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ABSTRACT

IMPLEMENTATION ISSUES OF REAL-TIME TRAJECTORY GENERATION

ON SMALL UAVS

Derek Bastian Kingston

Department of Electrical and Computer Engineering

Master of Science

The transition from a mathematical algorithm to a physical hardware imple-

mentation is non-trivial. This thesis discusses the issues involved in the transition

from the theory of real-time trajectory generation all the way through a hardware

experiment. Documentation of the validation process as well as modifications to the

existing theory as a result of hardware testing are treated at length. The results of

hardware experimentation show that trajectory generation can be done in real-time

in a manner facilitating coordination of multiple small UAVs.
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Chapter 1

Introduction

Research is fundamentally iterative in nature: it starts with a foundation of

accepted knowledge and takes a step forward [1]. Hardware implementation and

experimentation play an important role in this step forward. Often researchers con-

centrate on the theoretical aspects of a problem, but hardware implementation adds

dimension and insight that theory and simulation lack [2]. Perhaps, the most pro-

ductive style of research is when theory, simulation, and hardware implementation

are blended to give a full understanding of the problem at hand.

Theory

Simulation Hardware

Figure 1.1: Design Cycle
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Hardware experimentation exposes many aspects of the problem that are sim-

ply overlooked or not modelled well [3]. Many problems involve constraints such as:

communication, timing, computation, size, power, cost, dynamics, saturation, delay,

etc. that make the optimal solution impossible to calculate. In these situations,

hardware implementation may be the only way to assess how well specific solutions

perform with regard to these constraints.

Validation of algorithms and theory by hardware implementation lends credi-

bility to the theories and can, at the same time, give the researcher an idea as to the

best avenues to pursue to improve the performance of the system [2, 4].

An important topic of research is the cooperation and coordination of multiple

Unmanned Air Vehicles (UAVs). To fully appreciate the complexity and constraints

of such a problem, a hardware testbed is necessary [5]. In addition to experimen-

tation with new theories of coordination, validation of existing theories can also be

performed. An interesting aspect of UAV cooperation is the coordinated timing sce-

nario. The capability for each individual UAV to be able to transform a straight-line

path into a path that satisfies the constraints of flight dynamics while at the same

time preserving path length (and hence timing) greatly simplifies the timing problem.

The operation of “smoothing” a straight-line path into a feasible trajectory in an op-

timal manner has been presented in [6]. The purpose of this thesis is to show how

theory, simulation, and hardware implementation are combined to develop real-time

trajectory smoothing for small UAVs.

The development and realization of a hardware platform allows for the vali-

dation of the assumptions made in [6]. It also provides a way to adjust the theory to

compensate for unanticipated errors in the modelling and setup of the initial prob-

lem. Note that with a tested, reliable trajectory smoothing algorithm, a greater level

of abstraction (as well as a reliable platform) is available for those interested in the

coordinated flight problems. Obviously, the closer the testbed is to the target plat-

form, the more useful the results will be. Testbeds can range from simple mechanical

models in a wind tunnel to mobile robots emulating UAVs to actual flying airplanes

(like the UAVs being flown at BYU).
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As attested in [1, 2, 3, 4, 5] and [7], hardware experiments (and research in

general) lead to more areas of research. This thesis is really just an extension of the

research into coordination and cooperation of multiple vehicles. Hopefully, it will lead

to and guide the direction of further research in this area.

1.1 Problem Statement

The approach to coordination of multiple UAVs revolves around the archi-

tecture in Figure 1.2. The layered design allows for higher levels to be replaced or

Waypoint Path Planner

Trajectory Smoother

Trajectory Tracker

Autopilot

UAV
Sensors

Servo
Loop
Error

Tracking
Error

Heading
Position

List of Waypoints

Desired
Position & Heading

hc, ψc, Vc

δe, δa, δr, δt

Coordination Manager
List of Targets Position

Figure 1.2: System Architecture

modified without affecting the underlying pieces. However, different low-level imple-

mentations will affect the performance of higher levels. The fundamental approach

is to test different path planning and coordination algorithms without regard to the

dynamics of the UAV.
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One of the critical blocks in the design architecture is the Trajectory Smoother

(also referred to as a trajectory generator since it generates a smoothed path). The

Trajectory Smoother allows straight-line paths to be transformed into dynamically

feasible trajectories. The level of abstraction afforded by correct implementation of

trajectory generation permits a much simpler approach to path planning and coordi-

nation – namely, paths are straight-line segments and timing is calculated by summing

the lengths of the segments and dividing by velocity. This thesis will focus primarily

on the implementation of the Trajectory Smoother in hardware. The interface of

the Trajectory Smoother to the other levels in the design architecture generated a

great deal of additional research, which will also be addressed. For example, a lack

of rigorous solutions of attitude estimation for small UAVs necessitated the develop-

ment of robust attitude and position estimation to provide feedback to the Trajectory

Tracker.

This thesis is organized as follows. Chapter 2 explains the mathematical ap-

proaches to path planning and trajectory generation. The transition from algorithm

to real-time C code is addressed in Chapter 3. The validation of the real-time code in

simulation and resulting modifications are in Chapter 4. Chapter 5 covers the move

from simulation to a hardware platform. Attitude and position estimation for small

UAVs is addressed in Chapter 6. Hardware results of real-time trajectory generation

are presented in Chapter 7 along with conclusions and recommendations for future

work.
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Chapter 2

Mathematical Underpinnings

This chapter develops the theory behind two critical parts of the design archi-

tecture: path planning and trajectory smoothing.

2.1 Trajectory Generation

In developing flight plans, it is often useful to implement a path planning

routine that plans only straight-line segments. In this way, the search space is sig-

nificantly reduced from the standard set of feasible paths that can be realized on a

UAV. In partitioning the problem into tractable sub-problems, it is useful to consider

a Trajectory Smoother. The purpose of the Trajectory Smoother is to generate a

trajectory that follows as closely as possible to the straight-line path, but at the same

time guarantees that the path is feasible. Anderson proved that this problem has an

optimal solution in [6]. An overview of his solution is presented in this chapter. For

complete details see [6, 8] and [9]. The rest of this work is focused on implementing

this algorithm in hardware to facilitate coordination of UAVs.

The goal of trajectory generation is to take a set of straight-line path segments

and generate a dynamically feasible trajectory. A “dynamically feasible trajectory” is

a time-stamped set of waypoints that satisfy the dynamics of UAV motion. A typical

model of UAV dynamics is the 12 state model developed in [10]. While this model is

very accurate, it imposes too many constraints to the problem of feasible trajectory

generation. Therefore, to make the problem tractable, a six state model (when the

5



UAV has heading, altitude, and velocity hold autopilots) is used

żx = v cos(ψ)

ży = v sin(ψ)

ψ̇ = αψ(ψc − ψ) (2.1)

v̇ = αv(v
c − v)

ḧ = −αḣḣ+ αh(h
c − h)

where ψc, vc, and hc are the commanded heading, velocity, and altitude to the au-

topilot and α∗ are positive constants [11]. This model captures the critical dynamics

of the system [11, 12].

A further simplification is to assume that the path will be traversed at constant

velocity (vc) and constant altitude. The UAV dynamics then reduce to

żx = vc cos(ψ)

ży = vc sin(ψ) (2.2)

ψ̇ = αψ(ψc − ψ)

where vc is the constant velocity along the path and ψc is the heading command to

the autopilot.

Using the dynamics given by (2.2) as a guide, we choose to give the trajectory

generator a similar form. This choice ensures dynamic feasibility of the trajectory.

To be precise, let the trajectory generator have the following form

ẋr = vc cos(ψr)

ẏr = vc sin(ψr) (2.3)

ψ̇r = u

where (xr, yr) is the inertial position of the trajectory, ψr is its heading, vc is the

commanded linear speed along the path, and u is the commanded heading rate. The

dynamics of the UAV impose input constraints of the form

0 < vmin ≤vc ≤ vmax and

−ωmax ≤u ≤ ωmax. (2.4)
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The constraint on vc in Equation (2.4) is due to the fact that fixed-wing aircraft

must travel at some non-zero velocity to maintain lift, while at the same time, the

thrust of any given actuator is limited in the amount of force it can exert which

limits the maximum velocity. The input u is the turning rate of the aircraft and is

constrained due to the saturation of the roll angle by the autopilot.

With the velocity fixed at vc, the minimum turn radius is defined as R =

vc/ωmax. The idea of a minimum turn radius allows us to visualize the area of space

that the UAV can reach in the next instant of time, i.e. the local reachability region,

shown in Figure 2.1.

Y

X
u  = - ω

u  = +ω

Local reachability region

R
C

L
C

max

max

Figure 2.1: Local reachability region of the Trajectory Smoother.

With this in mind, it seems natural that for a trajectory to be time-optimal,

it will be a sequence of straight-line path segments combined with arcs along the

minimum radius circles (i.e. along the edges of the local reachability region). In

fact, Anderson proved in [6] that this is the case. By postulating that u follows a

bang-bang control strategy during transitions from one path segment to the next,
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he showed that a κ-trajectory is time-extremal, where a κ-trajectory is defined as

follows.

Definition 2.1 A κ-trajectory is defined as the trajectory that is constructed by fol-

lowing the line segment wi−1wi until intersecting Ci, which is followed until Cp(κ) is

intersected, which is followed until intersecting Ci+1 which is followed until the line

segment wiwi+1 is intersected, as shown in Figure 2.2.

w

w

i-1

i+1

w
i 

C

i+1
C

C
β

p(κ)

p(κ)

i

Figure 2.2: A dynamically feasible κ-trajectory.

A κ-trajectory always passes through the point p(κ), therefore, different values

of κ can be selected to satisfy different requirements. For example, κ can be chosen

to guarantee that the UAV explicitly passes over each waypoint, or κ can be found by

a simple bisection search to make the trajectory have the same length as the original

straight-line path [6], thus simplifying coordination problems. In any case, u satisfies

Equation (2.4) which, in turn, guarantees that the trajectory is dynamically feasible.

The careful reader will realize that a provably feasible reference trajectory does

not necessarily provide a simple way to follow or track that trajectory. Other issues

not dealt with in the theoretical development include understanding the validity of

the assumptions made in constructing the reference trajectory (i.e. the lower order

8



model), real-time capability, and performance on actual hardware. These topics will

be addressed in the remaining chapters.

2.2 Path Planning

With the Trajectory Smoother generating feasible trajectories out of straight-

line paths, the path planner can be constructed to use well-known path planning

algorithms. It is hard to overstate how valuable this is. Constrained path planning is

often much more difficult and computationally intense than is planning straight-line

paths and smoothing afterward.

Our path planning technique centers around the construction and search of

a Voronoi graph [13]. The Voronoi graph provides a method for creating straight-

line paths through a field of point threats. A prime advantage of the Voronoi graph

is the computational speed with which the graph can be created and searched (see

Section 3.3).

With threats specified as points, construction of the Voronoi graph is straight-

forward using existing algorithms. For an area with n point threats, the Voronoi graph

will consist of n convex cells, each containing one threat. Every location within a cell

is closer to its associated threat than to any other. By using threat locations to con-

struct the graph, the resulting graph edges form a set of lines that are equidistant

from the closest threats. In this way, the edges of the graph maximize the distance

from the closest threats. Figure 2.3 shows an example of a Voronoi graph constructed

from point threats.

Finding good paths through the Voronoi graph requires the definition of a cost

metric associated with travelling along each edge. In our work, two metrics have been

employed: path length and threat exposure [14]. A weighted sum of these two costs

provides a means for finding safe, but reasonably short paths. Although the highest

priority is usually threat avoidance, the length of the path must be considered to

prevent safe, but meandering paths from being chosen.

Once a metric is defined, the graph is searched using an Eppstein search [15]

which has the ability to return k best paths through the graph. Once k best paths are

9



Figure 2.3: Voronoi graph with point threats

known, a coordination agent can decide which path to choose for each vehicle in the

team (to ensure simultaneous arrival, for example). The points of this chosen path

are passed on to the Trajectory Smoother which smooths through the path, taking

into account the dynamics and constraints of the vehicle.

An advantage to having the graph creation step and the graph search step

separated is that a graph can be constructed once for a threat field common to many

agents and then searched individually for each agent. Inserting an agent and its

associated target position is done by simply considering the start and target positions

of the agents as point threats for the Voronoi graph construction. Once the graph has

been computed, the start and target positions are connected to the graph by adding

graph edges from those positions to the nodes making up their associated container

cells. Significant computation is saved by computing the graph only once for the

entire team, especially for large numbers of threats.

10



Chapter 3

From Mathematics to Executable C Code

This chapter contains a presentation of the procedure followed to convert the

mathematical algorithms of path planning and trajectory generation to a collection

of C code that implements those algorithms. Changes that were made to correct or

enhance the existing theory are also documented in this chapter.

3.1 Polygon Regions During Path Planning

The Voronoi approach to path planning was chosen primarily for its compu-

tational speed. However, there are many drawbacks in the way it constructs a graph.

The most restrictive aspect of Voronoi path planning is the inability to specify inac-

cessible regions such as “no fly” zones. This isn’t much of a drawback in simulation,

but is a severe shortcoming when it comes to hardware testing, e.g. the robot or UAV

has strict boundaries which the path planning must not violate. This is typical of the

issues dealt with when performing hardware experiments. To compensate for this,

the implementation of Voronoi path planning in C code was designed to account for

arbitrary polygon regions.

In our work, construction of a Voronoi graph for obstacles modelled as polygons

is an extension of the point-threat method. In this case, the graph is constructed

using the vertices of the polygons that form the periphery of the obstacles. This

initial graph will have numerous edges that cross through the obstacles. To eliminate

these infeasible edges, a pruning operation is performed. When the polygons are

specified, a corresponding center and radius that bound the polygon are computed.

Each edge in the graph is checked to see if it intersects the bounding circle and if so,

11



the edge is checked for intersection with all edges of the polygon. Those graph edges

that intersect a polygon are removed from the graph. Figure 3.1 shows the initial

polygon based graph and the final graph after pruning. Note that graph edges that

Figure 3.1: Voronoi graph before and after pruning with polygon threats

are completely contained within polygons are not removed (since they never intersect

a polygon edge), however, the Eppstein search will never consider these segments

because there does not exist any path segment connecting the graph edges on the

inside of polygons with the graph edges on the outside.

In implementing Voronoi path planning, we started with Voronoi graph code

written by Steve Fortune [16] and Eppstein search code written by Victor Jimenez

and Andres Marzal [17]. An interface to the Voronoi graph construction was built

to send polygon vertices as point threats. The resulting graph is pruned to take out

the graph edges that intersect polygon regions. The set of feasible graph edges are

assigned a cost based on length and proximity to threat vertices and then searched

with the Eppstein search for the best path.

The test case for debugging used a fairly rich environment with many randomly

spaced threats. When other cases were tested, it was found that the Voronoi graph

12



method can be poorly connected for some configurations of threats. When the threat

field had few threats or was highly symmetric the Voronoi method failed to give

sensible paths. It was found that, on average, three threats are needed to give a well

connected Voronoi graph. When a threat field produces a Voronoi graph that does

not allow a path from start position to the target, an additional method of planning

is needed.

We modified the path planner to re-plan with a “brute force” method whenever

the Voronoi method failed. This additional planner simply assigns the corners of

squares that enclose the bounding circle of the polygons as nodes in a graph. Each

node is linked to every other node and to the start and target positions. This new

graph is pruned and searched in the same manner as the Voronoi graph. This method

is computationally inefficient, but for small numbers of threats, it can find short,

feasible paths in real-time. A comparison of the Voronoi method and the “brute force”

method is shown in Figure 3.2. The lefthand side of Figure 3.2 shows the Voronoi

Figure 3.2: Path planning for a Voronoi failure.

diagram which was constructed using the vertices of the polygon obstacles and the

start and target positions. After the pruning operation, only the bold lines are left

in the graph, making a connection from the start to the target position unrealizable.
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The righthand side of Figure 3.2 shows the same set of obstacles with their respective

bounding circles. The corners of the squares that enclose the bounding circles are

linked together into a graph which is searched to produce the bold path from the

start to the target position.

3.2 Visualization of Trajectory Generation

In addition to proving the optimality of his trajectory generation strategy,

Anderson also provided base MATLAB code for implementation [6]. Porting this base

code to C required a numerical integration routine. Since a real-time application is

the target, we chose a fixed step fourth order Runge-Kutta solver [18]. To assist in

debugging and also for visualization, a graphical frontend was added (Figure 3.3).

Figure 3.3: Visualization of Trajectory Generation.
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3.2.1 Robust Circle Intersections

The choice of using a fixed step integration routine facilitates real-time com-

putation, but the resulting discretization causes re-evaluation of some aspects of tra-

jectory generation. Most notably, determining how the reference trajectory executes

turns becomes more difficult.

The Trajectory Smoother can be thought of as a state machine that drives

Equation (2.3). The state depends on the section of the turn being performed and

state transitions occur when the reference trajectory intersects the circle or line defin-

ing the turn. The process for performing a turn is shown in Figure 3.4. The constraints
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Figure 3.4: Graphical depiction of the selection of u.

given in Equation (2.4) are manifest graphically by circles of minimum turn radius

on both sides of the reference UAV and are denoted by CR and CL. At times t3 and

t4, the right turning circle CR is assumed to be directly over Cp(κ) and so is not shown

at those times.

A typical κ-turn proceeds in the following manner. At time t1 the Trajectory

Smoother is tracking the waypoint segment wi−1wi. When the left turning circle CL
intersects Cp(κ) at time t2, u is set to −ωmax. The left turning constraint is followed
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until the right turning circle CR corresponds exactly with Cp(κ) at time t3. The

Trajectory Smoother input u is then set to +ωmax and the right turning constraint is

followed until the left turning constraint CL intersects the waypoint segment wiwi+1

at time t4. The Trajectory Smoother input u is again set to −ωmax until it reaches

the waypoint segment at time t5 where u is set to zero [9].

Due to the discrete implementation of the Trajectory Smoother, switching

times can be difficult to detect. This is illustrated by the following scenario. Suppose

that the Trajectory Smoother is tracking the straight-line segment wi−1wi and an-

ticipating the intersection of CL with Cp(κ) in order to detect the switching time t2 as

in Figure 3.5. The circle CL may not intersect the circle Cp(κ) exactly at the sample

times. Therefore, we need a robust method for detecting circle-circle intersections.

w
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w
i 

L
C

p(κ)C

(t[n])
L
C (t[n+1])

Figure 3.5: Effect of fixed sample-rate on switching-time detection.

A simple method for detecting circle-circle intersections is to monitor the dis-

tance between circle centers. When this value is less than 2R then the circles obviously

intersect. However, there are cases when this method will fail to detect the intersec-

tion. When the reference trajectory is not tracking the line precisely or when κ ≈ 1,

the distance between circle centers can be greater than 2R both before and after the

intersection as in Figure 3.6.
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To ensure that the UAV will correctly execute turns despite an imprecise

discrete implementation, switching times will be detected by dividing space into two

distinct regions and then checking for the crossover from one region to another. Specif-

ically, let S1 be the region containing waypoint wi−1 and S2 the region containing

waypoint wi. The line dividing S1 from S2 is perpendicular to the path segment

wi−1wi and passes through p(κ) as shown in Figure 3.7. The usual check for circle
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Figure 3.7: Robust circle intersection method.
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intersection is used, however, when the center of CL has crossed into region S2 and a

circle intersection has not been detected, then the intersection is regarded as missed

and the state is updated as if t3 has been reached. Note that the state progression of

the system skips the state associated with switching time t2 in this case. Normally,

when t2 has been detected, the reference UAV turns opposite the direction of the

main turn until t3 is detected, but if t2 has been missed, then the UAV must turn

towards the segment wiwi+1 to minimize the error incurred by missing t2.

Using similar ideas, all switching times can be made robust to discrete im-

plementation [9]. When switching time t5 is detected, the reference UAV will not

be precisely aligned with the segment wiwi+1. Anderson foresaw this in his initial

formulation and presented a tracking algorithm to pull the reference back onto the

segment [6]. A modified version of this tracking algorithm is proven to satisfy the

constraints of the UAV in [9].

3.3 Real-Time Analysis

With C code implementations of path planning and trajectory generation al-

gorithms, it is possible to assess the real-time nature of these algorithms.

Definition 3.1 Let tc be the computation time for one iteration of the algorithm

and N be the maximum number of times per second required for the algorithm to be

computed. An algorithm is defined as real-time if and only if Ntc ≤ 1.

An interesting aspect to Definition 3.1 is the choice of N . In a path planning

scenario, N will be determined by the maximum allowable time for planning a path.

If a new path is to be planned every time the environment has changed, then the

computation time for planning a path must not exceed the time between updates of

the environment. For example, if the environment is checked for changes at a rate

of 10 Hz, then the path planner execution time must not exceed 100 ms. Essentially

all path planners scale in complexity with regard to the number of threats in the

scene or the size of the environment considered, therefore, a particular path planning

algorithm can only be guaranteed to operate in real-time for up to M threats where

the computation for M threats equals the time between environment updates.
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In considering the real-time capability of the Trajectory Smoother, we note

that the computation time for an iteration is fixed, regardless of changes in the

scene: an iteration in the Trajectory Smoother consists of circle-line and circle-circle

intersections and numerical integration – input changes simply reset the state. With

tc known, we can easily solve for N . If the rate of the control loop that depends on the

reference trajectory is less than N , then we can state that the Trajectory Smoother

operates in real-time.

To determine the computation time associated with the path planning and

trajectory smoothing algorithms, Monte-Carlo simulations were performed. The path

planning algorithm was simulated on randomly generated scenes to estimate how tc

changes as a function of the number of threats. Each threat was simulated as an

asymmetrical 8 sided polygon. Figure 3.8 shows the data points gathered through

Monte-Carlo simulation and the second order curve fit of that data. This data suggests

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

Number of threats

A
ve

ra
ge

 c
om

pu
ta

tio
n 

tim
e:

 m
s

Figure 3.8: Monte-Carlo results for estimating tc as a function of threat number.

that for an environment update rate of 40 ms (25 Hz), the path planner will operate

in real-time for threat fields with less than 30 threats. By extrapolation of the data,
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threat fields of up to 194 threats could be dealt with in real-time for an environment

update rate of 1 Hz. Clearly, for low rates of new threat information (on the order of

1 Hz), paths through considerable size threat fields can be planned in real-time. By

recalling that the computation time is dominated by the number of threats, similar

results hold for teams of agents – that is, path planning can be achieved in real-time

for teams of agents.

Similar Monte-Carlo simulations were performed to evaluate the execution

time for an iteration of the Trajectory Smoother. On a 1.8 GHz Intel Pentium 4

processor, one iteration of the Trajectory Smoother took on average 36 µ-seconds. At

this speed, the Trajectory Smoother could run at 25 KHz - well above the dynamic

range of typical UAVs. Moving toward embedded systems, we found that one itera-

tion of the Trajectory Smoother required a maximum of 47 milli-seconds on a Rabbit

Microprocessor running at 29 MHz. The low computational demand allows the Tra-

jectory Smoother to be run in real-time at approximately 20 Hz on an embedded

system on-board the UAV.
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Chapter 4

Simulation and Validation

This chapter contains the results of simulation and validation of the Trajectory

Smoother on different mathematical models of a UAV. Also included is a presentation

of the discovery of and solutions to problems uncovered through simulation.

4.1 Validation

To validate the correct operation of the Trajectory Smoother, many different

scenarios were implemented and the resulting trajectories observed. For most scenar-

ios, this simulation setup showed satisfactory results; however, anomalous behavior

was exhibited when path segments were connected with extreme angles between suc-

cessive segments, i.e. when shallow or sharp turns were required.

In [6], Anderson provides a method for determining the time extremal path

under 3 different conditions: minimum path length, equal path length, and passing

directly over the waypoint. These types of turns are illustrated in Figure 4.1. By

parameterizing the distance from the waypoint and the closest point that the UAV

passes by κ, these three cases are equivalent to constraining κ = 1 for the minimum

path length, κ = 0 for passing directly over the waypoint, and κ found by a bisection

search for equal path length trajectories. Now we consider the relationship between

κ and the angle between successive path segments β

κ =
d sin

(

β

2

)

R
(

1 − sin
(

β

2

)) (4.1)

where d is the distance from the waypoint to the closest point that the UAV passes

and R is the minimum radius turn allowed by the dynamics of the UAV.
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Figure 4.1: Sample κ turns.

4.1.1 Shallow Turn Compensation

Equation (4.1) shows that κ can be found for any desired distance d from the

waypoint to the closest passing point. Due to the sin
(

β

2

)

term, however, κ will be

strongly influenced by the angle β. In fact, as β → π (corresponding to no turn at

all), κ→ 0 for any distance d. This matches intuition because for two segments joined

into a straight line with no angle between them, the straight-line path is equivalent to

the path that passes directly over the waypoint, the minimum length path, and the

equal distance path. Strange behavior is exhibited when β is very close to π because

the switching points for successive turns are so close that the discrete implementation

is too course to distinguish the state of the trajectory in the turn.

To address the “shallow turn” condition, a threshold is placed on the angle β.

For β ≥ βc, κ is simply set to zero which causes the trajectory to continue in linear

motion without turning. Instead of computing the turn switching points and explicitly

performing a turn, the Trajectory Smoother checks for when the reference trajectory
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comes to within a quarter radius distance from the middle waypoint. When this

condition is met, the Trajectory Smoother switches state, assigning the next segment

as the current segment and relying on the local tracking routine to bring the trajectory

back to the straight-line path. For shallow turns, the difference in path length from

the theoretical path and the actual path using this method is negligible.

4.1.2 Sharp Turn Compensation

The anomalous behavior for sharp turns is also due to the influence of β on

Equation (4.1). Note that as β → 0 (corresponding to a U-turn), κ → 0. This

result is nonsensical – clearly, for a U-turn there exists an equal-length path which

doesn’t pass though the waypoint. The discrepancy is due to the parametrization of

κ. For a U-turn, κ ∈ (0, 1] corresponds to d = ∞, which forces all other distances

to be parameterized by κ = 0. This can be visualized by imagining two segments

that form a very sharp turn with an arc connecting these two in a minimum-distance

configuration (Figure 4.2). The sharper the turn, the further out the arc will be

pushed to allow a fixed radius circle to connect the two segments.

Figure 4.2: Sharp turn parametrization problem.
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To correct for sharp turns, the form for an equal path length U-turn is com-

puted. Figure 4.3 shows the geometry to calculate the distance D from the U-turn

switchback point to the center of the turn-switching circle. To perform a perfect

p

D

∆

Figure 4.3: U-turn equal path length switching points.

U-turn, three circles of minimum turn radius R are arranged so that the centers of

the circles form an equilateral triangle. The arclength for a given angle θ is given by

L(θ) = θR. (4.2)

The total distance traveled along the edges of the circles, Ltotal, is then

Ltotal = L
(

2π − π

3

)

+ L
(π

3

)

+ L
(π

3

)

=
7π

3
R (4.3)

where the first term is the path length along the top circle and the last two terms are

the distances on the edges of the lower circles. To ensure that the U-turn path has

path length equal to the straight line path, Ltotal must equal the distance from the

start of the turn to the waypoint and back (2∆). Solving for ∆ yields

∆ =
Ltotal

2
=

7π

6
R. (4.4)
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The distance to the center of the turning circle, D, is then simply the height of the

triangle subtracted from ∆, where it is noted that each side of the triangle is 2R in

length. Using the Pythagorean Theorem to calculate the height of the triangle, the

distance D is found to be

D =

(

7π

6
−

√
3

)

R. (4.5)

Unless a κ = 0 turn is desired, sharp turns are made equivalent to U-turns in

the equal length path case, i.e. the turn switching circle is set to exactly D from the

waypoint about which the sharp turn is to be performed. Similar to the shallow turn

case, a threshold on β signals the use of this method rather than the conventional

minimum distance or equal path length methods.

4.1.3 Robustness to Input Changes

Instability in some systems can be attributed to rapid changes in input. In

this section, we investigate how input changes to the Trajectory Smoother affect the

generated trajectory. In particular, we want to guarantee that the reference trajectory

will always satisfy the constraints of the UAV which, in turn, gives the autopilot an

input signal that can be realized in a stable manner.

Definition 4.1 Let a trajectory r be a series of time-stamped waypoints for all t ∈
[0,∞) and let r(t) be the position of the trajectory at time t and r[t1, t2) be the set

of waypoints in r for t ∈ [t1, t2). Then, given an ordered set of trajectories, R =

{r1, r2, . . . , rN}, with cooresponding times along trajectories, T = {t1, t2, . . . , tN}, the

resulting sequence of trajectories, S

[

0,
N
∑

i=1

ti

)

is

S =



































r1[0, t1) 0 ≤ t < t1

r2[0, t2) t1 ≤ t < t1 + t2
...

...

rN [0, tN)
N−1
∑

i=1

ti ≤ t <
N
∑

i=1

ti

. (4.6)
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Theorem 4.2 Given that a set of trajectories R exists in which each element of R,

ri, satisfies the constraints (2.4) for t ∈ [0, ti), then the resulting sequence of trajec-

tories, S, will also satisfy the constraints (2.4) provided that r2(0) = r1(t1), r3(0) =

r2(t2), . . . , rN(0) = rN−1(tN−1).

The proof of Theorem 4.2 follows from considering that if the constraints (2.4)

are satisfied for all segment trajectories composing S and each segment trajectory

of S is connected to the next without separation in time, then at no time will S

experience a condition which will violate the constraints (2.4).

The Trajectory Smoother has been implemented so that changes in input way-

points simply generate a new κ-trajectory that begins at the last position of the

previous κ-trajectory. Since all κ trajectories satisfy the constraints (2.4) and each

successive κ-trajectory starts where the previous one left off, it follows from Theo-

rem 4.2 that the Trajectory Smoother will satisfy the constraints (2.4), regardless of

input changes.

To illustrate that the Trajectory Smoother will generate a trajectory that

satisfies constraints (2.4), a simulation was developed where the input path segments

were rapidly and randomly changed. Figure 4.4 shows the reference trajectory and

the times when the input changed (indicated by the crosses). As can be seen, the

Figure 4.4: The Trajectory Smoother is robust to rapid input changes.
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Trajectory Smoother is robust to rapid input changes. Although no sensible behavior

is exhibited (due to an insensible input), the resulting trajectory is smooth and allows

for stable operation of the autopilot.

4.2 Simulation With a 6 State Model

The Trajectory Smoother was developed under the assumption that an au-

topiloted UAV could be modelled with the six state model given in Equation (2.1).

The next step to evaluate the correctness of the Trajectory Smoother is to input the

reference trajectory generated by the Trajectory Smoother to a UAV with dynamics

given by Equation (2.1).

4.2.1 The Trajectory Tracker

Before an analysis of the Trajectory Smoother could be performed for a UAV

modelled by Equation (2.1), an important piece of the design architecture had to be

developed – the Tracker. The purpose of the Tracker is to command the UAV in such

a way that the difference between the actual position of the UAV and the reference

position from the Trajectory Smoother is driven to zero.

Using knowledge of the structure of the Trajectory Smoother coupled with

the assumption that an autopiloted UAV behaves as in Equation (2.1), a tracker was

proposed that guarantees convergence in finite time while at the same time satisfying

the velocity and heading rate constraints of the UAV [19, 20]. The constraints were

modified to allow the Tracker some control authority to bring the UAV back to the

reference trajectory. Thus the Trajectory Smoother satisfies the contraints given in

Equation (2.4) and the Tracker satisfies the constraints

0 < vmin − εvmin
≤ v ≤ vmax + εvmax

−ωmax − εωmax
≤ ω ≤ ωmax + εωmax

(4.7)

where ε∗ are the expansion of the constraints on the reference trajectory.
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The Tracker uses feedback of velocity, heading, and position along with the

output of the Trajectory Smoother to generate desired heading and velocity com-

mands for the autopilot. The Tracker is implemented by [19, 20]:

x0 = ψr − ψ

x1 = − sin(ψ)(Xr −X) + cos(ψ)(Y r − Y )

x2 = − cos(ψ)(Xr −X) − sin(ψ)(Y r − Y )

x0 = x0 + x1
√

1 + x1
2 + x2

2

u0 = −sat (m0x0, εωmax
,−εωmax

)

du1e = (vmax + εvmax
) − vr cos(x0)

bu1c = (vmin − εvmin
) − vr cos(x0)

u1 = sat (−m1x2, du1e, bu1c)
ω = ωr − u0

ψc = ψ + ω
αψ

vc = vr cos(x0) + u1

(4.8)

where Xr, Y r, vr, ψr, and ωr are the North position, East position, velocity, heading,

and heading rate of the reference trajectory, and X, Y , v, and ψ are the actual North

position, East position, velocity, and heading of the UAV, and where αψ is defined

in Equation (2.1), sat is the saturation function, m0 and m1 are positive tuning

parameters, and ψc and vc are the heading and velocity commands to the autopilot.

An appealing aspect to the Tracker is its simplicity. Referring to [19, 20] and

Equation (4.8), the Tracker is essentially a change of variables and an appropriate

saturation constraint. This facilitates the real-time nature of the overall solution –

the computation required to track the reference trajectory is trivial when compared

with the computation required to generate that trajectory.

Equation (4.8) shows the dependence of the Tracker on knowledge of the under-

lying model that was used for design. Note that to compute a commanded heading,

ψc, a commanded heading rate was first calculated and then divided by αψ. The

parameter αψ characterizes the heading response of an autopiloted UAV as in Equa-
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tion (2.1). As will be shown in Section 4.3, the Tracker can be very sensitive to

modelling errors in αψ.

4.2.2 Simulation Results for a 6 State Model

Unsurprisingly, simulation of the Trajectory Smoother and Tracker with a

UAV modelled as in Equation (2.1) shows precise performance. This is to be expected

because the reference trajectory and the associated tracking algorithm were developed

with all constraints considered and with the assumption that UAV dynamics are

approximated by Equation (2.1). A much more interesting simulation scenario is when

the UAV is modelled as the full 12 state model, which is addressed in Section 4.3.

4.3 Simulation With a 12 State Model

This section investigates the assumption that a 6-state model can be used to

design a reference trajectory for a 12-state aircraft. This is done by simulating a

precise model of a UAV with an associated autopilot.

As presented in [10], aircraft dynamics can be modelled as
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where the states of the aircraft are

X = distance North

Y = distance East

−Z = altitude

u = velocity out the nose

v = velocity out the right wing

w = velocity out the belly

φ = roll angle

θ = pitch angle

ψ = yaw angle

p = roll rate

q = pitch rate

r = yaw rate

(4.13)

and DCM is the Direction Cosine Matrix which rotates from the inertial frame to the

body frame (a function of φ, θ, and ψ); m is the mass of the UAV; J is the inertia

tensor expressed in the body frame; F is a vector of translational forces acting on the

UAV in the inertial frame; M is a vector of torques in the inertial frame; and g is the

gravitational constant.

The forces and torques acting on the aircraft can be approximated using knowl-

edge of the aerodynamic properties of a given aircraft. Once the forces and torques

are characterized, an autopilot can be developed. In practice, for small UAVs, iden-

tification of the aerodynamic coefficients can be costly or difficult to obtain. For this

reason, autopilots are developed using multiple PID loops that are tuned until ac-

ceptable performance is realized. When the aerodynamic coefficients are well known

or have been calculated or estimated, an autopilot can be implemented with a Linear

Quadratic Regulator (LQR). The method used to develop the autopilot is not im-

portant to the Trajectory Smoother or Tracker. The critical dependency is whether

or not the autopilot can reduce the dynamics of the aircraft to the 6 state model in

Equation (2.1).

Both PID and LQR autopilots have been developed in simulation and both

show similar performance. Figure 4.5 shows typical responses of an autopiloted UAV

to steps in velocity, heading, and altitude. The roll angle demonstrates that for large

steps in heading, roll angle is adequately approximated by a first order system, but

heading response is not. The physical interpretation is that the aircraft must have a
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Figure 4.5: Autopilot response to heading, velocity, and altitude steps.

roll angle to initiate a change in heading, but strict limits apply to how large a roll

angle can be sustained. For large steps in heading, the roll angle is saturated and

heading can only change at the rate allowed by the maximum roll angle. How then

can the 6 state model of an autopiloted UAV be correct if the heading response is

clearly not first order? Under what conditions is the 6 state model accurate, if any?

In the same vein as linear approximations to non-linear systems or Riemann

sums to approximate integrals, we simply choose to let heading response be modelled

as first order, but only considered accurate for small changes in heading. Therefore,

the 6 state model is only “valid” when the commanded changes in heading allow

heading response to be accurately characterized as first order. In other words, for

an autopiloted UAV to be validly modelled with a 6 state model, the input must be

guaranteed not to command heading changes that violate the first order assumption.

The notion of having heading changes be small for accurate modelling is similar to

step size for numeric integration – a result is generated, but accuracy is sacrificed as

the step size increases. To label a model as “valid” necessitates that the accuracy be

within some allowable tolerance to the actual response.

31



With this in mind, the full 12 state model of an aircraft augmented with an

LQR autopilot was simulated. Figure 4.6 shows the reference and actual trajectory of

a simulated UAV as well as the distance of the UAV from the desired trajectory over a

period of 3 minutes. The maximum error observed is less than 1.2 meters and most of

the time the error is less than 10 cm. This is considered very accurate, therefore, the

assumption that an autopiloted UAV can be modelled with Equation (2.1) appears

to be a good assumption.
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Figure 4.6: Actual and reference trajectories (left) and Tracking error (right).

Empirically, the use of the 6 state model to design the Trajectory Smoother

and Tracker is warranted. However, the Tracker was observed to be sensitive to

accurate knowledge of the rise time of the heading response. This is due to the fact

that the Tracker depends on knowing the rise time of the heading angle to perform

the necessary calculation to obtain actual commanded heading. Typically, rise time

is directly measured by analyzing the system response to a step. Since the first order

assumption is accurate only for small changes, calculating the rise time is difficult in

this case. Rise time, therefore, becomes a parameter that must be adjusted until the

Tracker performs well. It can be difficult to choose a rise time in heading that gives

the best accuracy for a given sample rate and aircraft configuration.
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4.4 Robot Platform Implementation

Two-wheeled mobile robots have very similar dynamics to autopiloted UAVs.

For an autopiloted UAV flying a constant altitude, the dynamics reduce to

żx = v cos(ψ)

ży = v sin(ψ)

ψ̇ = αψ(ψc − ψ) (4.14)

v̇ = αv(v
c − v)

with constraints

0 < vmin ≤v ≤ vmax and

−ωmax ≤ψ̇ ≤ ωmax. (4.15)

The only difference between these dynamics and constraints and the two-wheeled

mobile robot case is the robots velocity constraint

−vmax ≤v ≤ vmax. (4.16)

By simply adding a minimum velocity saturation to the velocity controller on the

robot, a two-wheeled robot can mimic the dynamics of an autopiloted UAV.

An experiment was constructed to test the Trajectory Smoother and Tracker

on a robot platform. Two-wheeled robots configured with minimum velocity con-

straints and equipped with low-level heading and velocity controllers were provided

with commands generated by the Tracker. An overhead camera provided position

and heading feedback at 30 Hz and wheel encoders allowed velocity feedback. These

same sensing capabilities exist on UAVs in the form of GPS and airspeed, respec-

tively. The Tracker was easy to tune in the robot case because a robot has true first

order response in heading and so rise time was easily measured.

Figure 4.7 shows the result of the robot experiment. The error from the actual

position of the robot and the desired potion given by the reference trajectory is less

than 10 cm. We conclude from this that the Trajectory Smoother and Tracker are

accurate for a platform with similar dynamics to autopiloted UAVs.
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Figure 4.7: Robot experiment results.

4.5 Summary of Simulation and Validation

This chapter has introduced the special case handling needed for correct op-

eration of the Trajectory Smoother in a discrete implementation. Specifically, the

Trajectory Smoother was shown to be robust to input changes, and support for ex-

treme turns was developed. Simulations were performed to ensure correct operation

of the Trajectory Smoother and to validate assumptions made in the design of the

Trajectory Smoother and Tracker. Using a precise model of aircraft dynamics, the

assumption that an autopiloted UAV can be modelled as in Equation (2.1) was val-

idated. It was shown, however, that αψ must be tuned well to accurately use the

Tracker. A robot platform experiment showed that the Trajectory Smoother and

Tracker operate in real-time with hardware similar to UAVs.
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Chapter 5

The Transition to Hardware

This chapter will address the main issues involved in the transition from a

simulation environment to hardware implementation as well as the hardware config-

urations that allow testing and operation of the Trajectory Smoother and Tracker.

5.1 Hardware Specific Considerations

The main goal for most engineering projects is performance on actual hard-

ware. Of course, theory, simulation, and testing allow ideas to be validated and

explored, but hardware implementation provides the truest test of the usability of a

particular engineering solution. The most common obstacles to the transition from

a successful simulation to real hardware are aspects of discretization, communication

restraints, and delay.

5.1.1 Discretization

Most physical control systems today are sampled discretely and processed dig-

itally. Often continuous methods that work well in simulation transition smoothly to

the discrete world when the sample rate is fast enough. However, a smooth transition

is not by any means guaranteed. If possible, any continuous algorithm that will be

implemented digitally should be transitioned as early as possible to discrete space.

This will allow the designer to understand the subtleties early in the design process.

For the most part, the dominant discretization issues have been addressed in

Chapter 4. Changes were made to the initial construction of the reference trajectory

(circle intersection methods and extreme turn compensation) to solve problems that
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were primarily a result of discretization. It is also interesting to note that the first

attempt to develop a tracker (of the adaptive strain) was discarded due to limitations

arising from discretization. The current implementations of the Trajectory Smoother

and Tracker work well at update rates of approximately 20 Hz.

5.1.2 Communication Constraints

Communication is not instantaneous, robust, or unlimited in any hardware

system. Careful design is needed to minimize the frequency and size of data that

must be communicated. If large amounts of critical data must be communicated,

hardware should be selected that supports this, but a re-design may be the best

solution. Heavy reliance on the communication channel must also be protected by

default sensible behavior when the communication channel is lost. Failure to do so

can be costly and dangerous.

5.1.3 Delay

The effect of delay, or hysteresis, in a system is perhaps the most overlooked

aspect in the design process. All systems will have some delay – even computation

time can be a significant source of delay. For many systems, the delay is small

enough to be ignored, but for many others it must be explicitly addressed. Hysteresis

in sensors and communication delays are the most common source of delay in an

overall system.

One of the most important sensors for UAV navigation is GPS. We use the

output of GPS as a position, heading, and ground speed sensor. Unfortunately,

there is approximately 1/10th second delay from the GPS receiver due to onboard

calculation. Often, heading and velocity measurements from GPS are delayed up to

1.1 seconds. This delay can significantly affect the Tracker which depends on feedback

of position and velocity to generate the next set of commands to the autopilot. To

explicitly address the delay from the GPS receiver, an estimate of position and heading

is generated using an Extended Kalman Filter. Chapter 6 addresses issues of real-time

filtering in the presence of delayed sensor information.
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Another source of delay in the system is the delay due to the communication

from the Ground Station to the UAV. The Ground Station provides an interface to

the operator allowing multiple levels of interaction. It communicates to the UAV over

a low-cost wireless modem. This transmission link can lead to delay and bandwidth

constraints due to slow baud rates. If critical control software runs on the Ground

Station using sensor information gathered on the UAV, the delay from sensor output

to received command can be significant. For example, if GPS positions are used to

generate a new command from the Ground Station, then the total delay is the sum

of the delay to (1) sample the GPS, (2) send the sample to the Ground Station, (3)

process the information on the Ground Station, (4) send the new command back to

the UAV, and finally, (5) implement that command. Any significant delay in the

communication channel can cause major problems. The solution to dealing with this

delay is to make sure that the information communicated over the wireless link is not

timing critical. Often, such a bottleneck in the system will strongly influence how the

overall system should be designed.

5.2 Short Path Segments

A specific hardware implementation challenge to the Trajectory Smoother is

the handling of short path segments. This known weakness was first addressed by

Anderson in [6]. The issue is that for a path to be dynamically feasible, two turns

cannot overlap. In simulation, the path planner adjusts the path to remove most

of the short segments using a simple threshold on segment length. In hardware,

however, the path planning is done by human operators who may command short

path segments. To address human interface issues as well as to fix the adjustment

made by the path planner (it didn’t work in all situations), an algorithm for extending

a path to ensure no overlapping turns was developed.

This path extension algorithm transforms any path into a path with segments

long enough to allow all turns to be completed before another is required. The

algorithm “pushes” path segments out through the given waypoints until a length is

reached that satisfies the needed non-overlapping condition. The extension involves
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knowledge of the discretization of the system to ensure that turns do not overlap even

in the presence of wide sample times. Figure 5.1 shows how a path is extended to

allow the Trajectory Smoother to generate sensible trajectories.

Initial paths

Extended paths

Smoothed trajectory

Start Position

Figure 5.1: An extended path.

5.3 Tracking Tradeoffs

The Tracker has been shown to work well in UAV simulation and in a mobile

robot scenario. As mentioned in Section 4.3, however, it can be difficult to tune for

UAVs. The tuning process in simulation consisted of changing αψ until good tracking

was observed. In hardware, the process is much more complicated. The presence of

wind makes it difficult to know if tracking error is caused by wind or by an improperly

tuned Tracker. In addition, GPS only updates at a rate of 1 Hz which is too slow

for the tracker, even in simulation. Approximately a 20 Hz update rate is needed

for the Tracker to perform well. Note that the robot experiment in Section 4.4 had

an update rate of 30 Hz. To be able to use the Tracker in hardware, an Inertial
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Navigation System (INS) is needed to estimate position at a 20 Hz rate (presented in

Chapter 6) as well as careful tuning on a windless day.

An alternative is to use a simple “follow-the-rabbit” tracker. The idea here is

to continuously update a point on the reference trajectory just in front of the UAV.

The autopilot commands a heading to face the point and a velocity to stay a specified

distance behind it. In effect, the moving point (the rabbit) leads the UAV along the

desired trajectory. The advantage to this method is insensitivity to update rate. By

allowing the Trajectory Smoother to generate the trajectory ahead of the UAV, the

“rabbit” point is easily obtained. When GPS is received, the current point from the

Trajectory Smoother is sent and the autopilot continuously controls the UAV to a

heading and velocity. We chose to have the Trajectory Smoother lead the UAV by

2 seconds. This allowed a 1 Hz update to be sufficient for good tracking. There is no

guarantee of convergence for this particular tracker and at 1 Hz the control is loose,

but it does allow adequate tracking of the reference trajectory.

5.4 Software Configuration for Hardware Implementation

The development of the Trajectory Smoother has essentially been done in

parallel with the development of the autopilot and physical aircraft. The volatility

associated with design and testing has made it difficult to merge the two projects.

Two phases of implementation exist to build up to complete hardware operation of

the Trajectory Smoother. The first phase is the simplest possible setup to allow

for rudimentary operation and testing of the system. In this phase, the Trajectory

Smoother runs on the Ground Station at 20 Hz. When the GPS receiver updates

the position of the UAV, the Ground Station is notified and the reference “rabbit”

position is transmitted back in response. Autopilot routines control the UAV to the

heading needed to point to the “rabbit” position and the velocity commanded by

the Trajectory Smoother. This phase can be enhanced when an INS is operational

onboard the UAV. In that case, communication bandwidth will be dedicated to the

output of the Trajectory Smoother allowing the autopilot to control to a changing

“rabbit” point at 20 Hz. Hopefully, this will allow tight control and tracking.
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The second phase of hardware implementation relies on the availability of

processing power onboard the UAV. The current software designs of the autopilot and

Trajectory Smoother do not allow a real-time implementation when running together

on the autopilot processor. In the future, the amount of calculation required to

generate the reference trajectory should be reduced to enable the autopilot, Trajectory

Smoother, and Tracker to run onboard the UAV. In this scenario, only user waypoints

will be transmitted from the Ground Station to the UAV. With the communication

link only issuing changes in desired waypoints, the communication constraints due to

delay and bandwidth disappear. The reduction on the reliance of the communication

link will allow multiple UAVs to operate from one Ground Station. It is worthy to

note that the software has been designed to facilitate this transition. The handshaking

and communication that will exist between UAV and Ground Station already take

place inside the Ground Station software, i.e. the software is already separate to allow

parts to be moved up to the UAV when more processing power is available.

5.5 Hardware Results

Numerous simulations and robot experiments showed that the Trajectory

Smoother could be a viable solution to real-time trajectory generation for UAVs.

The true test of the Trajectory Smoother is a test on actual UAV hardware.

The airframe on which the hardware experiments take place is a 48-inch-

wingspan ZAGI glider [21] controlled by an autopilot board developed at BYU [22].

The Trajectory Smoother operates on the Ground Station with the follow-the-rabbit

tracker configuration described in Sections 5.4 and 5.3. Figure 5.2 shows GPS data

gathered from flight along with the desired trajectory. As can be seen, the flight of

the UAV follows the shape and, roughly, the position of the reference trajectory. The

discrepancy between the actual path and desired path is due primarily to the presence

of wind and a slow update rate. The fact that the UAV path is near the reference

trajectory over the entire flight suggests that coordination of UAVs is feasible using

the Trajectory Smoother.
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Figure 5.2: Results of hardware implementation
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Chapter 6

Real-Time Filtering for Accurate Position Feedback

6.1 Introduction

To allow for better trajectory tracking, an estimate of position between GPS

updates is needed. This will allow the Tracker to run at a rate fast enough to track

the reference trajectory with little error. In order to produce an accurate position

estimate, an accurate attitude estimate is also needed. This chapter develops attitude

and position estimates for small UAVs (like those flown at BYU) where the payload

and power requirements are extreme. Hardware issues of latency and noise are also

addressed.

Recent interest in design and flight of small UAVs and Micro Air Vehicles

(MAV) has prompted research into control and navigation of such vehicles. The

potential for small inexpensive air vehicles is vast: reconnaissance, surveillance, search

and rescue, remote sensing (nuclear, biological, chemical), traffic monitoring, natural

disaster damage assessment, etc [23, 24]. A necessary part of these missions is accurate

navigation of the vehicle. Typically, MAVs and small UAVs are very difficult to

fly without a trained pilot [24]. To automate the stabilization and navigation of

these vehicles, suitable estimation and control schemes are needed. This chapter will

develop attitude and position estimation filters that use instruments that are small

enough to fit on a small UAV (on the order of 50 cm wingspan).

Small UAVs and MAVs have constraints that prohibit traditional solutions to

the attitude and position estimation problems. Most notably, accurate navigation-

grade gyros are simply too large to be flown on these small aircraft. Power constraints
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require that low-power embedded microprocessors be used, which can restrict the com-

plexity of algorithms that can be implemented in real-time. One of the contributions

of this chapter is to show that adequate estimation can be achieved even with these

constraints. This solution can also be used as a back-up to more accurate estimation

on larger aircraft.

This chapter will present a two-stage solution to attitude and position esti-

mation. The first stage is attitude estimation. Many attitude estimation schemes

are available. This chapter will present a straight-forward solution that operates in

real-time and satisfies the weight and power constraints of a small UAV. In addi-

tion, the attitude estimation scheme will explicitly deal with latency using a unique

distributed-in-time formulation. Attitude will be directly available for state feedback,

and more importantly, as an input to the second-stage navigation filter. It is notable

that with a cascaded filter approach (i.e. the output of the first stage filter feeds the

second stage), any unbiased attitude estimation scheme can be used at the first stage,

including vision-based [24] or infrared-based [25] schemes.

A formulation for an Attitude Heading Reference System (AHRS) will be pre-

sented in Section 6.2 with simulation results shown in Section 6.3. Section 6.4 contains

the Inertial Navigation System (INS) formulation. Section 6.5 presents simulation re-

sults of the cascaded INS, and Section 6.7 offers conclusions.

6.2 Real-Time Distributed-in-time AHRS

Three primary concerns with attitude estimation are: (1) determining a way to

mathematically represent attitude, (2) effectively using sensors to measure attitude,

and (3) using the dynamics of the rigid body to reduce the measurement noise or

provide an estimate of attitude between measurements. Initialization and latency

compensation for real-time systems also needs to be addressed.

6.2.1 Attitude Representations

There are many different mathematical representations of attitude. The most

general attitude parametrization is the Direction Cosine Matrix (DCM) [26]. This real
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orthogonal matrix maps vectors from the reference frame to the body frame. However,

because it requires nine parameters (six of which are dependent), it is desirable to find

a representation with the fewest number of parameters. Euler angles represent the

parametrization with the fewest elements (φ, θ, ψ). The DCM is generated from Euler

angles by forming rotation matrices about a single axis and then multiplying these

matrices together. Euler angles have clear intuitive meaning, but exhibit a singularity

at certain angles. To overcome this drawback, the unit quaternion representation can

be used.

Unit quaternions are defined by the relationship [26]

q = [q0 q1 q2 q3]
T , ‖q‖ = 1 (6.1)

and the DCM associated with q is

D(q) =











1 − 2(q2
2 + q3

2) 2(q1q2 + q0q3) 2(q1q3 + q0q2)

2(q1q2 − q0q3) 1 − 2(q1
2 + q3

2) 2(q2q3 + q0q1)

2(q1q3 − q0q2) 2(q2q3 − q0q1) 1 − 2(q1
2 + q2

2)











. (6.2)

Most real-time attitude solutions use a quaternion parametrization of attitude

because of the computational simplicity (no trigonometric calculations required) and

the avoidance of singularities [26].

6.2.2 Attitude Measurements

With a good mathematical representation of attitude, the focus becomes ef-

fectively measuring attitude. A number of different solutions to the attitude mea-

surement problem have been proposed and implemented. One popular method is to

use the carrier phase of GPS signals [27, 28]. This involves at least three GPS anten-

nas with a known geometry. Once the phase ambiguity is resolved, phase differences

between antennas can be calculated and a good estimate of attitude is made. The

solution improves as the baseline between antennas increases, making implementa-

tion on small UAVs or MAVs difficult. Gebre-Egziabher et al [29] proposed an ultra

short baseline solution (approx 36 cm baseline), but even this is too large and heavy

for small UAVs and MAVs [24, 30]. Other promising methods for small UAVs and
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MAVs use vector measurements of the magnetic and gravitational fields and then

solve a set of nonlinear equations using optimization methods to come up with an

attitude measurement [31, 32]. A unique approach is to use the signal-to-noise ratio

on the GPS antenna to measure attitude [33]. Because the end goal of estimating

attitude is usually to control or stabilize the aircraft (i.e. use the estimate as state

feedback), Akella et al [34] formulated a feedback law that skips the estimation step

and regulates the attitude with only gyro and inclinometer measurements.

Perhaps the most straight-forward way to measure attitude is to use the ac-

celerometers to give a measurement of roll (φ) and pitch (θ) with GPS velocity used

to calculate heading (ψ). Complications arise, however, due to the aircraft accelera-

tion in the reference frame. This means that the accelerometers will not measure the

gravity vector, rather they will measure the aircraft apparent gravity (g − aaircraft).

By augmenting accelerometer measurements with GPS calculated accelerations, a

good estimate of roll and pitch can be made [31, 35] 1. In addition, the use of GPS

to calculate heading will only work if the aircraft has a velocity from which to cal-

culate heading, therefore, the AHRS presented in this chapter will only be valid for

fixed-wing aircraft flying at velocities high enough to generate a GPS heading angle.

This limitation can be overcome with the addition of a magnetic compass, but for

aircraft where GPS heading is reliable, the extra hardware and complexity may not

be desirable.

It should be noted that these attitude measurement schemes do not neces-

sarily produce a measured quaternion vector. To determine the error between the

estimated attitude and the measured attitude, one can formulate the estimation al-

gorithm to create an estimated vector in the same frame as it is being measured (i.e.

rotate the known reference magnetic field vector by the current estimate of attitude

and then take the difference from the magnetometer reading [36]). One could also

transform the measurements into a quaternion and then take the difference (although

care must be taken to make sense of the quaternion error [31, 36]). For measurements

of Euler angles, it is simple to transform the estimated quaternion attitude to Euler

1More on this can be found in section 6.2.4.
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representation and then take the difference. To transform between quaternion and

Euler representations, the following relationships are used: quaternion→Euler and

Euler→quaternion [37]:

eul(q) =





φ

θ

ψ



 =








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(
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6.2.3 Attitude Filtering

Once a mathematical structure is in place and a set of measurements avail-

able, a filter to combine the measurements with the dynamics of the vehicle can be

formulated. Many filter formulations use an Extended Kalman Filter (EKF), but

complementary filters and Unscented Kalman Filters (UKF) [36] are also used. In

this thesis we will use an EKF.

The attitude dynamics of a rigid body can be described by

q̇ = Ω(ω)q (6.5)

where

Ω(ω) =
1

2




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(6.6)
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and ω1 is the roll rate, ω2 the pitch rate, and ω3 the yaw rate. The unit norm

constraint of the quaternion must also be satisfied. Using discrete approximations (we

use a simple Euler approximation) will necessitate normalization of the quaternion

every time the quaternion is updated.

To avoid the need to know the inertia tensor of the vehicle (needed to com-

pute angular accelerations) we use rate gyro measurements to update the quaternion

estimate. While this introduces noise, it allows an implementation that is general for

a large range of vehicles. Small UAVs and MAVs have very small payload capacity

which necessitates the use of small MEMS devices to measure angular rates. These

devices drift over time. Because the estimate of q is effectively the integral of the rate

gyros (6.5), some compensation for drift will be needed to give a reliable estimate.

For this reason the state vector is given by

x =





q

b



 (6.7)

where q is the quaternion estimate of attitude and b is the estimate of bias on the

rate gyros. The drift on gyros can be modelled as a random walk, so the bias estimate

is simply ḃ = 0. The system is described by

ẋ = f(x,ω) (6.8)

y = h(x)

where

f (x,ω) =





Ω(ω − b)q

0



 , h(x) = eul(q) (6.9)

and ω is the vector of angular rates measured by the gyros.

To finish the formulation of the EKF for the state x as defined above, the

Jacobian of the dynamics and the measurements are needed. These matrices are the

linearizations about the current estimate for the state update and the measurement,

respectively. They are defined as

Ak =
∂f

∂x

∣

∣

∣

∣

x=x̂k, ω=ωk

Ck =
∂h

∂x

∣

∣

∣

∣

x=x̂k

(6.10)
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where x̂k is the best estimate of the state at time k and ωk is the vector of measured

angular rates at time k.

Formulation of Ak

This section shows the explicit expression for Ak as introduced in Equa-

tion (6.10). Recall that q is the quaternion representation of UAV attitude, b is

the vector of estimated biases on the rate gyros, and ω is the vector of measured

angular rates evaluated at time k. Ak is given by

Ak =
∂f

∂x
=





A11 A12

03×4 03×3



 (6.11)

where

A11 =
∂

∂q

{

Ω(ω − b)q

}

= Ω(ω − b)

and

A12 =
∂

∂b

{

Ω(ω − b)q

}

=
1

2

















q1 q2 q3

−q0 q3 −q2
−q3 −q0 q1

q2 −q1 −q0

















.

Formulation of Ck

This section shows the explicit expression for Ck as introduced in Equa-

tion (6.10). Recall that q is the estimated quaternion attitude at time k. Note

that the bias terms in the state are not related to the measurements, so the partial

derivative with respect to b is zero. Ck is given by

Ck =
∂h

∂x
=

















∂φ
∂q

03×1

∂θ
∂q

03×1

∂ψ
∂q

03×1

















(6.12)
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where

∂φ

∂q
=

2c

a2 + c2

















q1

q0 + 2q1a

q3 + 2q2a

q2

















T

(6.13)

a = 2(q0q1 + q2q3), c = 1 − 2(q1
2 + q2

2)

and

∂θ

∂q
=

2
√

1 − γ2

















q2

−q3
q0

−q1

















T

(6.14)

γ = −2(q1q3 − q0q2)

and

∂ψ

∂q
=

2β

α2 + β2

















q3

q2

q1 + 2q2α

q0 + 2q3α

















T

(6.15)

α = 2(q1q2 + q0q3), β = 1 − 2(q2
2 + q3

2).

6.2.4 Initialization

Initialization of the EKF involves producing an estimate of the state (x̂0) along

with the error covariance of that estimate (P0). To simplify the error covariance

estimate, it is assumed that P0 is diagonal. To get a good estimate of the initial

bias b̂0, a simple measurement of the gyros on the aircraft before takeoff is made.

The confidence of the initial estimate is very high (the aircraft is not moving so the

measurements on the gyros must be the bias), so the lower 3 diagonal elements of P0

are set to very small numbers (e.g. 1e−6).

To initialize q̂0 a measurement of attitude is made. For an application where

the measurement is made using GPS measurements and requires a GPS velocity, this
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must be done in the air (i.e. heading is only measured when the vehicle is moving).

With a magnetic compass onboard, q̂0 can be initialized before takeoff.

Attitude Measurements with Low-Cost GPS

Measurements of φ and θ are made by measuring the acceleration in the body

frame and relating it to a reference acceleration vector in the Earth Centered Earth

Fixed (ECEF) frame (usually the gravity vector g = [0 0 g]T , where g is the gravita-

tional constant). 2 The reference vector is constructed such that when the reference

vector is measured in the body frame, this will correspond to zero roll and zero pitch

angles.

To relate the measured acceleration in the body frame to the reference vector in

the ECEF frame, a mathematical relationship between the two should be formalized.

The rotation matrix from the ECEF frame to the body frame is

CECEF→body =











cos(θ) 0 − sin(θ)

sin(θ) sin(φ) cos(φ) cos(θ) sin(φ)

sin(θ) cos(φ) − sin(φ) cos(θ) cos(φ)











(6.16)

and it follows that the transformation of acceleration in the ECEF frame to acceler-

ation in the body frame is











ax

ay

az











= CECEF→body











rx

ry

rz











(6.17)

where a is in the body frame and r is in the ECEF frame.

For a non-accelerating body, the reference acceleration vector will simply be

the gravity vector g = [0 0 g]T , where g is the gravitational constant, 9.81 m/s2. The

2The reader should be aware that accelerometers measure the acceleration due to the forces

opposing gravity; so if a measure of the gravity vector is desired and the accelerometers are configured

to follow the convention of +x out the nose, +y out the right wing, and +z out the belly of the

aircraft, then the measurements will need to be negated to give a measurement of gravity. From a

practical view, this means that the accelerometers are attached in such a way that, when stationary,

a positive acceleration is measured in the direction of gravity.
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structure of this reference vector gives rise to the following set of equations

ax = − sin(θ)g (6.18)

ay = cos(θ) sin(φ)g (6.19)

az = cos(θ) cos(φ)g (6.20)

which can be easily solved for θ and φ in terms of the acceleration measured in the

body frame as

θ = − sin−1

(

ax
g

)

(6.21)

φ = tan−1

(

ay
az

)

. (6.22)

When the aircraft (and hence the body frame) is accelerating relative to the

ECEF frame, the accelerometers will not measure the gravity vector, rather they will

measure the aircraft apparent gravity (g − aaircraft). The acceleration of the aircraft

relative to the ECEF frame, aaircraft, is the second derivative of GPS measurements

rotated by the heading ψ. The rotation by ψ is necessary to align the X and Y GPS

measurements with the body X and Y axes. With knowledge of this acceleration, a

new reference vector can be constructed and φ and θ can be solved for as follows:

rx = −
(

cos(ψ)aGPSx
+ sin(ψ)aGPSy

)

ry = −
(

− sin(ψ)aGPSx
+ cos(ψ)aGPSy

)

rz = g − aGPSz

σθ =
rxax + rz

√
rx2 + rz2 − ax2

rx2 + rz2

θ = tan−1

(

σθrx − ax
σθrz

)

(6.23)

rθ = rx sin(θ) + rz cos(θ)

σφ =
ryay + rθ

√

ry2 + rθ2 − ay2

ry2 + rθ2

φ = tan−1

(−σφry + ay
σφrθ

)

. (6.24)

The procedure for obtaining an attitude measurement using a low-cost GPS

receiver and three axis accelerometers is now addressed. While many GPS receivers
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can be configured to output velocities as well as positions, it will be assumed that

the GPS receiver outputs only position information at 1 Hz.

To make a measurement of attitude the following steps are followed:

1. Obtain three consecutive GPS position measurements,

2. Difference the GPS measurements to obtain two velocity measurements,

3. Average the velocity measurements to give average velocity over 2 seconds,

4. Calculate the heading ψ from velocity:

ψ = tan−1

(

Ẏ

Ẋ

)

, (6.25)

5. Difference the GPS calculated velocities to obtain a GPS acceleration measure-

ment → aGPS,

6. Average the accelerometers over the same 2 seconds as the GPS velocity is cal-

culated → a,

7. Calculate roll φ and pitch θ using the accelerometers and GPS acceleration

rotated by ψ using Equations (6.23) and (6.24).

Once attitude has been measured, Equation (6.4) is used to transform the

measured Euler angles to an initial estimate of q̂0. The confidence in q̂0 is only

as high as the confidence in the measurement, therefore, the top four diagonal ele-

ments of P0 should reflect the uncertainty in the measurement. Since the quaternion

representation of attitude combines elements of all Euler angles, it is typical to as-

sign the same confidence value to all elements of the quaternion. Simulations used

P0 = diag([0.1 0.1 0.1 0.1 0 0 0]).

6.2.5 Latency and Real-Time Computation

When measurements are made in the manner outlined in section 6.2.4, signif-

icant latency is introduced. To evaluate the latency of a measurement, it is assumed
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that a GPS receiver outputs positions at a rate of 1 Hz with latency of approximately

1/10th of a second (due to calculation onboard the GPS module and communication

from the GPS receiver to the microprocessor).

Referring to Figure 6.1, by the time the information is available to make a

measurement of attitude, the measurement will be delayed by 1.1 seconds. Note that

to make the measurement, accelerometer values need to be known from the time the

first GPS position considered was received – this requires logging of accelerometer

measurements over a 2.1 second interval.

-2.1 -1.1 -0.1

GPS GPS GPS

X,Y,H X,Y,H

X,Y,H

Figure 6.1: Latency from GPS acceleration calculation.

To compensate for latency, it is proposed that all sensor and state informa-

tion be data logged over the 2.1 second period from which GPS acceleration will be

calculated. Once a measurement is generated (with latency of 1.1 seconds), the state

estimate corresponding to 1.1 seconds previous is updated. The updated estimate is

then propagated using the stored sensor information up to the current time.

The propagation of the state from the measurement update up to the current

time will dominate the computation time required to run the filter. For most systems,
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there will not be enough computational ability to do this without significantly reduc-

ing the sample rate. To address latency while simultaneously allowing for a fast filter

update rate, a distributed-in-time computation architecture is used. Figure 6.2 out-

lines the design of a distributed-in-time filter. The idea is to only call the time update

x

Best Estimate

xτ
Estimate τ seconds

previous

xL
Latent Estimate

tL
Amount Latent

• xL = Measurement Update (xτ)

• tL = τ
• x = Time Update (x) 

• x = Time Update (x)

• xL = Time Update (xL)

• tL = tL − tS
• x = Time Update (x) 

• x = xL

tL = 0

Measurement Made

Figure 6.2: Distributed-in-time filter architecture.

routine often enough each time step to ensure real-time capability while also guaran-

teeing that the updated estimate reaches current-time before the next measurement

is made. While the updated estimate is being propagated in time, a previous best

estimate should also be propagated to make the best no-latency estimate available

until the updated estimate has zero latency.

To illustrate the distributed-in-time architecture and to demonstrate real-time

capability, an implementation of the AHRS has been designed and tested. The target
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filter update rate is 30 Hz. An 8-bit microcontroller running at 14.7 MHz was used.

On this platform, the time update takes 3.75 milli-seconds and the measurement

update takes 9 milli-seconds. With these computational constraints and without a

distributed-in-time architecture, the filter could not address latency without bringing

the filter update rate down to below 15 Hz. To design a 30 Hz update rate, the

computation dealing with latency is spread over multiple updates of the filter, with

the computation for each step not to exceed 33 milli-seconds. Figure 6.3 shows how

Current Estimate Time Update: 3.75 ms

• GPS → Measurement Update: 9 ms
• Best Estimate Time Update: 3.75 ms
• Updated Estimate Time Update × 5: 18.75 ms
• Total: 31.5 ms

Current Estimate Time Update: 3.75 ms

• Best Estimate Time Update: 3.75 ms
• Updated Estimate Time Update × 7: 26.25 ms
• Total: 30 ms

• Updated Estimate Time 
Update × 7: 26.25 ms
• Updated Estimate Becomes 
Current Estimate

Filter Update Time Step: 33 ms

Figure 6.3: Latency compensation at 30 Hz.

the computation is distributed to ensure a no-latency estimate at 30 Hz. Note that

the measurement updated estimate gets propagated 33 times (corresponding to the

1.1 seconds of latency) over 5 updates of the filter. A no-latency EKF with these
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computational constraints could be designed to run at 78 Hz – the same rate that a

normal EKF could run.

Theorem 6.1 A no-latency filter can run at the same rate as its counterpart if the

time required for a measurement update is greater than or equal to twice the time

required for a time update and the latency in the measurement is less than twice the

time between measurements.

Proof: Let T be the sum of the time required for a time update and the time

required for a measurement update. Then, when a measurement is made, T seconds

of computation will be required. Therefore, a standard EKF could run at a rate no

greater than 1/T Hz. If the latency associated with a measurement is less than twice

the time between measurements and a latent estimate is time-updated twice every

time step, then the latency will be zero by the time the next measurement is made.

In order to propagate a latent estimate twice every time step and also propagate the

best no-latency estimate, three time updates per time step are required. If the time

required to perform three time updates is less than T (corresponding to the time for

a measurement update being at least twice as large as the time for one time update),

then the maximum computation time required at any given time step is still T , which

means that the no-latency EKF will run at the same rate as the EKF that has latency.

Note that, in general, the time required to do a measurement update will be

larger than the time required to perform a time update (due to the need to invert

a matrix during the measurement update). Often, latent measurements have small

latency compared to the time between measurements, so a no-latency EKF will, in

many cases, be able to operate at the same rate as its counterpart.

The last issue to deal with in connection with the AHRS concerns measure-

ments that are outside of the dynamic range of the aircraft. When a measurement is

so corrupted by noise that it is not possibly a valid measurement, its inclusion in the

filter update causes instability. When these extraneous measurements (due mainly

to inaccuracies in the GPS acceleration calculation) are used in the filter, the bias

estimates are skewed horribly until the next valid measurement. With the wrong bias
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estimate, the attitude estimate is propagated incorrectly and the filter is completely

inaccurate until the biases return to their true value. To overcome this, when a mea-

surement is received, it is compared with the 3-σ bound (computed from the error

covariance matrix). If the measurement is outside the limits, then a measurement

update is not performed.

Summary

Initialize with:

x̂0 = E [x0] P0 = E [(x0 − x̂0)(x0 − x̂0)
T ]

Time update:

q̂k+1 = q̂k + TsΩ(ωk − b̂k)q̂k

q̂k+1 =
q̂k+1
∥

∥q̂k+1

∥

∥

b̂k+1 = b̂k

Pk+1 = Pk + Ts(AkPk + PkA
T
k + Q)

Measurement update:

Load x̂k and Pk from data log

Kk = PkC
T
k (CkPkC

T
k + R)−1

x̂k+1 = x̂k + Kk(zk − eul(q̂k))

q̂k+1 =
q̂k+1
∥

∥q̂k+1

∥

∥

Pk+1 = (I −KkCk)Pk

Use time update equations to propagate up to current time

z is the Euler angle measured attitude, R is the covariance of measure-

ment noise, and Q is the covariance of process noise.
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6.3 AHRS Simulation Results

This section describes simulation results of the AHRS formulated in section 6.2.

A full 6 degree of freedom model provides truth values. The simulated aircraft per-

formed an 11 minute flight with multiple coordinated turn and climb maneuvers.

Figure 6.4 shows the roll angle over the simulated flight (pitch and yaw angles show

similar noise characteristics). The solid line is the true roll angle and the dashed line

is the estimate from the AHRS.
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Figure 6.4: Roll angle over 11 minute flight.

Noise values on simulated sensors were selected based on manufacturer spec-

ifications and experimental data. Noise values were modelled as Gaussian N (0, σ2),

drift values were modelled as Random Walk (i.e.
∫

N (0, σ2) ), and GPS was modelled
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as a Gauss-Markov Process with delay of 1/10th of a second and a correlation time

of 100 seconds. Table 6.1 show the standard deviation (σ) of each sensor.

Table 6.1: Simulated noise characteristics.

σ

Accelerometers 2 mm/s2

Accelerometer drift 0.5 mm/s2

Gyros 0.03◦/s

Gyro drift 3◦/min

Altitude 2 m

GPS X,Y 5 m

The main goal of an AHRS for a small UAV or MAV is to provide real-time

attitude information using small, cheap sensors. The AHRS satisfies this goal with

attitude estimation standard deviation (σ) as given in Table 6.2.

Table 6.2: Standard Deviation of Estimate from Truth.

σ

φ 3.25◦

θ 2.33◦

ψ 2.40◦

p bias 0.96◦

q bias 0.84◦

r bias 0.75◦
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6.4 Cascaded INS Filter

The choice of cascading an AHRS filter with a separate INS filter was based

primarily on the ease of design and computational efficiency. In a cascaded format,

the AHRS and INS filters can be designed and tuned completely independent of each

other. The relationship between the two filters can be described succinctly (and fairly

accurately) by the input noise parameters to the INS filter. A cascaded structure

also reduces computation. By removing the calculations that relate the attitude

states to the inertial states, the cascade formulation has much less computational

overhead than a full EKF. Even though the cascaded filter is sub-optimal [38, 39],

the performance is comparable to the full EKF.

In other words, the cascade implementation allows for increased flexibility, is

easier to implement and tune, and is dramatically less computationally expensive,

with only a small performance loss.

6.4.1 INS Formulation

The general UAV equations of motion [10] for navigation are


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





Ẋ

Ẏ

Ż
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
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
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



u

v

w
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

(6.26)
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

(6.27)

where DCM is defined as in section 6.2.1; u, v, and w are the body velocities out the

nose, the right wing, and the belly, respectively; X and Y are the inertial coordinates

of the UAV in the Earth Centered Earth Fixed (ECEF) frame; −Z is altitude; g is

the gravitational constant; m is the mass of the UAV; F is the translational forces

acting on the UAV; p, q, and r are the roll, pitch, and yaw rates, respectively.

A typical AHRS/INS filter will propagate the states in Equations (6.26) and

(6.27) along with attitude and gyro bias states. This can be problematic because the
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F /m term can be hard to characterize. Many implementations simply use accelerom-

eters to estimate this term, but this is basically integrating the accelerometers twice

to get position – any small drift in the accelerometers can cause problems. To avoid

this and to break the filter into a cascaded format, the following assumptions will be

made: (1) attitude is available from a preceding AHRS filter, (2) v and w are much

less than u and close to zero (this is equivalent to assuming small angle of attack and

very little sideslip), and (3) a measurement of altitude is available even when GPS

lock has been lost (say from an absolute pressure sensor). With these assumptions in

place, the cascaded INS filter takes the form given in Figure 6.5.

AHRS

Sensors

INS

Attitude

GPS, Vp, Altitude

Figure 6.5: Diagram of Cascaded INS
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The INS filter is summarized in the following table.

Inputs:

1. Attitude to form DCM

2. Airspeed (Vp)

Measurements:

1. GPS X and Y positions

2. Altitude

State:

x =











X

Y

Z











(6.28)

Time Update:

x̂k+1 = x̂k + Ts











DCMT











Vp

0

0





















(6.29)

Pk+1 = Pk + Ts(GkQGT
k )

Measurement Update:

Kk = Pk(Pk + R)−1

x̂k+1 = x̂k + Kk(zk − x̂k)

Pk+1 = (I − Kk)Pk

z is the measured state (GPS and altitude), R is the covariance of measurement noise,

and Q is the covariance of input noise. Gk is the partial derivative of the dynamics

of the system with respect to each of the inputs.
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In forming the INS, note that the inertial states are driven by the body ve-

locities rotated by the attitude (Equation (6.26)). Treating attitude as the input to

this filter allows us to form the DCM from the inputs, reducing the computation

associated with calculating the statistical relationship between attitude changes and

the resulting change in position. Using this same notion of reduction of complexity

by replacing states, we can replace the vector [u v w]T by [Vp 0 0]T where Vp is the

measured airspeed. In this way, we avoid the complex state update in Equation (6.27)

as well as the problematic measurement of [u v w]T (this isn’t actually too hard, but

requires angle of attack and angle of sideslip sensors).

Note that u, v, and w are all inputs, with u ≈ Vp and v, w ≈ 0. With noise

characteristics defined for all attitude inputs as well as on u, v and w estimates,

relationships from inputs to state changes can be related through Gk. Also note that

Ak is not present because state changes are driven completely by inputs.

Formulation of Gk

Gk will depend on the attitude representation used to form the DCM. For a

quaternion representation, u = [q0 q1 q2 q3 u v w]T and the DCM (denoted D(q))

is defined in Equation (6.2). For the state as defined in Equation (6.28), the system

dynamics are

f(u) = D (q)T
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. (6.30)

Therefore

Gk =
∂f

∂u

∣

∣

∣

∣

u=uk

, (6.31)

where we set u = Vp at time k and v, w = 0, and

Gk =
[

G1 G2

]

(6.32)

where

G1 =











0 0 −4Vpq2 −4Vpq3

2Vpq3 2Vpq2 2Vpq1 2Vpq0

−2Vpq2 2Vpq3 −2Vpq0 2Vpq1










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and

G2 = D(q)T .

The dimensions of Gk are 3 × 7, so Q, if diagonal, will have the variance of the

quaternion estimates as the top 4 elements, the variance of u (confidence that airspeed

equals body forward speed) as the 5th element, and confidence in the assumptions

that v = 0 and w = 0 as the 6th and 7th elements, respectively.

The advantages of an INS in this format are very low computational overhead

and robustness even with loss of GPS or noisy inputs from attitude and airspeed.

6.5 INS Simulation Results

The INS presented in Section 6.4 was simulated in the same manner as the

AHRS to determine accuracy of the INS filter. The INS was also programmed in C

code for an 8-bit 14.7 MHz microprocessor. Real-time ability of the INS is demon-

strated by the execution times of the INS on this platform: 2 milli-seconds for both

time and measurement updates.

Two flight tests were performed; one where GPS was available for the full

time and one where GPS information was ignored for the remainder of the flight

after the filter had run for a short time. Figure 6.6 shows the filter results with the

corresponding GPS measurements for the case when GPS connection is uninterrupted.

A magnified portion of the data is shown to verify that the INS correctly smoothes

through GPS measurements, providing an estimate of position at every instant of

time. Figure 6.7 shows the case when GPS lock is lost halfway through the flight. As

can be seen, even after 5 minutes of no GPS lock, the INS only strays a maximum

of 22 meters from the true position. In both figures the solid line is the true position

and the dashed line is the estimated postion from the INS.
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Figure 6.6: INS performance with no loss of GPS
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Figure 6.7: INS performance with loss of GPS
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The performance of the INS is very good considering the quality of the inputs.

Figure 6.8 shows the noise on the inputs to the INS. It is concluded that the INS is

robust to both input noise and GPS loss.
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Figure 6.8: Input noise levels to INS

6.6 Preliminary Hardware Results

To verify the results obtained through simulation, a hardware experiment was

performed. A suite of sensors identical to those used in BYUs low-cost autopilot was

placed in a cradle at the end of a 2.5 meter boom. A motor drove the setup at variable

speeds in a circle – effectively putting the sensors in a coordinated turn. Truth values

for roll angle were obtained through a potentiometer attached to the cradle; pitch

angle was assumed to be zero due to the mounting of the sensors in the cradle. Truth
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values for inertial position and heading angle were obtained through integrating the

encoder on the driving motor and using the geometry of the setup. As can be seen in

Figure 6.9, the AHRS estimates roll and pitch angles to within 2 degrees. Figure 6.10

shows that the performance of the INS is also very accurate. It should be emphasized

that these results were obtained with actual hardware sensors and in a manner that

very closely approximates actual coordinated flight.
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Figure 6.9: Attitude estimation during a preliminary hardware experiment
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Figure 6.10: Position estimation during a preliminary hardware experiment
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6.7 Conclusions

This chapter has demonstrated a real-time solution to attitude and position

estimation for small UAVs and MAVs. A real-time AHRS using inexpensive, light-

weight components has been developed that explicitly deals with latency and has

been shown to be adequate for small UAV and MAV applications. A cascaded fil-

ter implementation of an INS has been demonstrated in simulation and preliminary

hardware tests and has been shown to be robust to GPS loss and input noise.

For small UAV and MAV applications, payload is critical. For the AHRS and

INS as outlined in this chapter only very light-weight, inexpensive, small sensors are

needed. The total sensor payload including the GPS receiver is less than 0.45 oz. (12.7

grams). With future miniaturization, a complete sensor suite plus microprocessor

could possibly be developed to be small enough to be flown on a MAV. A current

hardware implementation at BYU weighs 2.2 oz. and has demonstrated autonomous

flight on aircraft with wingspans as small as 21 in. With the filtering algorithms

shown in this chapter, small UAVs and MAVs can effectively and efficiently estimate

their attitude and position.
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Chapter 7

Conclusions and Future Work

7.1 Future Work

The results from hardware experimentation are promising. Trajectories can be

generated in real-time and followed in a manner that allows for cooperative control.

At the same time, much improvement can be made. The designs of the Trajectory

Smoother and Tracker do not explicitly address the effects of wind. In particular,

feedback does not exist between the Tracker and the Trajectory Smoother. Modifying

the Trajectory Smoother to slow down or speed up depending on the state of the

Tracker should help account for wind and other disturbances.

A hardware implementation of the INS described in Chapter 6 will allow a

faster update rate of the Tracker which will lead to tighter control. In addition, the

Tracker proposed in [19, 20] can be tuned and implemented for better convergence.

Extending trajectory generation to three dimensions will allow more complex

applications. This could be done using the same basic ideas of two dimensional

trajectory generation, i.e. pull-up and push-down radii define transitions between

vertical segments. A first step in three dimensional planning is to split the altitude

dimension into multiple planes and plan in two dimensions with simple connections

between planes.

7.2 Conclusions

This thesis has shown that trajectory generation can be done in real-time and

will guide actual UAVs in a manner suitable for cooperative control. This claim is
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supported by hardware experiments of trajectory generation and tracking on actual

UAVs. Issues involved with transitioning from an algorithm to a hardware experiment

were discussed at length. A method for estimating attitude and position was presented

which will allow for better performance on actual hardware.
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