definition, the graphs considered usually have infinite vertex sets. Note that here we

do not talk about a universal element of a class; by our definition a graph G need not

be an element of H to be universal over it.

Definition 3. Given a collection C = {A1, A2, ..., Aj} of graphs, define CU(C) =

CU(A1, A2, ..., Aj) to be the set of all connected graphs containing A1, A2, ..., Aj as

induced subgraphs, i.e., the set of all connected graphs that are universal over C.

When the context makes clear what is meant, we will simply call this class CU .

Note that this class is necessarily infinite. A subset of this class that will be

important to us later is the following:

Definition 4. With C, A1, A2, ..., Aj, and CU as defined above, define CU∗(C) =

CU∗(A1, A2, ..., Aj) to be a subset of CU with the following properties:

(1) Every graph in CU contains at least one graph of CU∗(C) as an induced sub-

graph.

13



(2) No graph in CU∗(C) is induced by any other graph in CU∗(C).

We call C a generating set and its elements generators for the class CU∗(C). When

the context makes clear what is meant, we omit mention of the generating set and

denote the class CU∗(C) simply by CU∗.

To see that such a nonempty subset exists, consider the following: Since

CU(A1, A2, ..., Aj) is nonempty, there are graphs in it of smallest order n. Since

no proper induced subgraph of any of these graphs belongs to CU , in order to satisfy

property (1) of CU∗, we must have that every one of these graphs belongs to CU∗. We

proceed inductively on the number of vertices in the graphs in CU . For each B ∈ CU

on s vertices, we check to see that no proper induced connected subgraph of B is

isomorphic to any graph already included in CU∗. If B does not induce any element

of CU∗, we append B to CU∗; if it does, we discard B.

Proposition 4.1. A graph H ∈ CU(C) belongs to CU∗(C) if and only if no proper

induced subgraph of it belongs to CU(C).

Proof: Suppose H ∈ CU∗. Then if a proper induced subgraph J of H belonged to

CU , by the definition of CU∗ there would be some induced subgraph K of J lying

in CU∗. But certainly K is also a proper induced subgraph of H, contradicting the

definition of CU∗. Hence, no proper induced subgraph of H belongs to CU .

Suppose conversely that no proper induced subgraph of H ∈ CU belongs to CU .

By the definition of CU∗, H must have an induced subgraph belonging to CU∗, a

subset of CU . Since no proper induced subgraph will do, H itself must be an element

of CU∗. ¤

Corollary 4.2. CU∗(C) is unique.

Proof: By Proposition 4.1, and noting that CU∗ is, by definition, a subset of CU ,

the elements of CU∗ are uniquely determined. ¤

14



Example 4.1. Consider the following four graphs, which all belong to CU(Kc
2):

Note that each of these graphs is connected and induces Kc
2. However, applying

Proposition 4.1, we see that none lies in CU∗ except the first graph, P3. In fact, we

show that CU∗ = {P3}: Let G be an arbitrary graph in CU∗. Since G induces Kc
2,

there exist two nonadjacent vertices u and v in G. Since G is connected, there exists

a shortest path joining u and v. Since u and v are not adjacent, this path must

contain at least 3 vertices and, by Proposition 2.1, thus induce P3. Since P3 ∈ CU

and G ∈ CU∗, by Proposition 4.1 we see that P3 is not a proper induced subgraph of

G; hence, G = P3, and our proof is complete. ¤

Example 4.2. Consider the graphs P3 and K3:

We show that CU∗(P3, K3) consists of the graphs

i.e., CU∗(P3, K3) = {paw, diamond}. Certainly the paw and the diamond belong to

CU∗ by Proposition 4.1, since no proper induced subgraph of them is a connected

graph inducing both P3 and K3. Next, suppose that H is a graph in CU∗ that is

isomorphic to neither the paw nor the diamond. Then it contains neither of these

as an induced subgraph, by the definition of CU∗. Let u, v, w be the vertices of an

induced subgraph of H isomorphic to K3. Let

Ni = {t ∈ V (H) | min{d(t, u), d(t, v), d(t, w)} = i}
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for each i ∈ N. Since H ≇ K3, certainly N1 must be nonempty. Let a be a vertex in

N1. Then a is adjacent to at least one vertex in {u, v, w}, and in order to not induce

a paw or a diamond on these four vertices, a must be adjacent to each of u, v, and

w. If |N1| ≥ 2, let b, c be any two vertices of N1. Then b and c are each adjacent to

each of u, v, w, and if b and c are not mutually adjacent, then {b, c, u, v} induces a

diamond, a contradiction. Hence, N1 ∪ {u, v, w} induces a complete subgraph. Now

if Ni is nonempty for any i ≥ 2, then certainly there exists a vertex d ∈ N2. Then

d is adjacent to some vertex f ∈ N1 and is not adjacent to any vertex in {u, v, w}.

Then {d, f, u, v} induces a paw, a contradiction. Then for all i ≥ 2, we have that Ni

is empty. This implies that the vertices of the induced P3 all lie within N1∪{u, v, w},

a contradiction, since the latter is a clique. Hence, CU∗ contains no graphs distinct

from the paw or the diamond, and our proof is complete. ¤

Example 4.3. The class CU∗(A1, A2, ..., Aj) need not be finite; consider, for example,

CU∗(S4, K3). By Proposition 4.1, each of the following graphs lies in CU∗:

Note that if we continue to lengthen the graph by adding vertices to the path joining

the copies of K3 and S4, we continue to create graphs belonging to CU∗. Since we

can continue this indefinitely, we conclude that CU∗(K3, S4) is infinite. ¤

4.2 Special Cases

We see from the previous examples that CU∗-sets vary much in the structure of their

graphs, depending on the graphs A1, A2, ..., Aj. We can obtain much information

about the structure of graphs in certain CU∗-sets if we put further conditions on the

Ai. This section treats a few special cases.
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4.2.1 Connected graphs

Definition 5. In this and the following subsection, let H = (V,E) be an arbitrary ele-

ment of CU∗(A1, ..., Aj), where each Ai is a connected graph, and let V1, ..., Vj ⊆ V (H)

be such that H[Vi] ∼= Ai for i = 1, 2, ..., j. In addition, define X = V \
(⋃j

i=1 Vi

)
.

Observation 4.3. If |V | >
∑j

i=1 |Vi|, then X is nonempty.

Proposition 4.4. If x ∈ X then x is a cutvertex in H, and for each Vi there exists

some k ∈ {1, ..., j} such that the component of H −x in which Vi lies does not induce

Ak; hence Vi and Vk lie in distinct components in H − x and Vi ∩ Vk = ∅.

Proof: The union
⋃j

i=1 Vi ⊆ V \{x}, so H − x contains induced A1, A2, ..., Aj. Since

H ∈ CU∗(A1, A2, ..., Aj), by Proposition 4.1 we must have that H−x is disconnected,

so x is a cutvertex of H. Furthermore, suppose that for some Vi the component of

H − x containing Vi induces Ak for all k ∈ {1, 2, ..., j}. Then that component of

H − x is a connected proper induced subgraph of H that induces A1, A2, ..., Aj , a

contradiction to Proposition 4.1. Hence for every x ∈ X and every Vi there is a Vk

such that the removal of x separates Vi and Vk. ¤

Example 4.4. By Proposition 4.1 it is easy to verify that

a

b

c d e f
g

i
h

is an element of CU∗(K3, P4, C4). We are required to let V1 = {a, b, c} and V3 =

{f, g, h, i}, and there are multiple possibilities for V2. Suppose V2 = {e, f, g, h}. Then

X = {d}, and as proved above, d is a cutvertex of G. Furthermore, for each Vi,

i = 1, 2, 3, there is a Vk such that Vi, Vk are disjoint, since V1 is disjoint from both

V2, V3. ¤
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4.2.2 Two connected graphs

When we let j = 2 in the previous subsection, we can obtain even stronger results

about the graphs in CU∗. For example, the following results are natural corollaries of

Proposition 4.4.

Corollary 4.5. If H ∈ CU∗(A1, A2) and |V (H)| ≥ |V (A1)| + |V (A2)|, then V1 and

V2 are disjoint.

Proof: Suppose that V1 ∩ V2 6= ∅. Then

|V1 ∪ V2| = |V1| + |V2| − |V1 ∩ V2| < |V (A1)| + |V (A2)| ≤ |V (H)|,

so X is nonempty. Let x be a vertex of X. By Proposition 4.4, H[V1] and H[V2] lie in

separate components in H − x, a contradiction to our supposition that V1 ∩ V2 6= ∅.

Hence we conclude that V1 ∩ V2 = ∅. ¤

Corollary 4.6. If H ∈ CU∗(A1, A2) and |V (H)| > |V (A1)| + |V (A2)|, then there

exists no edge uv in H with u ∈ V1, v ∈ V2.

Proof: Since |V (H)| > |V (A1)| + |V (A2)|, by Observation 4.3 we see that X is

nonempty. Then by Proposition 4.4, H[V1] and H[V2] lie in different components in

H − x for any x ∈ X; hence there can be no edge joining a vertex in V1 with one in

V2. ¤.

Proposition 4.7. If H ∈ CU∗(A1, A2) and X is nonempty, then H[X] is a path with

one endpoint having at least one neighbor in V1, and the other endpoint having at

least one neighbor in V2.

Proof: Given any vertex a ∈ V1 and any vertex b ∈ V2, let a = p0 − p1 − · · ·− pk = b

be a shortest path from a to b in G, and let P = {p0, ..., pk}. Then H[P ] is a path, by
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Proposition 2.1. Now define PX = P ∩X. Then H[V1∪V2∪PX ] = H[V1∪V2∪P ] is a

connected induced subgraph of H inducing A1 and A2; since H ∈ CU∗, by Proposition

4.1 we have H[V1 ∪ V2 ∪ PX ] = H. Then V1 ∪ V2 ∪ PX = V = V1 ∪ V2 ∪ X, and since

PX ∩ (V1 ∪ V2) ⊆ X ∩ (V1 ∪ V2) = ∅, we have X = V \(V1 ∪ V2) = PX ⊆ P . Let q

be the smallest natural number such that pq ∈ X, and let r be the smallest natural

number such that r > q and pr+1 /∈ X. Since there are no edges between vertices of

V1 and V2 (Corollary 4.6), we must have that pq−1 ∈ V1. Now pr+1 /∈ X, so either

pr+1 ∈ V1 or pr+1 ∈ V2. If pr+1 ∈ V1 then H[V1 ∪ V2 ∪ {pr+1, ..., pk})] is a connected

proper induced subgraph of H inducing A1 and A2, a contradiction to Proposition

4.1. If pr+1 ∈ V2 then H[V1 ∪ V2 ∪ {pq, ..., pr}] is a connected induced subgraph of H

inducing A1 and A2, so X = PX = {pq, ..., pr}, and H[X] is a path having endpoint

pq adjacent to some vertex in V1 and endpoint pr adjacent to some vertex in V2. ¤

Corollary 4.8. If H ∈ CU∗(A1, A2) and X is nonempty, then
∣∣∣∣∣

(
⋃

v∈V1

N(v)

)
∩ X

∣∣∣∣∣ =

∣∣∣∣∣

(
⋃

v∈V2

N(v)

)
∩ X

∣∣∣∣∣ = 1,

and the vertices of X that have neighbors in V1 and V2, respectively, are the two ends

of the path H[X].

Proof: The result is trivial if |X| = 1, so assume |X| > 1. We know from Propo-

sition 4.7 that H[X] is a path with its endpoints adjacent to elements of V1 and V2,

respectively; denote the path by x1 − · · · − xp, and suppose without loss of generality

that x1 has a neighbor in V1, and xp has a neighbor in V2. Now suppose that some

vertex u ∈ V1 is adjacent to some path vertex xi, where i 6= 1. Then it is easy to

see that H[V1 ∪ V2 ∪ {xi, xi+1, ..., xp}] is a connected proper induced subgraph of H

inducing both A1 and A2, a contradiction to the minimality of H. Hence, if any

vertex of V1 has a neighbor in X, that neighbor must be x1. Similarly, if any vertex

of V2 has a neighbor in X, that neighbor must be xp. ¤
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Example 4.5. Looking back to Example 4.3, we see that the elements of CU∗(S4, K3)

shown illustrate the theorems above: in each graph H, when we choose V1 and V2 so

that H[V1] ∼= S4 and H[V2] ∼= K3, we have that these vertex sets are disjoint. In the

graphs in which X is nonempty, H[X] is a path joining V1 and V2. ¤

These results allow us to conclude a few things about the finiteness of certain

CU∗-sets:

Proposition 4.9. If either A1 or A2 is a path, CU∗(A1, A2) is finite.

Proof: Suppose that A1 is a path, and that CU∗(A1, A2) is infinite. Then CU∗

certainly contains some graph G such that |V (G)| ≥ 2|V (A1)| + |V (A2)|. Then if

we define X, V1, and V2 as above, we have that G[X] is isomorphic to a path on at

least |V (A1)| vertices; hence G[X] induces A1. Then G[X ∪V2] is a connected proper

induced subgraph of G that induces A1 and A2, a contradiction to Proposition 4.1.

Hence, CU∗(A1, A2) is finite. A similar argument shows that this is also the case if

A2 is a path. ¤

Proposition 4.10. Given nonempty graphs A1, A2 such that neither graph is induced

in the other, if neither A1 nor A2 contains a pendant vertex, then CU∗(A1, A2) is

infinite.

Proof: Suppose that neither A1 nor A2 contains a pendant vertex, and let G1

and G2 be vertex-disjoint graphs isomorphic to A1 and A2, respectively. Let r

be an arbitrary natural number such that r ≥ max{|V (A1)|, |V (A2)|} − 2, and let

G = (V,E), where V = V (G1) ∪ V (G2) ∪ {x1, x2, ..., xr} and E = E(G1) ∪ E(G2) ∪

{ux1, x1x2, x2x3, ..., xr−1xr, xrv}, where u is an arbitrary vertex of G1 and v is an

arbitrary vertex of G2. Then any connected induced subgraph on |V (A1)| vertices is

either equal to G[V (G1)], induced in G[V (G2)], or contains a pendant vertex. Since
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A1 does not contain a pendant vertex and A2 does not induce A1, the only connected

induced subgraph of G isomorphic to A1 is the subgraph induced on V (G1). Similarly,

the only induced subgraph isomorphic to A2 is the subgraph induced on V (G2). Then

since the vertices x1, x2, ..., xr are clearly cutvertices in G, we have that every proper

induced subgraph of G either fails to induced A1 or A2 or is disconnected. Then by

Proposition 4.1, we conclude that G ∈ CU∗(A1, A2). Since r was only bounded below,

we see then that CU∗(A1, A2) is infinite. ¤

Conjecture 4.11. Given that neither A1 nor A2 is induced in the other, then

CU∗(A1, A2) is finite if and only if one of A1, A2 is a path.

4.2.3 The class CU∗(Kc
n)

We turn our attention now to CU∗-sets for disconnected graphs, beginning with the

CU∗-set generated by a single graph, the quintessential disconnected graph Kc
n. As

we will see, the graphs in the CU∗(Kc
n)-classes possess a wealth of structure in the

way that they can be “put together” to form graphs in CU∗(Kc
n) for other values of

n.

Before beginning, we give some examples for small values of n:

Example 4.6. For the case n = 2, we proved in Example 4.1 that CU∗(Kc
2) consists

solely of the graph P3, shown here:

¤

Example 4.7. For the case n = 3, we find that CU∗(Kc
3) = {S4, P5, bull}. These

graphs are shown here:
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We note from Proposition 4.1 that each of these graphs belongs to CU∗(Kc
3). Further-

more, an exhaustive search for elements of CU∗(Kc
3) among all graphs with less than

or equal to 5 vertices (which is easy, though tedious, to perform by hand) yields only

these graphs, and, as we shall prove later, any graph in CU∗(Kc
3) can have at most 5

vertices. Thus, CU∗(Kc
3) consists exactly of these three graphs. ¤

We now turn to examining the structure of the graphs in CU∗(Kc
n) for an arbitrary

natural number n.

Lemma 4.12. For G ∈ CU∗(Kc
n), let W ⊆ V (G) be an independent set on n vertices,

and let x ∈ V (G) \ W be arbitrary. Then x is a cutvertex of G.

Proof: The graph G − x is a proper induced subgraph of G that induces Kc
n, so by

Proposition 4.1 we must have that G − x is disconnected. ¤

Corollary 4.13. If v is an arbitrary vertex of G ∈ CU∗(Kc
n) and v is not a cutvertex,

then v is an element of every independent set in G containing n vertices.

Proof: Immediate. ¤

Lemma 4.14. Let G ∈ CU∗(Kc
n) for n ≥ 2, let W ⊆ V (G) be an independent subset

of order n, and let x be a vertex of G not in W . Then x is adjacent to at least one

element of W .

Proof: Suppose x has no neighbors in W . G has at least two vertices that are not

cutvertices, by Proposition 2.3. Let u 6= x denote one of these vertices. By Corollary

4.13, u is in W . Then W\{u} ∪ {x} is an independent set on n vertices in the

connected proper induced subgraph G− u, a contradiction to Proposition 4.1. Thus,

x has at least one neighbor in W . ¤
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Lemma 4.15. Let G ∈ CU∗(Kc
n), let W ⊆ V (G) be an independent set with n

vertices, and let x be a vertex of G not in W . Then every component of G − x

contains a vertex of W .

Proof: By Lemma 4.12, G−x is disconnected. Suppose Q is an arbitrary component

of G − x, and let v ∈ V (Q) be a vertex of Q at maximum distance from x in G.

Since each neighbor of v (with the exception of x, if x and v are adjacent) belongs

to the same component as v in G − x, it must belong to Q. Then v is such that

dG(x, v) ≥ dG(x, u) for all u adjacent to v. By Proposition 2.5, v is not a cutvertex

in G, so by Corollary 4.13, v must belong to W . ¤

Lemma 4.16. Given G ∈ CU∗(Kc
n), if x ∈ V (G) is adjacent to a non-cutvertex of

G, then for any independent subset W ⊆ V (G) of order n, x is adjacent to at least

two vertices of W .

Proof: Suppose that x is adjacent to non-cutvertex u. Then u ∈ W for any choice

of W , by Corollary 4.13. Now if x is not adjacent to any other vertex in W , then

W\{u} ∪ {x} is an independent set on n vertices induced in the connected proper

induced subgraph G − u of G, a contradiction to Proposition 4.1. ¤

Corollary 4.17. Given G ∈ CU∗(Kc
n), if x ∈ V (G) is adjacent to some pendant

vertex v of G then for any independent subset W ⊆ V (G) of order n, x is adjacent

to some vertex of W\{v}.

Proof: Immediate. ¤

Lemma 4.18. Let G be a graph in CU∗(Kc
n), W ⊆ V (G) an independent set with n

vertices, x a vertex of G not in W , and C1, C2, ..., Cq the components of G − x. For

i = 1, 2, ..., q, define ni = |W ∩V (Ci)|. Then each Ci contains some vertex vi adjacent

to x in G, and either Ci ∈ CU∗(Kc
ni

), or vi is unique and Ci − vi ∈ CU∗(Kc
ni

).
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Proof: We show first that each Ci contains some vertex vi adjacent to x in G.

For any Ci and any vertex a ∈ V (Ci), since G is connected there exists some

path a = p0 − p1 − · · · − pk−1 − pk = x. Then vi = pk−1 is adjacent to x, and

a − p1 − · · · − pk−1 = vi is a path joining a and vi in G − x, so vi belongs to Ci.

Now Ci is a connected component inducing Kc
ni

, so it induces an element of

CU∗(Kc
ni

). Let C∗
i denote an induced subgraph of Ci belonging to CU∗(Kc

ni
), and

let Wi denote an independent subset of V (C∗
i ) of order ni. Let u be a vertex of

C∗
i at minimum distance from x, and let x = q0 − q1 − · · · − ql = u be a shortest

path from x to u. Then G′ = G[V (G)\V (Ci) ∪ V (C∗
i ) ∪ {q1, ..., ql}] is a connected

induced subgraph of G that induces Kc
n. Since G ∈ CU∗, we have that G′ = G. Since

V (C∗
i ) ∪ {q1, ..., ql) ⊆ V (Ci), we have

V (C∗
i ) ∪ {q1, ..., ql} = V (Ci).

Now ql ∈ V (C∗
i ); if l = 1 then V (C∗

i ) = V (Ci), and Ci ∈ CU∗(Kc
ni

). Suppose

l > 1. Then q1, ..., ql−1 are vertices of Ci but not of C∗
i . Note that since these are the

intermediate vertices on a shortest path from x to the nearest vertex of V (C∗
i ), q1 is

the only vertex from V (Ci) adjacent to x (hence, vi = q1 and vi is unique), and ql−1

is the only one of these vertices that is adjacent to any vertex of C∗
i . Furthermore,

anything the qj (1 ≤ j ≤ l − 1) are adjacent to (other than x) is by definition a

vertex of Ci (since it would lie in this component in G − x), and since a shortest

path is always an induced path, vertex q1 is adjacent only to x and q2 (as long as

l > 2; otherwise, q1 = ql−1), qj (where 2 ≤ j ≤ l − 2) is adjacent only to qj−1 and

qj+1, and ql−1 is adjacent only to ql−2 and vertices in C∗
i . Now W ′ = W\V (Ci) ∪ Wi

is an independent subset of V (G) of order n. Since q1 /∈ V (C∗
i ), we have q1 /∈ W ′,

and since q1 is adjacent only to x and q2, by Lemma 4.14 we must have q2 ∈ W ′.

Then l = 2 in the path above, and we have that V (Ci) = V (C∗
i ) ∪ {q1}. Then
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Ci − vi = C∗
i ∈ CU∗(Kc

ni
), and the proof is complete. ¤

Lemma 4.19. Let G, W , x, and ni be defined as in Lemma 4.18. If ni = 1 for some

i, then Ci
∼= K1.

Proof: By the proof of Lemma 4.18, Ci is either an element of CU∗(Kc
1) = K1, or

Ci = ({u, v}, {uv}), where exactly one vertex of Ci is adjacent to x. Suppose that

the latter case holds, and suppose without loss of generality that u is adjacent to x,

and v is not. Then v is a pendant vertex and is therefore an element of W . Vertex u

must be adjacent to another vertex of W , by Corollary 4.17. Since u is only adjacent

to x and v, and x /∈ W , this is a contradiction. Hence, Ci
∼= K1. ¤

Lemma 4.20. For G ∈ CU∗(Kc
n), given any choice W of n mutually nonadjacent

vertices and some x ∈ V (G)\W , each component of G − x contains a vertex that is

a pendant vertex in G.

Proof: By induction on n. The statement is vacuously true for n = 1 and also holds

for n = 2, since CU∗(Kc
2) = {P3}. Suppose now that the statement holds for all nat-

ural numbers n = 1, 2, ..., k, and let G ∈ CU∗(Kc
k+1) be arbitrary. Given some choice

W of an independent set on k + 1 vertices, choose arbitrary x /∈ W . Then G − x is

disconnected, by Lemma 4.12, and each component Ci (1 ≤ i ≤ q) of G − x contains

at least one vertex of W (Lemma 4.15), i.e., ni ≥ 1 for all i, where ni = |W ∩V (Gi)|.

Now by Lemma 4.19, if ni = 1 then Ci
∼= K1, and the vertex comprising Ci is a

pendant vertex in G, adjacent only to x. If ni ≥ 2, then by Lemma 4.18, either

Ci ∈ CU∗(Kc
ni

), or Ci − v ∈ CU∗(Kni
), where v is adjacent to x in G.

Case: Ci ∈ CU∗(Kc
ni

). Now W ∩ V (Ci) is an independent set on ni vertices. By

the induction hypothesis, if we choose any vertex x′ /∈ W ∩V (Ci) then Ci has at least

one pendant vertex for each component of Ci − x′. Now suppose that in G we have
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x adjacent to every vertex that is pendant in Ci. We claim that G− x′ is connected.

Let a, b be any pair of neighbors of x′ in G. Then there exist paths from a and b to

x that do not include x′: If a 6= x (the a = x case is trivial), then the component of

Ci − x′ that a lies in contains a vertex d that is pendant in Ci. Then there exists a

path from a to d that does not include x′; since x is adjacent to every vertex that is

pendant in Ci we may append x to this path to get the desired a−x path. The same

argument constructs a path b − x not containing x′ if b 6= x. If we concatenate the

paths a−x and x−b, identifying the endpoints x, we get a walk from a to b containing

an induced path a− b (Proposition 2.2), neither of which contains x′. Then x′ is not

a cutvertex in G by Proposition 2.4, a contradiction to Lemma 4.12, since x′ /∈ W .

We conclude then that x is not adjacent in G to every vertex that is pendant in Ci.

But then since no vertex in Ci is adjacent in G to any vertex outside of V (Ci) except

for x, there is at least one pendant vertex in Ci that is pendant in G, and our proof

is complete for this case.

Case: Ci − v ∈ CU∗(Kc
ni

), where v is adjacent to x in G. We use virtually the same

argument as in the previous case. Let C∗
i = Ci−v. Then C∗

i contains an independent

subset Wi ⊆ V (C∗
i ) of order ni. By the induction hypothesis, if we choose any vertex

x′ /∈ Wi then C∗
i has at least one pendant vertex for each component of C∗

i −x′. Now

suppose that in G we have v adjacent to every vertex that is pendant in C∗
i . We

claim that G − x′ is connected. Let a, b be any pair of neighbors of x′ in G. Then

there exist paths from a and b to v that do not include x′: If a 6= v (the case a = v

is trivial), then the component of C∗
i − x′ that a lies in contains a vertex d that is

pendant in C∗
i . Then there exists a path from a to d that does not include x′; since

v is adjacent to every vertex that is pendant in C∗
i we may append v to this path to

get the desired a − v path. The same argument produces a b − v path if b 6= v. If

we concatenate the paths a− v and v − b, identifying the endpoints v, we get a walk
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from a to b containing an induced path a − b, neither of which contains x′. Then x′

is not a cutvertex in G, a contradiction to Corollary 4.13, since x′ /∈ W\V (Ci) ∪ Wi.

We conclude then that v is not adjacent in G to every vertex that is pendant in C∗
i .

But then since no vertex in C∗
i is adjacent in G to any vertex outside of V (C∗

i ) except

for v, there is at least one pendant vertex in C∗
i that is pendant in G, and our proof

is complete. ¤

Theorem 4.21. For arbitrary G ∈ CU∗(Kc
n), |V (G)| ≤ 2n − 1.

Proof: We prove this by induction on n. Since CU∗(Kc
1) = {K1}, we see from this

and Example 4.6 that the result holds for n = 1 and 2. Suppose that it also holds

for n = k, where k is some natural number, and let G be an arbitrary element of

CU∗(Kc
k+1). By Lemma 4.20, G has a pendant vertex v. Let x be the neighbor of v

in G. Since v is not a cutvertex of G, by Corollary 4.13 it must be included in any

choice W of k + 1 mutually nonadjacent vertices in G, and by Lemma 4.12 x must

be a cutvertex. Let C1, C2, ..., Cq denote the components of G− x other than the one

containing v, and define ni = |W ∩ V (Ci)|. By Lemma 4.18, Ci is either an element

of CU∗(Kc
ni

) or has one more vertex than some element of CU∗(Kc
ni

). Then since

ni < k + 1, by the induction hypothesis we have that |V (Ci)| ≤ (2ni − 1) + 1 = 2ni.

Furthermore, we know from Corollary 4.17 and the proof of Lemma 4.18 that since x

is adjacent to a pendant vertex that it must be adjacent to another one of the vertices
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w of W , and in the component Ci containing w, we have Ci ∈ CU∗(Kc
ni

). Then

|V (G)| = |{v, x}| +

q∑

i=1

|V (Ci)|

≤ 2 +

(
q∑

i=1

2ni

)
− 1

= 1 + 2

q∑

i=1

ni

= 1 + 2k

= 2(k + 1) − 1,

and by induction the proof is complete. ¤

We recall that the order of a maximum independent set in G is called the inde-

pendence number of G, and is denoted α(G). Our last result, then, may be restated

in the following way: For any graph G with α(G) ≥ n, there is a connected induced

subgraph of G on less than or equal to 2n − 1 vertices with independence number n.

We see that the graphs in CU∗(Kc
n) have a very clear structure. As we investigate

the graphs in CU∗(D) for an arbitrary disconnected graph D, it becomes apparent

that the structure found in CU∗(Kc
n) owes much to the fact that each component of

Kc
n is an isolated vertex; structural theorems similar to the ones above do not hold,

in general, for CU∗-sets generated by disconnected graphs. However, the special cases

illustrated in this section show that many results concerning the structure and num-

ber of the graphs in the class CU∗ may be possible if we limit our attention to specific

types of generating graphs for the CU∗-sets.

4.3 Relationships Among CU∗-sets

In this section we state a few results about the relationships among various sets.

These results will aid us in our use of CU∗-sets later.
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Proposition 4.22. Let A = {A1, ..., Aj} be any nonempty collection of graphs, and

let A′ ⊆ A have the property that every graph in A is induced in some graph of A′.

Then CU∗(A′) = CU∗(A).

Proof: Suppose that G is an arbitrary element of CU∗(A). Then by Proposition 4.1,

any connected proper induced subgraph of G fails to induce some Ai ∈ A. Then it

fails to induce some A′
i ∈ A′, since Ai is induced by at least one element of A′. Then,

again by Proposition 4.1, G is an element of CU∗(A′).

Suppose now that H is an arbitrary element of CU∗(A′). Then H ∈ CU(A), and

any connected proper induced subgraph of H fails to induce some element of A′. Since

A′ ⊆ A, this induced subgraph fails to induce some element of A, and by Proposition

4.1, we have that H ∈ CU∗(A), and the proof is complete. ¤

Proposition 4.23. Say D ⊆ C, where C is any nonempty class of graphs. Then

CU∗(C) ⊆
⋃

G∈CU∗(D)

CU∗ (C\D ∪ {G}) .

Proof: Let H be an arbitrary element of CU∗(C). Then H is connected and induces

every graph in D, so H induces some graph G ∈ CU∗(D). Now since H ∈ CU∗(C),

every connected proper induced subgraph H ′ of H fails to induce some graph F ∈ C.

If F ∈ D then F is induced by G, and H ′ does not induce G; otherwise, F ∈ C\D and

H ′ does not induce F . In either case, H ′ /∈ CU(C\D∪{G}), and H ∈ CU(C\D∪{G}),

so by Proposition 4.1 we have H ∈ CU∗(C\D ∪ {G}), and our proof is complete. ¤

Corollary 4.24. For any i ∈ {1, ..., j}, we have

CU∗(A1, ..., Ai, ..., Aj) ⊆
⋃

A′∈CU∗(Ai)

CU∗(A1, ..., Ai−1, A
′, Ai+1, ..., Aj).

Proof: Immediate. ¤
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Corollary 4.25.

CU∗(A1, ..., Aj) ⊆
⋃

A′

1
∈CU∗(A1)

· · ·
⋃

A′

j∈CU
∗(Aj)

CU∗(A′
1, ..., A

′
j).

Proof: As shown in Corollary 4.24,

CU∗(A1, ..., Aj) ⊆
⋃

A′

1
∈CU∗(A1)

CU∗(A′
1, A2, ..., Aj).

Now we apply Corollary 4.24 again to obtain

CU∗(A1, ..., Aj) ⊆
⋃

A′

1
∈CU∗(A1)

⋃

A′

2
∈CU∗(A2)

CU∗(A′
1, A

′
2, A3, ..., Aj).

Continuing inductively in this manner, we obtain the desired result. ¤

Example 4.8. Suppose we wish to determine the elements of CU∗(Kc
3, P3,

diamond). By Propositions 4.22 and 4.23 and Example 4.7, we know that

CU∗(Kc
3, P3, diamond) = CU∗(Kc

3, diamond)

⊆ CU∗(P5, diamond) ∪ CU∗(S4, diamond)

∪ CU∗(bull, diamond).

Given any graph in the union above, we can determine if it is an element of CU∗(Kc
3, P3,

diamond) by applying Proposition 4.1. ¤

4.4 Recognizing CU∗-sets

Given a collection G1, ..., Gk of graphs, we wish to determine if there exist graphs

A1, ..., Aj such that {G1, ..., Gk} = CU∗(A1, ..., Aj). We approach this problem by

first examining the CU∗-sets that each individual Gi belongs to.

Observation 4.26. If G is any connected graph, then CU∗(G) = {G}.
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Observation 4.27. Let G be any connected graph. Then G ∈ CU∗(G), so G always

belongs to at least one CU∗-set. Furthermore, since G ∈ CU∗(A1, ..., Aj) implies that

G induces each of A1, ..., Aj and G has only finitely many induced subgraphs, we

conclude that G belongs to only finitely many CU∗-sets.

Definition 6. Given a graph G, define S(G) to be the directed graph (V,E), where

V is the set of all induced subgraphs of G, and

E = {(G1, G2) | |V (G2)| = |V (G1)| − 1 and G1 induces G2}.

In light of Proposition 4.22, we give the following definition:

Definition 7. A collection {A1, ..., Aj} of graphs is said to be reduced if no graph in

the collection is induced in any other graph in the list.

Observation 4.28. Every collection {A1, ..., Aj} contains a nonempty reduced sub-

collection.

We recall that in a directed graph a vertex u is said to be an ancestor of a vertex

v if there exists a directed path from u to v. We adopt the convention that every

vertex is considered an ancestor of itself.

Proposition 4.29. Let G be any connected graph, and let G1, ..., Gk be any collection

of induced subgraphs of G. Then G ∈ CU∗(G1, ..., Gk) if and only if G is the only

connected common ancestor of G1, ..., Gk in S(G).

Proof: Suppose G ∈ CU∗(G1, ..., Gk). Then since G induces each of G1, ..., Gk, we

have that G is a common ancestor of these vertices in S(G). Now let G′ be any

connected common ancestor of G1, ..., Gk in S(G). Then G′ is connected and induces

each G1, ..., Gk, so G′ induces some graph G′′ ∈ CU∗(G1, ..., Gk). Now since G′ is an

induced subgraph of G we have that G′′ is as well; since G ∈ CU∗(G1, ..., Gk), by the
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definition of CU∗ we have that G′′ = G′ = G. Then G is the only connected common

ancestor of G1, ..., Gk.

Suppose conversely that G is the only connected common ancestor of G1, ..., Gk.

Then no connected proper induced subgraph of G induces each of G1, ..., Gk, so by

Proposition 4.1 we have that G ∈ CU∗(G1, ..., Gk). ¤

Proposition 4.30. Let G be any connected graph. If there are any two vertices

u, v ∈ V (G) such that G − u ≇ G − v, then G ∈ CU∗(G − u,G − v).

Proof: Since G − u ≇ G − v and |V (G − u)| = |V (G − v)|, we have that neither

graph induces the other. Then any common ancestor of the two in S(G) is a graph

distinct from each. Since any common ancestor necessarily has a larger vertex set

than that of V (G − u) or V (G − v), we conclude that the only common ancestor of

G − u and G − v in S(G) is G. By Proposition 4.29, G ∈ CU∗(G − u,G − v). ¤

Proposition 4.31. Let G be any connected graph. The following are equivalent:

(1) G belongs to only one CU∗-set having a reduced generating set;

(2) If C is a reduced collection of graphs and G ∈ CU∗(C), then C = {G};

(3) G is vertex-transitive.

Proof: (1) ⇐⇒ (2): Since G is connected, we know G ∈ CU∗(G); the result is im-

mediate.

(2)⇒(3): By Proposition 4.30, we must have that G− u ∼= G− v for any vertices

u, v ∈ V (G). It suffices to show that any finite graph having this property is vertex-

transitive. This result is not difficult; an outline for its proof is found in [G].

(3)⇒(2): Suppose that G is vertex-transitive. Then for any two vertices u, v ∈

V (G) there is an automorphism ϕ : V (G) → V (G) such that ϕ(u) = v. Restricting

ϕ to V (G)\{u}, we see that G− u ∼= G− v for any vertices u, v ∈ V (G). Then since
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G has at least one non-cutvertex (Proposition 2.3), G − v must be connected for all

v. Now it is clear that in S(G), G− v is an ancestor to everything G is, except for G

itself. If G is to be the only connected common ancestor of all graphs in a class C, as

in Proposition 4.29, we must have G ∈ C. Then if C is a reduced collection of graphs

we have that C = {G}. This proves (2) and completes our proof. ¤

Now given any graphs G1, ..., Gk, in order for {G1, ..., Gk} to be a subset of

CU∗(A1, ..., Aj) for some graphs A1, ..., Aj, clearly Gi ∈ CU∗(A1, ..., Aj) for i = 1, ..., k.

This suggests that we can determine the CU∗-sets that {G1, ..., Gk} is a subset of by

identifying the CU∗-set possibilities common to each Gi. By explicitly finding the

elements of these common CU∗-sets, we can determine whether or not {G1, ..., Gk} is

equal to any CU∗-set.

33



5 Forbidden Subgraph Characterizations

We now resume our consideration of the class G(H1) ⊕ G(H2) ⊕ · · · ⊕ G(Hk) and

its forbidden subgraph characterizations. Just as in the case of CU∗-sets, it will be

instructive to consider this problem in cases depending on the connectivity of the

graphs involved.

5.1 The Connected Case

We start by considering the case in which H1, H2, ..., Hk are all nonempty connected

graphs. Our result follows immediately from what we have done previously.

Theorem 5.1. Given arbitrary nonempty connected graphs H1, ..., Hk, we have

G(H1) ⊕ G(H2) ⊕ · · · ⊕ G(Hk) = G
(
CU∗(H1, H2, ..., Hk)

)
.

Proof: Suppose that G = G1 ∪ G2 ∪ · · · ∪ Gk, where Gi is an arbitrary element of

G(Hi) for i = 1, 2, ..., k. If a graph in CU∗(H1, H2, ..., Hk) is induced in G, since any

graph in CU∗ is connected it would have to be induced entirely within one component

of some Gi, and Gi would then induce Hi, a contradiction. Hence,

G(H1) ⊕ G(H2) ⊕ · · · ⊕ G(Hk) ⊆ G
(
CU∗(H1, H2, ..., Hk)

)
.

Now suppose that G is a graph in G
(
CU∗(H1, H2, ..., Hk)

)
. Let G1 be the induced

subgraph of G composed of all components of G not inducing H1. Continuing in-

ductively, let Gi be the induced subgraph of G composed of all components of G not

inducing Hi and not already contained in Gj for some j < i. Note that for any i,

Gi may be the empty graph. Now since Gi ∈ G(Hi) for each i, if G = G1 ∪ · · · ∪ Gk

then G ∈ G(H1) ⊕ · · · ⊕ G(Hk). If G 6= G1 ∪ · · · ∪ Gk, then there exists some com-

ponent C of G such that C contains each of H1, H2, ..., Hk. But then C belongs to
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CU(H1, H2, ..., Hk), and so has an induced subgraph that lies in CU∗, a contradiction.

Then

G(H1) ⊕ G(H2) ⊕ · · · ⊕ G(Hk) ⊇ G
(
CU∗(H1, H2, ..., Hk)

)
,

and the proof is complete. ¤

We have thus given a forbidden subgraph characterization for the case in which

each Hi is connected. Furthermore, we claim that this is the “best possible” forbidden

subgraph characterization, in that no proper subset of CU∗(H1, ..., Hk) suffices to

characterize G(H1) ⊕ G(H2) ⊕ · · · ⊕ G(Hk). To see this, let C denote a proper subset

of CU∗(H1, ...Hk), and let F be an arbitrary element of CU∗(H1, ..., Hk)\C. Then F is

not an element of G(H1)⊕G(H2)⊕ · · · ⊕G(Hk), but F ∈ G(C), since by definition no

element of CU∗ induces any other element of CU∗. Then G(H1)⊕· · ·⊕G(Hk) 6= G(C).

Our claim is thus proved; the forbidden subgraph characterization given above is

minimal with respect to the number of the forbidden subgraphs involved.

Example 5.1. We recall from Example 4.2 that CU∗(P3, K3) = {paw, diamond}.

This tells us

G(P3) ⊕ G(K3) = G(paw, diamond).

From this we conclude that we can partition the components of any graph G that is

(paw, diamond)-free into one induced subgraph that is P3-free, and hence (as we will

show in Section 6.1) the union of any number of complete components, and another

induced subgraph that is K3-free. Conversely, any graph that is the union of any

number of complete graphs and any number of triangle-free graphs must be (paw,

diamond)-free. ¤
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5.2 The Disconnected Case

5.2.1 Preliminaries

Finding a forbidden subgraph characterization for G(H1)⊕G(H2)⊕· · ·⊕G(Hk) in the

case where one or more of the Hi is disconnected is considerably more difficult than

in the case where each Hi is connected. We begin by defining a few terms and stating

some preliminary results. In the following subsections we consider the consequences

of these results in various cases.

Definition 8. Given the graph class G = G(H1)⊕G(H2)⊕· · ·⊕G(Hk) and an arbitrary

graph F , F is said to have a free partition (F1, ..., Fk) (with respect to (H1, ..., Hk)) if

F = F1 ∪ · · · ∪ Fk and each Fi is an element of G(Hi).

A free partition is thus a partition of the components of F into k (possibly empty)

subgraphs. Note that F may have more than one free partition.

Observation 5.2. F ∈ G if and only if a free partition exists for F .

Corollary 5.3. Suppose that F is a minimal forbidden subgraph for G = G(H1) ⊕

G(H2)⊕ · · · ⊕ G(Hk), i.e., F is forbidden for G, but no proper induced subgraph of F

is forbidden. Then for any component Q of F , F − Q = F [V (F )\V (Q)] has a free

partition.

Proof: Immediate from Observation 5.2. ¤

Just as in the case for connected graphs considered in Section 5.1, we would

like to find minimal forbidden subgraphs, those without any extraneous vertices or

components. For if F denotes the class of all forbidden subgraphs for a hereditary

class C of graphs, and if F ′ ⊆ F denotes the subset of all minimal forbidden subgraphs,

then it is easy to see that C = G(F) = G(F ′).
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Example 5.2. It is not difficult to see, and we will prove later, that

G(Kc
2) ⊕ G(K2) = G(P3, 2K2),

and that the minimal forbidden subgraphs for the class G(Kc
2) ⊕ G(K2) are P3 and

2K2. ¤

We now develop results that will aid us in finding minimal forbidden subgraphs

for the class G = G(H1)⊕G(H2)⊕ · · ·⊕G(Hk). In each of the following propositions,

let G = G(H1) ⊕ G(H2) ⊕ · · · ⊕ G(Hk), and let F be a minimal forbidden subgraph

for G.

Proposition 5.4. The graph F induces each Hi, for i = 1, ..., k.

Proof: Suppose that F does not induce Hj for some j ∈ {1, ..., k}. Then (∅, ..., ∅, F,

∅, ..., ∅) is a free partition of F , where F is in the jth position and ∅ denotes the

empty graph. However, F is forbidden and so does not have a free partition. We

conclude that F induces Hi for each i. ¤

Proposition 5.5. For any component Q of F and any i ∈ {1, ..., k}, Q induces a

component of Hi.

Proof: Suppose that component Q of F does not induce any component of Hj. Now

by Corollary 5.3, F ′ = F −Q has a free partition (F ′
1, ..., F

′
k). Then F = F ′∪Q has a

free partition (F ′
1, ..., F

′
j−1, F

′
j ∪Q,F ′

j+1, ..., F
′
k), a contradiction, since F is a forbidden

subgraph for G. We conclude that Q induces some component of Hi for all i. ¤

Corollary 5.6. If Hi is connected, then Hi is induced in every component of F .

Proof: Immediate. ¤

Proposition 5.7. If Q is any component of F and Ci denotes the set of all induced

subgraphs of Hi induced in Q (i = 1, ..., k), then Q ∈ CU∗(C1 ∪ · · · ∪ Ck).
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Proof: By definition Q is a connected graph which induces each element of C1∪· · ·∪

Ck. Suppose now that Q′ is a connected proper induced subgraph of Q. Then since

F is minimal, F ′ = (F − Q) ∪ Q′ is not a forbidden subgraph for G and thus has a

free partition (F ′
1, ..., F

′
k). Suppose Q′ is a component of F ′

i . Then (F ′
1, ..., F

′
i−1, F

′
i −

Q′, F ′
i+1, ..., F

′
k) is a free partition of F ′−Q′, and hence of F−Q. Now F = (F ′−Q′)∪Q

has no free partition, so (F ′
i − Q′) ∪ Q induces Hi. However, F ′

i = (F ′
i − Q′) ∪ Q′

does not induce Hi. Then Q contains some induced subgraph of Hi (and hence some

element of Ci) that Q′ does not. Then Q′ fails to induce some element of C1 ∪ · · ·∪Ck.

Since Q′ was an arbitrary connected proper induced subgraph of Q, we conclude from

Proposition 4.1 that Q ∈ CU∗(C1 ∪ · · · ∪ Ck). ¤

Proposition 5.8. If F is connected, then F ∈ CU∗(H1, ..., Hk). Furthermore, each

graph in CU∗(H1, ..., Hk) is a forbidden subgraph for G, though it is not necessarily

minimal.

Proof: It is clear that each graph in CU∗(H1, ..., Hk) is forbidden for G, since such

a graph has no free partition. Suppose now that F is connected. By Proposition

5.4, F induces each Hi. Then by Proposition 5.7, F ∈ CU∗(C1 ∪ · · · ∪ Ck), where

Ci here consists of all induced subgraphs of Hi. By Proposition 4.22 we see that

CU∗(C1 ∪ · · · ∪ Ck) = CU∗(H1, ..., Hk), and the proof is complete. ¤

5.2.2 One Disconnected Graph

We will see, particularly in the next subsection, that determining exactly which graphs

constitute a complete list of minimal forbidden subgraphs for G(H1) ⊕ · · · ⊕ G(Hk),

where at least one Hi is disconnected, appears extraordinarily difficult, in general, due

to the large number of ways each disconnected Hi can “fit” into a minimal forbidden

subgraph F . However, in the case where only one Hi is disconnected we can come

38



closer to achieving this exact list of minimal forbidden subgraphs by specifying a

relatively small subset of the forbidden subgraphs of G which contains all minimal

forbidden subgraphs.

Theorem 5.9. Suppose that H1 is disconnected and that H2, ..., Hk are all connected.

Let P denote the class of partitions ∆ = {P1, ..., Pn} of the components of H1 into

nonempty subgraphs of H1. Then if F is the set of minimal forbidden subgraphs for

G, we have

F ⊆
⋃

∆={P1,...,Pn}∈P

CU∗(P1, H2, ..., Hk) ⊕ · · · ⊕ CU∗(Pn, H2, ..., Hk).

Furthermore, each of the graphs in the above union is a forbidden subgraph of G.

Proof: Let F be an arbitrary element of F , and let Q1, ..., Qq denote the components

of F . Now for any component Qi of F , we know that F −Qi has a free partition, and

since each component of F induces H2, ..., Hk (by Corollary 5.6), this free partition

must be (F − Qi, ∅, ..., ∅), where ∅ denotes the empty graph. Then F − Qi does not

induce H1, but F does. Now let VH ⊆ V (F ) be a set of vertices such that F [VH ] ∼= H1.

Then since F − Qi is H1-free for all i, we must have that VH ∩ V (Qi) 6= ∅ for all i =

1, ..., q. Then Pi = Qi[VH ∩V (Qi)] is a nonempty union of components of H1, induced

in Qi. Then Qi ∈ CU(Pi, H2, ..., Hk), and we claim that Qi ∈ CU∗(Pi, H2, ..., Hk).

For if this is not the case then Qi contains a connected proper induced subgraph

Q′
i ∈ CU∗(Pi, H2, ..., Hk). But then F ′ = (F −Qi) ∪Q′

i is a proper induced subgraph

of F that has no free partition and is thus forbidden, a contradiction to the minimality

of F . Then F belongs to the class CU∗(P1, H2, ..., Hk)⊕· · ·⊕CU∗(Pq, H2, ..., Hk), and

we have proved the first assertion of the theorem.

Now let G be any element of

⋃

∆={P1,...,Pn}∈P

CU∗(P1, H2, ..., Hk) ⊕ · · · ⊕ CU∗(Pn, H2, ..., Hk).
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Then, similar to the argument above, since every component of G induces H2, ..., Hk,

if G were to have a free partition it would have to be (G, ∅, ..., ∅), where ∅ denotes

the empty graph. However, by construction we know that G induces H1, so G has no

free partition and must therefore be a forbidden subgraph for G. ¤

Let us illustrate this theorem with some examples:

Example 5.3. The class G = G(Kc
2) ⊕ G(K2) consists of the graphs of the form

Kn ∪mK1 for any nonnegative integers m,n. We wish to find the minimal forbidden

subgraphs for G. We note that the only partitions of the components of Kc
2 are of

the forms ∆1 = {Kc
2} and ∆2 = {K1, K1}. By Theorem 5.9, the set F of minimal

forbidden subgraphs for G is a subset of

CU∗(Kc
2, K2) ∪

(
CU∗(K1, K2) ⊕ CU∗(K1, K2)

)
.

Simplifying this expression, we obtain that F ⊆ {P3, 2K2}, and we easily verify that

both P3 and 2K2 are minimal forbidden subgraphs for G. Then since G = G(F), we

have that

G(Kc
2) ⊕ G(K2) = G(P3, 2K2),

and we have proved the assertion made in Example 5.2. ¤

Example 5.4. We wish to find the minimal forbidden subgraphs for the class G =

G(Kc
2) ⊕ G(K3). By Theorem 5.9, they are among the elements of

CU∗(Kc
2, K3) ∪

(
CU∗(K1, K3) ⊕ CU∗(K1, K3)

)
,

and by noting that CU∗(Kc
2) = {P3} and applying Corollary 4.24, we see that this set

is a subset of

CU∗(P3, K3) ∪
(
CU∗(K1, K3) ⊕ CU∗(K1, K3)

)
,

which equals

{paw, diamond, 2K3}
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by Example 4.2, Proposition 4.22, and Observation 4.26. We can also verify that each

of these graphs is a minimal forbidden subgraph of G. Then

G(Kc
2) ⊕ G(K3) = G(paw, diamond, 2K3).

¤

5.2.3 Two or More Disconnected Graphs

We have shown thus far that if F is a minimal forbidden subgraph for G = G(H1) ⊕

· · · ⊕ G(Hk), then F induces each Hi, and every component of F induces at least one

component of each Hi. We have shown that each component of F belongs to a CU∗-set

generated by the induced subgraphs of each Hi that are induced in the component.

In the case where no Hi was disconnected we determined exactly what the minimal

forbidden subgraphs were, and in the case where exactly one Hi was disconnected

we determined a small subset of the forbidden subgraphs that contained the minimal

forbidden subgraphs. As we allow more of the Hi to be disconnected, however, the

number of cases to check in finding minimal forbidden subgraphs grows very rapidly,

making it difficult to efficiently discover the minimal forbidden subgraphs.

We demonstrate some of the complexity of this problem in the case where at least

two of the Hi are disconnected. Suppose that H1, ..., Hd (d > 1) are disconnected

and Hd+1, ..., Hk are connected, and let F be a minimal forbidden subgraph of G =

G(H1) ⊕ · · · ⊕ G(Hk). If F has one component, Proposition 5.8 tells us that F ∈

CU∗(H1, ..., Hk). Now suppose that F has exactly two components Q1 and Q2. Then

F − Q1 has a free partition (∅, ..., ∅, Q2, ∅, ..., ∅), where ∅ denotes the empty graph.

Suppose the Q2 in this free partition lies in the jth element. Then since F has no free

partition we must have that Q1 induces all Hi for i 6= j. Furthermore, Q1 does not

induce Hj, since if it did it would be a forbidden subgraph for G, and F would not be
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minimal. However, Q1∪Q2 induces Hj. Now F−Q2 also has a free partition. Since Q1

induces all Hi for i 6= j, we must have that this free partition is (∅, ..., ∅, Q1, ∅, ..., ∅),

where ∅ denotes the empty graph and Q1 is located in the jth position. Then by

symmetry, we have that Q2 induces each Hi for i 6= j, and Q2 does not induce Hj.

By the same reasoning as in Theorem 5.9, if Pi denotes the set of partitions of the

components of Hi into two nonempty subgraphs, we have that the minimal forbidden

subgraphs of G having two components all belong to the set

d⋃

i=1




⋃

{P1,P2}∈Pi

CU∗(H1, ..., Hi−1, P1, Hi+1, ..., Hk) ⊕ CU∗(H1, ..., Hi−1, P2, Hi+1, ..., Hk)



 .

This set already shows signs of being more complicated than the similarly-formed

set in the case where d = 1. Experimenting with free partitions of component-

deleted forbidden subgraphs on more than two components convinces us that this

problem is certainly not trivial—the number of unions and direct summands involved

in expressions similar to that above rapidly increases, with few apparent patterns—

and we do not undertake its solution here. Happily, our results in the case where at

most one of the Hi is disconnected will allow us to derive some useful results, which

we present in the next section.
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6 Further Results

6.1 The Class G(CU∗(H))

Suppose we wished to find the forbidden subgraph characterization for G(H)⊕G(H).

If H is connected this is trivial; Theorem 5.1 tells us that this is precisely G(CU∗(H)) =

G(H). In other words, the union of two H-free graphs is H-free, if H is connected.

However, if H is disconnected, what can G(CU∗(H)) tell us?

Proposition 6.1. The class of arbitrary unions of H-free graphs is exactly the class

G(CU∗(H)).

Proof: Suppose G = G1 ∪ · · · ∪ Gn, where each Gi is H-free. We note in passing

that G itself may not be H-free; for example, K1 is Kc
3-free, but K1 ∪K1 ∪K1 is not.

However, if G induces any element of CU∗(H) then there is a component of G that

induces H, a contradiction. Hence, G is CU∗(H)-free.

Suppose conversely that F is an arbitrary element of G(CU∗(H)). Then for any

component Q of F , if Q induces H then it induces some element of CU∗(H). Since

this is not true, Q is H-free, and we can write F as the union of H-free graphs. ¤

Example 6.1. We have already seen and used the fact that CU∗(Kc
2) = {P3} in

previous sections. In light of Proposition 6.1, we see that G(Kc
2)⊕· · ·⊕G(Kc

2) = G(P3),

i.e., the class of arbitrary unions of complete graphs is exactly the class of P3-free

graphs. ¤

6.2 Joins

With the results that we have obtained so far, we can say a few things about a related

problem. We recall from graph theory that the join of graphs G1, G2, ..., Gk is denoted
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by G1 ∨ G2 ∨ · · · ∨ Gk and is the graph (V,E), where V =
⋃k

i=1 V (Gi) and

E =
k⋃

i=1

E(Gi) ∪ {uv | u ∈ Gi, v ∈ Gj, i 6= j} .

Observation 6.2.

G1 ∨ · · · ∨ Gk = (Gc
1 ∪ · · · ∪ Gc

k)
c .

Proposition 6.3. Given arbitrary graphs G and H, G is H-free if and only if Gc is

Hc-free.

Proof: G induces H ⇐⇒ there exists some subset V ′ of V (G) such that G[V ′] ∼= H

⇐⇒ Gc[V ′] ∼= Hc ⇐⇒ Gc induces Hc. ¤

Proposition 6.4. A graph G is complete multipartite if and only if G is (K2 ∪K1)-

free.

Proof: Using Proposition 6.3, Example 6.1, and the definition of complete multi-

partite graphs, we see that G is complete multipartite if and only if Gc is a union of

complete subgraphs if and only if Gc is P3-free if and only if G is (K2 ∪ K1)-free. ¤

Let H1,H2, ...,Hk be nonempty classes of nonempty graphs, and let

G(H1) ∨ G(H2) ∨ · · · ∨ G(Hk)

denote the class of all graphs G that can be expressed in the form G1 ∨G2 ∨ · · · ∨Gk,

where Gi ∈ G(Hi) for i = 1, 2, ..., k. Then we can use our results from the previous

section to obtain some information about G(H1) ∨ G(H2) ∨ · · · ∨ G(Hk).

Theorem 6.5. If H1, ...,Hk are arbitrary nonempty classes of nonempty graphs, then

the class G(H1) ∨ · · · ∨ G(Hk) has a forbidden subgraph characterization.

Proof: It is clear from Observation 6.2 that G(H1) ∨ · · · ∨ G(Hk) consists of the

complements of the graphs in G(Hc
1) ⊕ · · · ⊕ G(Hc

k), where Hc
i denotes the class of
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graphs whose complement is contained in Hi. We have shown already in Theorem

3.2 that G(Hc
1) ⊕ · · · ⊕ G(Hc

k) has a forbidden subgraph characterization, so

G(Hc
1) ⊕ · · · ⊕ G(Hc

k) = G(F)

for some collection F of graphs. Then by Proposition 6.3, we have that G(H1)∨ · · · ∨

G(Hk) = G(F c), where F c denotes the set of graphs whose complements lie in F .

Hence G(H1) ∨ · · · ∨ G(Hk) has a forbidden subgraph characterization. ¤

Proposition 6.6. If H1, H2, ..., Hk all have connected complements, then

G(H1) ∨ G(H2) ∨ · · · ∨ G(Hk) = G
(
CU∗(Hc

1, ..., H
c
k)

c
)
,

where CU∗(Hc
1, ..., H

c
k)

c denotes the set of complements of graphs in CU∗(Hc
1, ..., H

c
k).

Proof: The graph G is an element of G(H1) ∨ G(H2) ∨ · · · ∨ G(Hk) if and only if

Gc ∈ G(Hc
1)⊕G(Hc

2)⊕ · · · ⊕G(Hc
k) = G(CU∗(Hc

1, H
c
2, ..., H

c
k)), by Proposition 6.3 and

Theorem 5.1. Taking complements in both classes, we obtain the desired result. ¤

6.3 Classes with Multiple Forbidden Subgraphs

Thus far we have considered in depth the class G = G(H1)⊕ · · · ⊕ G(Hk) where each

Hi consists of a single nonempty graph Hi. Now we examine the class G when each

Hi may contain more than one graph.

Proposition 6.7. For any collection H of graphs, G(H) =
⋂

H∈H G(H).

Proof: Let G be an arbitrary element of G(H). Then for each H ∈ H we have that

G does not induce H, and hence G ∈ G(H). Then G ∈
⋂

H∈H G(H).

Suppose conversely that G ∈
⋂

H∈H G(H). Then G is H-free for every graph in

H, so G ∈ G(H). ¤
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Proposition 6.8. If H1, ...,Hk are arbitrary nonempty classes of nonempty graphs,

then

G(H1) ⊕ · · · ⊕ G(Hk) =
⋂

H1∈H1

· · ·
⋂

Hk∈Hk

G(H1) ⊕ · · · ⊕ G(Hk).

Proof: Suppose G ∈ G(H1) ⊕ · · · ⊕ G(Hk). Then we can write G = G1 ∪ · · · ∪ Gk,

where Gi ∈ G(Hi) for i = 1, ..., k. Then by Proposition 6.7, Gi ∈
⋂

Hi∈Hi
G(Hi) for all

i. Then G = G1 ∪ · · · ∪ Gk ∈ G(H1) ⊕ · · · ⊕ G(Hk) for every H1 ∈ H1, ..., Hk ∈ Hk,

and hence G ∈
⋂

H1∈H1
· · ·

⋂
Hk∈Hk

G(H1) ⊕ · · · ⊕ G(Hk).

Suppose conversely that G ∈
⋂

H1∈H1
· · ·

⋂
Hk∈Hk

G(H1) ⊕ · · · ⊕ G(Hk). Then for

any component Q of G, suppose that Q induces a graph H ′
i ∈ Hi for i = 1, ..., k. Then

certainly G /∈ G(H ′
1)⊕· · ·⊕G(H ′

k), a contradiction, so for any component Q of G, we

have Q ∈ G(Hj) for some j ∈ {1, ..., k}. We write G = G1∪· · ·∪Gk, where G1 consists

of all components that are H1-free, G2 consists of all components that are H2-free

and not in H1, G3 consists of all components that are H3-free and not in H1 ∪ H2,

and so on up through Gk. Then Gi ∈ G(Hi) for all i, so G ∈ G(H1) ⊕ · · · ⊕ G(Hk),

and our proof is complete. ¤

This result allows us to reduce the general case of finding a forbidden subgraph

characterization of G(H1) ⊕ · · · ⊕ G(Hk) to finding forbidden subgraph characteri-

zations of various G(H1) ⊕ · · · ⊕ G(Hk), where Hi is a single graph in Hi. We will

demonstrate its use of these results in the next section.

6.4 A Forbidden Subgraph Problem

We turn now to the problem that inspired our study. Barrett and Loewy have shown

the following [BL]:
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Theorem 6.9. The following are equivalent:

(1) G is a graph of the form (Km∪Kn∪Kp1,q1
∪· · ·∪Kpk,qk

)∨Kr, where k,m, n, pi, qi, r ≥

0 for all i;

(2) G is a (P4, paw∪K1, diamond∪K1, 3K3, K2,2,2, Ŵ4)-free graph, where Ŵ4 denotes

the graph shown here:

We will give a proof of this theorem using the machinery we have developed

throughout this thesis. First we establish a few results.

Proposition 6.10. G is a union of at most two nonempty complete subgraphs if and

only if G is (P3, K
c
3)-free.

Proof: We saw in Example 6.1 that a graph G is a union of complete subgraphs if

and only if G is P3-free. Now if G is the union of at most two nonempty complete

subgraphs then certainly Kc
3 is not induced in G; if G is the union of three or more

nonempty complete subgraphs then Kc
3 is induced. ¤

Proposition 6.11. CU∗(K2 ∪ K1) = {P4, paw}.

Proof: By Proposition 4.1, both P4 and the paw graph are elements of CU∗(K2∪K1).

Now let G be a P4-free element of CU∗(K2 ∪ K1), and let u, v, w ∈ V (G) be vertices

such that G[{u, v, w}] ∼= K2 ∪ K1 and vw is an edge in G. Suppose without loss of

generality that d(u, v) ≤ d(u,w). Since G is connected, there is a shortest path from

u to v. This path will not contain w. Now since G is P4-free, this path cannot have

length greater than 2. Hence there exists a vertex x such that u − x − v is a path in

G. Now since {u, x, v, w} does not induce P4, we must have x adjacent to w. Then

{u, v, w, x} induces the paw graph. Since G is in CU∗(K2 ∪ K1) and G induces the

paw, by definition of CU∗ we must have that G = paw, and the proof is complete. ¤
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Proposition 6.12. G is an arbitrary union of complete bipartite graphs if and only

if G is (P4, K3)-free.

Proof: Suppose G is an arbitrary union of complete bipartite graphs. Then G is a

union of connected complete multipartite graphs. By Proposition 6.4, applied to the

components of G, we have that each component of G is (K2 ∪ K1)-free and is hence

P4-free. Then G is also P4-free. Since G is bipartite, G is K3-free as well; hence G is

(P4, K3)-free.

Suppose G is (P4, K3)-free. Then G induces no odd cycles, and is therefore bipar-

tite. Furthermore, since the paw induces K3, we have that G is (P4, paw)-free and is

thus, by Propositions 6.11 and 6.4, a union of complete multipartite graphs. Then G

is a union of complete bipartite graphs. ¤

Corollary 6.13. The set of graphs of the form described in statement (1) of Theorem

6.9 is the class
(
G(P3, K

c
3) ⊕ G(P4, K3)

)
∨ G(Kc

2).

Proof: Immediate from Propositions 6.10 and 6.12. ¤

Proof of the Theorem: In light of Corollary 6.13, our problem is to show that

(
G(P3, K

c
3)⊕G(P4, K3)

)
∨G(Kc

2) = G(P4, paw ∪ K1, diamond ∪ K1, 3K3, K2,2,2, Ŵ4).

We accomplish this in stages.

STAGE 1: Show that G(P3, K
c
3) ⊕ G(P4, K3) = G(P4, paw, diamond, 3K3).

By Proposition 6.8,

G(P3, K
c
3) ⊕ G(P4, K3) =

(
G(P3) ⊕ G(P4)

)
∩

(
G(P3) ⊕ G(K3)

)

∩
(
G(Kc

3) ⊕ G(P4)
)
∩

(
G(Kc

3) ⊕ G(K3)
)
. (1)
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Now we also have that

G(P3, K
c
3) ⊕ G(P4, K3) = G(F),

where F is some collection of graphs, by Theorem 3.2. We assume that F consists

of only minimal forbidden subgraphs. We now determine what those forbidden sub-

graphs are. Slightly modifying the statement of Proposition 6.7, though following the

same reasoning, we have that each forbidden subgraph for any of the classes listed in

the intersection is also a forbidden subgraph for the intersection. Furthermore, the

collection of graphs which are minimal forbidden subgraphs for at least one of the

classes in the intersection suffices as a list of forbidden subgraphs of the intersection.

Then to find minimal forbidden subgraphs for the intersection we need only deter-

mine which of the minimal forbidden subgraphs for each of the classes involved in the

intersection are minimal for the intersection.

First, we find the class G(P3) ⊕ G(P4). By Theorem 5.1, Proposition 4.22, and

Observation 4.26,

G(P3) ⊕ G(P4) = G(CU∗(P3, P4)) = G(CU∗(P4)) = G(P4).

Then a graph belongs to G(P3) ⊕ G(P4) if and only if it is P4-free. We see that P4 is

in fact a minimal forbidden subgraph for G(P3, K
c
3) ⊕ G(P4, K3); any proper induced

subgraph of it belongs to the class.

Next, we find the class G(P3) ⊕ G(K3). Again by Theorem 5.1 and Example 4.2,

G(P3) ⊕ G(K3) = G(CU∗(P3, K3)) = G(paw, diamond).

So a graph belongs to G(P3) ⊕ G(K3) if and only if it is (paw, diamond)-free. One

checks easily that both of these are minimal forbidden subgraphs for G(P3, K
c
3) ⊕

G(P4, K3).
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We now turn our attention to the class G(Kc
3) ⊕ G(P4). We can find the minimal

forbidden subgraphs for this class by applying the results of Section 5.2. However, we

know from Proposition 5.4 that any minimal forbidden subgraph for this class will

induce P4. Such graphs, since they cannot equal P4 (P4 does not induce Kc
3, as these

graphs must) will not be minimal forbidden subgraphs for G(P3, K
c
3) ⊕ G(P4, K3), so

it is unneccesary to determine them.

Turning now to the class G(Kc
3) ⊕ G(K3), we know from Theorem 5.9 that the

minimal forbidden subgraphs for this class are all elements of the set

CU∗(Kc
3, K3) ∪

(
CU∗(Kc

2, K3) ⊕ CU∗(K1, K3)
)

∪
(
CU∗(K1, K3) ⊕ CU∗(K1, K3) ⊕ CU∗(K1, K3)

)
. (2)

Now if G ∈ CU∗(Kc
3, K3) then G ∈ CU(Kc

2, K3). G then induces an element of

CU∗(Kc
2, K3), which by Corollary 4.24 is a subset of CU∗(P3, K3) = {paw, diamond}.

Since the paw and the diamond are already minimal forbidden subgraphs for G(P3, K
c
3)⊕

G(P4, K3), we conclude that no new minimal forbidden subgraphs will be gained from

CU∗(Kc
3, K3).

Moving on to the next class of graphs in (2), we note that

CU∗(Kc
2, K3) ⊕ CU∗(K1, K3) ⊆ CU∗(P3, K3) ⊕ CU∗(K3)

= {paw, diamond} ⊕ {K3}.

Then again we have that each graph in this collection induces either the paw or

the diamond; thus, CU∗(Kc
2, K3) ⊕ CU∗(K1, K3) provides us with no new minimal

forbidden subgraphs for G(P3, K
c
3) ⊕ G(P4, K3).
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The last class of graphs in (2) is the class

CU∗(K1, K3) ⊕ CU∗(K1, K3) ⊕ CU∗(K1, K3) = CU∗(K3) ⊕ CU∗(K3) ⊕ CU∗(K3)

= {K3} ⊕ {K3} ⊕ {K3}

= {3K3}.

Now any proper induced subgraph of 3K3 is an induced subgraph of 2K3 ∪K2, which

has a free partition of the form (2K3, K2). Then since 3K3 is forbidden, it is a minimal

forbidden subgraph for G(P3, K
c
3) ⊕ G(P4, K3).

Now since we have inspected all of the forbidden subgraphs for each of the classes

in (1) and found that they all induce either P4, paw, diamond, or 3K3, and since

the minimal forbidden subgraphs of G(P3, K
c
3) ⊕ G(P4, K3) are all found among the

minimal forbidden subgraphs of each of the classes listed in (1), we conclude that

G(P3, K
c
3) ⊕ G(P4, K3) = G(P4, paw, diamond, 3K3),

and Stage 1 of our proof is complete.

STAGE 2: Show that

G(P4, paw, diamond, 3K3)∨G(Kc
2) = G(P4, paw ∪ K1, diamond ∪ K1, 3K3, K2,2,2, Ŵ4)

Since most of our theory thus far has dealt with direct sums of graph classes, and the

discussion in Section 6.2 relates joins to direct sums, it will be more convenient for

us to consider the complements of the graphs above and find a forbidden subgraph

characterization for the class G(P4, P3∪K1, K2∪2K1, K3,3,3)⊕G(K2). By Proposition

6.8, this class is equal to the class

(
G(P4) ⊕ G(K2)

)
∩

(
G(P3 ∪ K1) ⊕ G(K2)

)

∩
(
G(K2 ∪ 2K1) ⊕ G(K2)

)
∩

(
G(K3,3,3) ⊕ G(K2)

)
. (3)
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We now proceed through this collection of classes as we did in Stage 1. First we

consider G(P4)⊕G(K2). It is clear from Theorem 5.1 that this class is equal to G(P4),

and P4 is in fact a minimal forbidden subgraph of G(P4, P3 ∪ K1, K2 ∪ 2K1, K3,3,3) ⊕

G(K2).

Next, we know the minimal forbidden subgraphs of G(P3∪K1)⊕G(K2) are among

the elements of

CU∗(P3 ∪ K1, K2) ∪
(
CU∗(P3, K2) ⊕ CU∗(K1, K2)

)
. (4)

Now say G ∈ CU∗(P3 ∪ K1, K2) = CU∗(P3 ∪ K1). Since we are looking for minimal

forbidden subgraphs of G(P4, P3 ∪ K1, K2 ∪ 2K1, K3,3,3) ⊕ G(K2) and we know that

P4 is one, let us suppose that G is P4-free. Now let {u, v, w, x} be vertices of G such

that G[{u, v, w, x}] ∼= P3 ∪ K1, with u − v − w a path. Now since G is connected,

there exists some shortest path from x to a member of {u, v, w}. Since G does not

induce P4, this path has only one intermediate vertex y. It is a simple matter to check

that if any vertex of {u, v, w} is not adjacent to y, then G induces a P4. Hence, y is

adjacent to each of u, v, w, and x, and G[{u, v, w, x, y}] ∼= dart. We can verify that

the dart is a minimal forbidden subgraph for G(P4, P3∪K1, K2∪2K1, K3,3,3)⊕G(K2),

and since every P4-free graph of CU∗(P3 ∪ K1) induces the dart, this class offers us

no additional minimal forbidden subgraphs.

Considering now the set

CU∗(P3, K2) ⊕ CU∗(K1, K2) = CU∗(P3) ⊕ CU∗(K2)

= {P3} ⊕ {K2}

= {P3 ∪ K2}

in (4), we verify also that P3 ∪ K2 is a minimal forbidden subgraph for G(P4, P3 ∪

K1, K2 ∪ 2K1, K3,3,3) ⊕ G(K2).
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Moving to the next class in (3), we wish to find any minimal forbidden subgraphs

among the forbidden subgraphs of G(K2 ∪ 2K1)⊕G(K2). We know that the minimal

forbidden subgraphs for this class are among the elements of

CU∗(K2 ∪ 2K1, K2) ∪
(
CU∗(K2, K2) ⊕ CU∗(2K1, K2)

)

∪
(
CU∗(K2 ∪ K1, K2) ⊕ CU∗(K1, K2)

)

∪
(
CU∗(K2, K2) ⊕ CU∗(K1, K2) ⊕ CU∗(K1, K2)

)
. (5)

We consider each of the classes in this union in turn.

We begin with the class CU∗(K2 ∪2K1, K2) = CU∗(K2 ∪2K1). Since P4 is already

known to be a minimal forbidden subgraph for the intersection in (3), and our goal is

to find the minimal forbidden subgraphs for this intersection, let us suppose that G

is a P4-free element of this CU∗-set. Suppose further that u, v, w, x ∈ V (G) are such

that G[{u, v, w, x}] ∼= K2∪2K1, with uv an edge. Since G is connected, there exists a

shortest path from w to u, and since G is P4-free, this path has only one intermediate

vertex y 6= v. Now since we do not induce P4 on {w, y, u, v}, we must have y adjacent

to v. Similarly, there exists a vertez z such that x− z − u is a path and z is adjacent

to v. Now suppose that there is no vertex in G that u,v,w, and x are all adjacent

to. Then z 6= y, and wz and xy are not edges. Then either yz is not an edge, in

which case {w, y, u, z} induces P4, or yz is an edge, in which case {w, y, z, x} induces

P4. This contradiction leads us to conclude that there is a vertex that is a common

neighbor of u, v, w, and x. Without loss of generality suppose y is a such a vertex.

Then {u, v, w, x, y} induces the ⋉ graph, illustrated in Section 2. One checks easily

that ⋉ ∈ CU∗(K2 ∪ 2K1), so in fact G = ⋉, and also that ⋉ is a minimal forbidden

subgraph for G(P4, P3 ∪ K1, K2 ∪ 2K1, K3,3,3) ⊕ G(K2).
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The next class of graphs in (5) is

CU∗(K2, K2) ⊕ CU∗(2K1, K2) = CU∗(K2) ⊕ CU∗(2K1, K2)

⊆ {K2} ⊕ CU∗(P3, K2)

= {K2} ⊕ CU∗(P3)

= {K2} ⊕ {P3}

= {P3 ∪ K2}.

Since we have already found P3∪K2 to be a minimal forbidden subgraph for G(P4, P3∪

K1, K2∪2K1, K3,3,3)⊕G(K2), we gain no new minimal forbidden subgraphs from this

class.

Applying Proposition 6.11, we see that the next class of graphs in (5) is

CU∗(K2 ∪ K1, K2) ⊕ CU∗(K1, K2) = CU∗(K2 ∪ K1) ⊕ CU∗(K2)

= {P4, paw} ⊕ {K2}

= {P4 ∪ K2, paw ∪ K2}.

Since each of these graphs induces P3 ∪ K2, we see that this class gives us no new

minimal forbidden subgraphs for G(P4, P3 ∪ K1, K2 ∪ 2K1, K3,3,3) ⊕ G(K2).

Finishing our list in (5), we consider

CU∗(K2, K2) ⊕ CU∗(K1, K2) ⊕ CU∗(K1, K2) = CU∗(K2) ⊕ CU∗(K2) ⊕ CU∗(K2)

= {K2} ⊕ {K2} ⊕ {K2}

= {3K2}.

Since any proper induced subgraph of 3K2 is an induced subgraph of 2K2 ∪ K1,

which has a free partition of the form (2K2, K1), we see that 3K2 is in fact a minimal

forbidden subgraph for G(P4, P3 ∪ K1, K2 ∪ 2K1, K3,3,3) ⊕ G(K2).
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Returning to consider the last class of graphs in (3), we look at G(K3,3,3)⊕G(K2).

By Theorem 5.1, this class is exactly

CU∗(K3,3,3, K2) = CU∗(K3,3,3) = {K3,3,3}.

Once again it is easy to see that K3,3,3 is a minimal forbidden subgraph for G(P4, P3∪

K1, K2 ∪ 2K1, K3,3,3) ⊕ G(K2).

Recalling our argument from Stage 1, we know that the minimal forbidden sub-

graphs for the intersection in (3) are found among the minimal forbidden subgraphs

for each of the classes involved in the intersection. We therefore collect the infor-

mation from the paragraphs above and conclude that a complete list of minimal

forbidden subgraphs for G(P4, P3 ∪ K1, K2 ∪ 2K1, K3,3,3) ⊕ G(K2) is {P4, dart, P3 ∪

K2, ⋉, 3K2, K3,3,3}, and hence

G(P4, P3 ∪ K1, K2 ∪ 2K1, K3,3,3) ⊕ G(K2) = G(P4, dart, P3 ∪ K2, ⋉, 3K2, K3,3,3).

Applying Proposition 6.3, we see that

G(P4, paw, diamond, 3K3)∨G(Kc
2) = G(P4, paw∪K1, Ŵ4, diamond∪K1, K2,2,2, 3K3),

and hence Stage 2 of our proof is complete. Combining the results of Stages 1 and 2,

our proof of Theorem 6.9 is complete. ¤
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7 Conclusion

In the course of this thesis we have proved the existence of a forbidden subgraph

characterization for the classes

G(H1) ⊕ · · · ⊕ G(Hk) (6)

and

G(H1) ∨ · · · ∨ G(Hk), (7)

and we have developed results that are useful in determining what such forbidden

subgraph characterizations are. We have applied our results to Theorem 6.9, and

found them to be sufficient to exactly determine the forbidden subgraphs in a char-

acterization problem. One will note that our proof of Theorem 6.9 is considerably

longer and more tedious than the one found in [BL]. The main advantage to our

approach is that it provides a systematic graph-theoretic approach to finding the nec-

essary minimal forbidden subgraphs, whereas the methods used by the authors cited

include techniques from outside of graph theory which may not be available in all

problems of this type. Our results provide us with alternatives to trial and error in

finding the minimal forbidden subgraphs, and guarantee a complete list of them.

However, many more results that will simplify and answer problems similar to

that of Barrett and Loewy await discovery and proof. For example, our knowledge

of the properties of CU∗-sets allowed us to simplify formulations of graph classes and

even perform a sort of arithmetic on them, as demonstrated in Section 6.4. What

more can we discover about these sets? When is a given CU∗-set guaranteed to be

finite or infinite? We recall from Section 4 that every vertex in X (as defined there) is

a cutvertex of the graph G ∈ CU∗ it belongs to. What can the study of connectivity

tell us about the graphs in CU∗, especially the study of graphs having a specified
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number of non-cutvertices?

Yet another line of inquiry to be pursued is that of reversing our process: Through-

out the thesis we took classes such as (6) and (7) and characterized them in terms of

a collection of forbidden subgraphs. Under what conditions is it possible to express a

class having a forbidden subgraph characterization as a class of the form (6) or (7)?

In the case of Barrett and Loewy’s problem, statement (1) of Theorem 6.9 is by far

the easier of the two formulations to use in algorithmically determining if a graph

belongs to the class described. It seems reasonable that expressions of the form (6)

and (7) may be easier to work with, in general.

Furthermore, the study of CU∗-sets, particularly as taken up in Section 4.4, bears

a strong resemblance to certain facets of the Reconstruction Conjecture, which states

that every graph G is uniquely determined by the collection of its vertex-deleted

graphs G−v. Our CU∗-sets appear to have much to do with the legitimate deck prob-

lem: Which collections of graphs can constitute the set of induced subgraphs of order

|V (G)|−1 for some graph G? In the terms of our problem, which collections of graphs

G1, ..., Gk, where the vertex of each Gi has order k − 1, are such that CU∗(G1, ..., Gk)

has an element with a vertex set of order k?

Thus, it is apparent that much can be done to extend the results of this thesis,

especially in the study of CU∗-sets. Definitive results in these areas might have bear-

ing on current research and provide many applications in various graph-theoretical

problems.
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