Brigham Young University

BYU ScholarsArchive

Theses and Dissertations

2004-03-12

Autonomous Landing of a Rotary Unmanned Aerial Vehicle in a
Non-cooperative Environment using Machine Vision

Joshua Martin Hintze
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

6‘ Part of the Electrical and Computer Engineering Commons

BYU ScholarsArchive Citation

Hintze, Joshua Martin, "Autonomous Landing of a Rotary Unmanned Aerial Vehicle in a Non-cooperative
Environment using Machine Vision" (2004). Theses and Dissertations. 120.
https://scholarsarchive.byu.edu/etd/120

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.byu.edu%2Fetd%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/120?utm_source=scholarsarchive.byu.edu%2Fetd%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

AUTONOMOUS LANDING OF A ROTARY UNMANNED AERIAL
VEHICLE IN A NON-COOPERATIVE ENVIRONMENT USING

MACHINE VISION

by

Joshua Hintze

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering
Brigham Young University

April 2004

Copyright (©) 2004 Joshua Hintze

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Joshua Hintze

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Randal W. Beard, Chair

Date Timothy W. McLain

Date James K. Archibald

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Joshua Hintze
in its final form and have found that (1) its format, citations, and bibliographical style
are consistent and acceptable and fulfill university and department style requirements;
(2) its illustrative materials including figures, tables, and charts are in place; and
(3) the final manuscript is satisfactory to the graduate committee and is ready for
submission to the university library.

Date Randal W. Beard
Chair, Graduate Committee

Accepted for the Department

Michael A. Jensen
Graduate Coordinator

Accepted for the College

Douglas M. Chabries
Dean, College of Engineering and Technology

ABSTRACT

AUTONOMOUS LANDING OF A ROTARY UNMANNED AERIAL VEHICLE

IN A NON-COOPERATIVE ENVIRONMENT USING MACHINE VISION

Joshua Hintze
Department of Electrical and Computer Engineering

Master of Science

Landing an Unmanned Aerial Vehicle (UAV) is a non-trivial problem. Remov-
ing the ability to cooperate with the landing site further increases the complexity. This
thesis develops a multi-stage process that allows a UAV to locate the safest landing
site, and then land without a georeference. Machine vision is the vehicle sensor used
to locate potential landing hazards and generate an estimated UAV position. A de-
scription of the algorithms, along with validation results, are presented. The thesis
shows that software-simulated landing performs adequately, and that future hardware

integration looks promising.

ACKNOWLEDGMENTS

I wish to express my gratitude to my graduate committee for their comments
and criticism that I used to help complete this thesis. I would also like to give thanks
to the many employees located at the NASA Ames Research Center who have offered
their help and support. Most of all, I owe a debt of gratitude to my wife Crystal and
son Hunter, for their patience and love they have shown me over these many trying

months.

Contents

Acknowledgments

List of Tables

List of Figures

1 Introduction

1.1 Problem Statement
1.2 Complexity
1.3 Objectives e
1.4 Related Work

1.4.1 Safe Landing Methods

1.4.2 Position Estimation Methods
1.5 Contributions
1.6 Outline. e

2 Simulation Environment and Experimental Apparatus
2.1 RIPTIDE e
2.2 Hardware Setup

3 Monocular Position Estimation

3.1 Feature Tracking
3.2 Position Estimation Lo oo
3.2.1 Definition of Coordinate Frames
3.2.2 Notation
3.2.3 Derivationo

vil

vi

ix

xXi

co N O ot Ot NN =

©

3.3 Monocular Experimentation Results

4 Stereo Machine Vision

4.1 Camera Calibration

4.1.1 Tsai Camera Model

4.1.2 CAHVOR Camera Model
4.1.3 Camera Model Generation

4.2 Stereo Range Mappingo oo

4.3 Safe Landing Area Determination

4.3.1 Elevation Map. oo
4.3.2 Hazard Mapso
433 Cost Map e

4.3.4 SLAD Inputs and Outputs

4.4 Stereo Experimentation Results

5 Mission Simulation

5.1 Integration Issues

5.1.1 Monocular Tracking with Inner-loop Control

5.1.2 Stereo Ranging for SLAD

5.2 Results

6 Conclusions and Recommendations

Bibliography

viii

31
31
31
33
34
36
40
40
41
42
43
43

49
49
49
20
23

55

59

List of Tables

4.1 Tsai Model Intrinsic Parameters 32
4.2 'Tsai Model Extrinsic Parameters 32
4.3 CAHVOR Model Parameters 33
4.4 Inputs and Outputs for the SLAD Algorithm 44
4.5 Safe Site Selection Range Accuracy 48

X

List of Figures

1.1
1.2
1.3
2.1
2.2
3.1
3.2
3.3
3.4
3.5
3.6
3.7
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.1
5.2
5.3

Three stage flow chart o oL 3
Stages 1 and 2 of the landing approach 3
Stage 3 of the landing approach 4
RIPTIDE start up screen 10
RIPTIDE vision system 12
Consecutive descent images running feature tracking 17
Inertial and helicopter coordinate systems 19
Coordinate system alignment for the helicopter and camera 20
Camera image plane coordinate system 20
Points of interest and their distances 21
Pinhole camera model from a top-down view 23
Estimated vs actual positions 27
Calibration target images from stereo cameras. 35
Range map information overlaid onto left camera image 38
Obstacle field setup 39
Obstacle field seen from inside RIPTIDE 39
Cluttered landing area 45
Elevationmap Lo 45
A) Slope map B) Roughnessmap 46
A) Cost map B) Safe distance from obstacles C) Safe landing site selection 46
Safe landing position displayed on the cluttered landing area 47
Unstable UAV velocity estimates 51
Improved UAV velocity estimates 52
Mission landing results L o oL 54

x1

xii

Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs) have achieved considerable attention with
the popularity and success of programs such as the Predator and Global Hawk, which
have been used in recent conflicts[1]. There are many useful applications for UAVs
including military, homeland security, crop dusting, traffic monitoring, glacial move-
ment research, etc. There are many types of UAVs falling into two distinct categories:
fixed-wing and rotary. Rotary UAVs (RUAVs) include helicopters, Micro Air Vehi-
cles (MAVs), and Organic Air Vehicles (OAVs)[2]. Examples of fixed-wing aircraft
are the Global Hawk and Predator. An important aspect of flight is landing, which

is a complex problem when done autonomously.

1.1 Problem Statement

This thesis work was conducted in support of an on-going research program
at NASA Ames Research Center called the Precision Autonomous Landing Adaptive
Control Experiment (PALACE). The primary goal of the PALACE program is to
develop enabling technologies for autonomous landing of rotorcraft in non-cooperative
environments. Non-cooperative sites are those areas that have no pre-positioned
objects, beacons, or landing area markings that the vehicle may use to guide its
descent. These sites may also contain unknown terrain features and obstacles that
must be identified and avoided during the landing task. Non-cooperative sites of
interest include building rooftops in an urban setting or rugged terrain in remote

locations.

When operating in urban environments where buildings may be closely spaced,
it is common for Global Positioning Systems (GPS) to fail due to occlusion of a direct
line of sight to the orbiting GPS satellites [3]. Therefore, this research assumes that

GPS positioning is unavailable during the landing approach.

1.2 Complexity

The complexity in this problem comes from the fact that there is no a priori
information of the landing site. Any number of objects could hinder and obstruct a
successful landing. For example, consider the case of landing on a rooftop. Possible
hazards to recognize include ventilation systems, antenna/satellite systems, slanted
rooftops, edges of the building, and guy wires. The UAV must successfully identify
these obstructions and choose a safe landing site, if one exists.

Another difficulty comes from the fact that inertial positioning is not avail-
able. One could integrate the outputs of the inertial measurement units, such as
accelerometers and rate gyros, but doing so does not provide accurate information
due to sensor noise. Therefore, alternative means of referencing the position of the

vehicle during autonomous landing needs to be invented.

1.3 Objectives

There are three segments to a complete autonomous landing of a UAV which
are illustrated in Figures 1.1, 1.2, and 1.3. First the UAV needs to navigate to the
general area in which the landing is to take place. At higher altitudes we assume the
UAV is safe from obstacles and that GPS positioning is available. Thus, the UAV
may be controlled by a standard waypoint following routine. At the final waypoint
the UAV holds its position and hovers at a predefined altitude and heading. The
altitude is chosen so that the machine vision cameras maximize their searching area
and minimize stereo ranging errors. A fuzzy logic controller determines the optimal
approach heading by using information such as sun angles, time of day, and desired

landing orientation.

Stage 1: Fly to general landing area
hovering at a predefined altitutude
and heading.

Stage 2: Scan the landing area, searching
for safe areas and select a landing point.

Stage 3: Fly to selected landing point
using monocular estimator as a
replacement for GPS.

Figure 1.1: Three stage flow chart

Stage 2

Figure 1.2: Stages 1 and 2 of the landing approach

Figure 1.3: Stage 3 of the landing approach

In the second phase of the landing process, a safe landing point must be
chosen. Criteria for a safe landing site may include landing area slope and distance
from hazards. A hazard is any obstacle that may interfere with the UAV’s glide slope
during descent. If there are no safe landing sites within the general area, the UAV
should carry out the procedure in another area.

Once a landing location has been chosen, the UAV can reference the location to
itself and extract a position. Monocular tracking, along with distance to the tracking
point and attitude information, may then be used to calculate the UAV’s relative
position. The control objective is then to decrease the tracking error between the
UAV’s calculated position and the ground location that is being tracked.

The objective of this thesis is to develop algorithms that execute the second
and third phases of a complete autonomous landing. The algorithms must be able
to identify safe landing areas and then produce estimated vehicle positions for use in

the landing controllers.

1.4 Related Work

UAV flight is a broad area of research with many different areas of study. There
has not been any direct research for landing UAVs autonomously in non-cooperative
environments. However, related work exists and was used as a starting point to this
thesis. A summary of approaches that helped guide the direction for the completion

of this thesis follows.

1.4.1 Safe Landing Methods

A majority of autonomous landing research falls under the category of coop-
erative environments. There are a number of different ways to create a cooperative
environment. Some of the more popular forms are millimeter wavelength radar trans-
mitted from a base station, visual landmarks, and glide slope beacons used in com-
mercial airliners. Two examples of using visual landmarks in a cooperative landing
are shown in [4, 5] . In [4], Montgomery presents a vision-based helicopter landing
system that navigates a UAV to an area which contains a landing pad. The landing
pad has a painted “H” which guides the UAV to the predefined landing point. Once
the UAV’s vision system has identified the landing spot, the vision controller then
sends orientation and velocity commands to the navigation controller.

The Sierra Nevada Corporation developed a millimeter wavelength radar for
use in autonomous landing [6]. Tactical Automated Landing System (TALS) is an all-
weather ground station that directs UAVs where to fly to avoid unsafe regions. This
system requires a person to setup a ground station, but has had over 400 successful
Tactical Unmanned Aerial Vehicle (TUAV) recoveries since 2001.

Both of the above methods work well in certain circumstances, but this thesis
assumes no prior knowledge of the landing area and no ground support. Therefore,
the aforementioned research is not well suited for solving the current problem.

Navigation in non-cooperative environments requires a sensing mechanism for
obstacle avoidance. Mobile robot researchers have been investigating this problem
for many years. There are many different sensing packages that have been tested,

including laser range finders, machine vision, IR sensors, and temperature sensors.

The two technologies that are best suited for the helicopter platform are 2D scanning
laser range finders and machine vision.

A 2D scanning laser range finder works by sending out a laser pulse over a
grid. By measuring the time of flight and knowing the propagation speed of the laser,
a 3D point cloud may be constructed. In [7], Thrun, Diel, and Hénel demonstrate an
aerial system flown under manual control for acquiring high-resolution 3D models of
urban structures. With the 3D models acquired, a path may then be plotted to avoid
obstacles that were found. Their article describes that small errors in estimation of
helicopter pose can drastically affect the resulting 3D model. A problem that plagues
a laser range finder is its weight and power consumption. With a UAV, payload
weight comes at a premium cost; therefore every effort is made to minimize it.

Machine vision can generate 3D world coordinates of a surface from two 2D
stereo images by triangulating matching features. It has been shown that accurate
representations of 3D objects can be generated by stereo systems, which enable terrain
navigation in mobile robots [8, 9, 10]. These methods demonstrate the ability to use
stereo vision to detect safe spots for traveling. Xiong presented work for computing
surface plots from descent images during a lunar landing [11]. This work uses a single
camera to gather multiple images taken during descent. A stereo camera system is
ideal for producing 3D data because they are lightweight, and the power consumption
is low when compared to laser range finders. A stereo vision system’s drawback is
in the software processing required to produce the 3D information. However, with
hardware implementations becoming available, vision algorithms can provide sensor

data at acceptable rates.

1.4.2 Position Estimation Methods

Vehicle state estimation with vision augmentation is another topic that has
been investigated extensively. Papers such as [12, 13] describe how using vision-based
motion estimation, combined with inertial measurements, produces a more robust and
less noisy estimate of position. Such research is used for lunar descents where GPS

is not available. A single camera is used (along with a laser range finder to remove

length ambiguities) to track multiple features from image to image during descent.
Using the changes in feature locations, the algorithm is able to estimate the rigid
body motion. These algorithms are complex and require a large amount of software
processing which is not available on a small aerial vehicle.

In [14, 15), Amidi demonstrates a purely vision-based solution for position
estimation. Amidi uses a helicopter platform and two cameras to track features from
frame to frame. The first camera identifies a good feature to track from the center
of the image, while the second camera looks for this same feature. Knowing the
distance between the two cameras, and their respective camera models, the distance
from the helicopter to the tracked feature can be estimated. Once the distance is
known and a location is found for the feature in the camera’s image, a vector can
be made from the helicopter to the feature. This vector is then rotated using the
helicopter’s measured attitudes to place the vector into world coordinates. Using
this newly found vector, and a vector from the previous location of the vehicle, the
algorithm can then triangulate the new position of the helicopter. Amidi shows that
this method is robust enough to use in the helicopter’s flight control, allowing for
autonomous navigation without GPS. A problem with this method comes from the
fact that distances measured from stereo cameras are imprecise, and the degree of
inaccuracy grows with the distance squared from the viewed object [16]. Amidi also
assumes that if a feature is lost another feature can be easily acquired. Since the
UAV is landing at a precise location, the landing site must remain tracked during the
entire descent.

This thesis will use stereo vision to generate a surface plot of the landing area.
The 3D surface plot will then be searched for a safe landing region. Once a safe
location is chosen, monocular tracking will provide position data to the navigation

controller during descent.

1.5 Contributions

This thesis contributes to the broad base of current autonomous landing

methodologies involving UAVs while also accomplishing PALACE mission milestones.

The thesis demonstrates the following technology that was developed, tested, and

merged to solve the overall problem:

e Monocular position generation for use in absence of a GPS signal,
e Stereo range mapping to gather a 3D database of a specified landing area,

e Safe Landing Area Determination to search over the 3D database for a safe

landing spot.

Another contribution is evidence that stereo range mapping and monocular
tracking can be simulated using 3D scene generators, thus allowing rapid testing and

verification of algorithms without the initial need for complicated hardware testing.

1.6 Outline

This thesis proceeds as follows. Chapter 2 introduces the simulation and
hardware setup that was used to test and validate the algorithms used in the thesis.
Chapter 3 describes the monocular position estimator that was developed to help
control the UAV in its landing phase. All equations, simulations, and hardware results
pertaining to the estimator are presented in this chapter. Chapter 4 documents the
stereo machine vision used to select a safe landing site. Camera calibration, stereo
ranging, and safe landing area determination are detailed. An overall simulation of
the PALACE mission and a discussion of the results are shown in Chapter 5. Chapter

6 presents conclusions and potential directions for future research.

Chapter 2

Simulation Environment and Experimental Apparatus

This chapter contains information on the setup of the simulation environment

and the hardware equipment used to test the landing algorithms.

2.1 RIPTIDE

Testing vision algorithms that require camera position and orientation in hard-
ware costs a great deal of money and time. Some researchers have invested vast
amounts of money and time into large machine gantries that move in a 3-axis coor-
dinate system to simulate the movement of a camera attached to a UAV. Although
this is ideal because position and rotation sensors from the gantry contain accurate
readings, the costs and setup time is extensive.

Another option is to first simulate what a camera would view as it is mov-
ing through space. Once software simulation has verified the landing algorithms,
hardware testing can commence and validate the approach. This reduces uncertainty
because the algorithms have already proven themselves in a simulated environment,
saving research dollars and time.

A model of a UAV can be built into a software simulation along with noise
parameters, wind turbulence, and aerodynamic constraints. To aid in viewing the
output of a UAV simulation, 3D display programs have been developed. 3D display
simulators have become extremely popular over the past decade with advancements
in hardware video cards that allow graphics engines to portray life-like images. Pho-
tographs can be taken of real objects and applied to 3D models, allowing for the

creation of databases to be used in building up a virtual world that can be viewed

Figure 2.1: RIPTIDE start up screen

from any angle and position. This virtual world can then be used to quickly test
vision and controller algorithms.

A requirement of the PALACE mission is to develop a complete landing
simulation using the Real-Time Interactive Prototype Technology Integration /
Development Environment (RIPTIDE) simulator, along with a Yamaha R-50 UAV
software simulation math model developed in Matlab and C code. The RIPTIDE
simulator is a workstation-based simulation environment that makes real-time, vi-
sual, full-flight-envelope, pilot or operator-in-the-loop simulation readily available
throughout the design cycle [17]. The flexibility of the RIPTIDE simulator allows
for simulated sensors to be easily added to the 3D environment, allowing for software
testing before hardware integration.

To support this thesis, a pair of stereo cameras were simulated in RIPTIDE.

Vision algorithms typically require images that have a large histogram of colors so

10

that features may be easily distinguished. A majority of the surfaces in the RIPTIDE
database were created using a small color palette which caused some initial vision
problems. The solution to this problem was to texturize the required surfaces with
photo images that have a high contrast of colors.

The simulated cameras allow streaming images to be sent out from RIPTIDE’s
drawing windows which are then received and used by the vision algorithms. The
emulated cameras are attached to the simulated helicopter and separated by a fixed
distance. A number of adjustable parameters for the virtual cameras allow for testing

different setups. These parameters include

e Horizontal field of view,
e Camera separation distance,
e Camera pointing angles referenced from the UAV, !

e The rate of capture used by the 3D display for retrieving camera images.

Another sensor that was built into RIPTIDE for use in this thesis was a laser
range finder. This sensor measured the distance from the focal point of the left stereo
camera to the center of the image seen through the camera. The use of the laser
range finder is described in Chapter 3.

Figure 2.2 shows a screen shot of RIPTIDE in action. RIPTIDE is made up of
a number of different views which are selectable through the graphical user interface
shown in the top left corner. The left camera view can be seen in the main top right
section. This camera is looking down onto a 3D scene at a 45 degree down angle
from the UAV’s body axis. This scene shows a number of obstacles represented by
tables and cones. These obstacles were used to help validate safe landing site selection

algorithms and general-purpose tracking algorithms.

'The cameras are assumed to be attached to a tilting mechanism which allows the cameras to be
pitched at any angle from pointing directly down from the UAV, to pointing out the nose towards
the horizon. This is an important parameter since it allows for debugging vision algorithms which

rely on camera angles.

11

Figure 2.2: RIPTIDE vision system

To help visualize the camera’s viewing area, a viewing frustum was built into
RIPTIDE. The lower left view of Figure 2.2 shows a birds-eye view of the UAV along
with a gray transparent frustum and a red intersecting plane. The same view is shown
again, but from above the UAV, in the bottom right hand corner of the figure.

Matlab provides the simulation calculations for the UAV’s movement and pose.
To aid Matlab in producing correct simulation values, a mathematical model of a
Yamaha R-50 was used. The R-50 UAV model was identified using system identifica-
tion methods described in [18]. Wrapped around the UAV model is a series of control

loops that are used to control the UAV’s velocities and position.

12

2.2 Hardware Setup

Once software testing verifies the feasibility of the landing algorithms, then
hardware testing can begin. The hardware apparatus that was used for testing was
developed by a group located at NASA Ames Research Center called the Autonomous
Rotorcraft Project. The project brings together several technologies to address NASA
and US Army autonomous vehicle needs. A report of the hardware and software
development is provided in [19]. This thesis worked primarily with the vision sensors
which include a pair of Dragonfly cameras developed by Point Grey, and a compact
PCI computer for software implementation of the vision algorithms.

The Dragonfly camera is an IEEE-1394 camera capable of grabbing and trans-
mitting 640 by 480 pixel images over a firewire link at 30 frames per second. Tradi-
tional camera systems require the image to be represented by an analog video signal
so that it can be received and reconstructed by a video frame grabber card. An ana-
log signal can pick up noise while being transmitted, resulting in image imperfections
and affecting the overall image quality. The Dragonfly allows for the original image
that was captured by the camera to be sent to the vision computer and be bitwise
exact for processing.

Since the Dragonfly cameras are attached to the UAV, quick testing of vision
algorithms can be a laborious process. To alleviate this problem, a pair of iBOT web
cameras were purchased. The web cameras provide an easy way to test the effects of
turbulence on the vision tracking algorithms by manually shaking them.

The compact PCI computer runs Linux version 2.4.22 with Redhat 7.3. The
latest versions of software libraries dc1394 and raw1394 were used to capture images

from the firewire cameras.

13

14

Chapter 3

Monocular Position Estimation

This chapter contains the implementation details of the monocular position
estimator. All mathematical equations, software and hardware implementations, and

experimentation results are presented here.

3.1 Feature Tracking

Two different methods were discussed in Section 1.4.2 for estimating the vehi-
cle’s position using machine vision. Both require feature tracking. Feature tracking
algorithms are designed to locate matching features between two images. A feature
could be classified as a corner, edge, or a pixel region with a large histogram of dif-
ferent colors. Identification of corresponding points in two different images is the
most important task for monocular position estimation algorithms. This thesis uses
a feature tracker to reference the vehicle’s position to a known location.

A feature tracker starts by saving a template of a selected image feature in
memory. When using a camera, the template would consist of a pixel region, typically
square, called the kernel that is then convolved across a windowed region in another
image frame. At each convolution, a score is recorded for how well the template
matched the portion of the window. After all possible convolutions have been evalu-
ated, the region with the best matching score is the newly-found feature. The previous
template is then updated with the new matching region, and stored in memory for
the next search pass in the next image.

To write a highly-optimized feature tracker with sub-pixel accuracy is a com-

plex problem, and has been the subject of past doctoral dissertations. To support

15

this thesis, we were able to obtain code provided by Jet Propulsion Laboratories’
Machine Vision Group. The code provides two main functions: one for selecting the
best trackable features in a region, and another function for finding the sub-pixel
correspondence between two image regions.

The first function requires as input
1) an 8-bit gray-scale image,
2) the dimensions of the image in pixels,
3) the number of best trackable features it should find.

The function returns a list of locations, in x and y pixel coordinates, to be used in
the feature tracking function.

The feature tracking function takes as input the feature template, along with
a search window to compare the template against. It returns the coordinates of the
best match in x and y pixels and correlation coherence value ranging from 0 to 1.0,
with 1.0 representing a perfect match.

To test the accuracy of the feature tracking code, an experiment was con-
ducted. The experiment consisted of recording video from a Yamaha R-MAX as it
made repeated landing approaches. A cluttered environment was created on a run-
way to simulate urban environment obstacles, allowing only a single feasible landing
position. Turbulence was induced into the helicopter by having the RC pilot produce
noisy control stick inputs. After gathering the video, post-processing commenced us-
ing the provided feature tracker. Figure 3.1 shows three sample images of the video
footage taken during a landing approach. The black “X” indicates the feature that
was being tracked in that frame.

Repeated attempts showed that the feature tracker successfully identified and
tracked features of high contrast during the landing approach. It was also found
that the feature tracker did a satisfactory job of tracking features that had low color

variance.

16

Figure 3.1: Consecutive descent images running feature tracking

17

3.2 Position Estimation

Position estimation is needed in the absence of GPS in order for the control
laws to accurately navigate the UAV. A feature tracker only provides the vehicle with
the pixel location of the landing site. Therefore, there needs to be a way to use
the pixel location along with other sensor information to generate a pseudo position
estimate. The estimate is a pseudo estimate because the vehicle does not know the
exact location of the landing site that it uses to reference its position. Rather the
UAV has an idea of the location through stereo ranging and the known GPS location
of the vehicle before it started the landing phase.

An example of transforming tracking positions and vehicle orientations into a
position estimate is given in [14]. A brief discussion on this method was presented
in 1.4.2. Amidi’s work generated vehicle positions by tracking features while the
UAV was moving. If the features were occluded, or left the camera’s view, different
features would need to be found. This method does not work for landing because the
UAV requires constant monitoring of the landing site features. Also, if the landing
algorithms estimate the vehicle’s position and the control objective is to minimize the
distance between the vehicle and the landing site, the camera will eventually lose the
feature because of the camera offset from the UAV center.

Thus, the control objective is to keep the landing feature in the camera’s view,
at all times, while flying toward the landing site. Ideally the landing feature would
be located in the center of the camera’s image to reduce the chance of it leaving the

view. New algorithms have been devised in this thesis to resolve these problems.

3.2.1 Definition of Coordinate Frames

This section defines the coordinate frames that are used throughout the rest of
this thesis. Each coordinate frame has an associated transformation allowing multiple
representations of a point in space. To estimate UAV position, there needs to be
defined an image, camera, helicopter, and ground coordinate system.

The inertial ground coordinate system is aligned with the earth’s magnetic

coordinate system as shown in Figure 3.2. The helicopter coordinate system’s origin

18

N -

Figure 3.2: Inertial and helicopter coordinate systems

is located at the center of mass of the UAV, with positive attitude angles adhering
to a right-handed coordinate system. The camera frame has its origin located at the
camera’s focal point, and is partially aligned with the helicopter’s coordinate system
as shown in Figure 3.3.

The cameras are fixed to the UAV on a tilt-able platform creating a pitch offset
angle ©¢ between the two axis systems. Figure 3.4 displays the image coordinate

system defining positive X and Y directions and the origin of the image.

3.2.2 Notation

Two different types of points that are of interest: a feature point, and a center-
of-image point, both illustrated in Figure 3.5. A feature point is a position in the
landing site that the UAV is tracking. The center-of-image point is the intersection
of a vector originating from the camera’s focal point, through the center of the image

plane, and intersecting with the ground. To measure the length of this vector, a laser

19

X(Cam) = Y(Heli)
X(Heli)
>

0.

Z(Cam)

Y(Cam)

v
Z(Heli)

Figure 3.3: Coordinate system alignment for the helicopter and camera

Yimg |---------- o

+Y

Figure 3.4: Camera image plane coordinate system

20

Figure 3.5: Points of interest and their distances

range finder is mounted on the UAV. The range finder is aligned with the camera so
that it returns the approximate distance to the center-of-image point.

The variable notation is defined as follows. Let P, = [X;,,Y7,.,Z1.]" be a
feature point tracked in the inertial coordinate system. The first subscript identifies
which coordinate system the vector belongs to. Subscripts I, H, C represent the
inertial, helicopter, and camera coordinate systems respectively. The second subscript
classifies whether the point is a feature (marked with an F'), or the center-of-image

point (marked with a C).

3.2.3 Derivation

The position estimator operates by tracking a feature point on the landing
site, and then updating the vehicle’s position from the movement of the feature in the
subsequent camera images. It is assumed that the UAV has already determined the

feature point’s inertial location, by using stereo vision. This is described in Chapter 4.

21

The position estimation algorithm generates a vector in the inertial coordinate system,
starting at the camera’s focal point and ending at the feature point. This vector is
then translated to the known feature location to produce the vehicle’s estimated
position. A problem arises from the fact that the vehicle does not know the distance
from the camera to the feature, but rather it knows the distance to the camera’s
center of image point. Therefore, there needs to be a way to determine this length

from known information. The following assumptions are used to solve this problem.

1) The feature point is assumed to be at the same height above ground as the
center-of-image point. This assumption allows the distance to the feature point

to be calculated using the distance measured from the laser range finder.

2) The only rotation of the camera relative to the UAV is in the pitch angle. This
allows alignment of the helicopter and camera axes in at least two directions,
eliminating the need to rotate helicopter attitudes other than adding a pitch

offset angle.

3) Helicopter position will not be calculated about its center of mass, but will
be calculated about the camera’s focal point. This simplifies the equations since
the camera is fixed relative to the helicopter’s center of mass. This assumption
also avoids the control problem of calculating trajectories to move the center of

mass (instead of the camera) to the landing site.

The transformation from the image coordinate system to the camera coordi-
nate system is calculated by similar triangles, using the pinhole camera model shown
in Figure 3.6. To transform a point, the camera’s focal length must be known. The
focal length for a perfect (no distortion) camera given the image plane width, and

the field of view (FoV) is
W

Focal = —2—— (3.1)

arctan £ ;V '

If the cameras are not assumed to be perfect then camera calibration is required to

determine the focal length.

22

Field of View

Ny

Image Plane Focal Length

S

Camera Focal Point

Figure 3.6: Pinhole camera model from a top-down view

To transform a point from a pixel location to the camera coordinate system

the following equations are used:

X,
X _ img
r ™ Focal ~ "’
Y.
Y, = "9 . 3.2
OF = Focal ~°F (3:2)

Notice that this transformation assumes the distance is known from the camera’s
focal point to the point of interest.

Figure 3.4 shows the setup for rotating a point from the camera coordinate
system to the helicopter’s body axis. Given the feature point Po, = [X¢,, You, Ze,]

and camera offset angle O

X, 0 sin®g cosO¢ Xey
Pop=| Yu, | =1 0 0 Yo, | (3.3)
ZHF 0 cos @C —sin @C ZCF

where Py, is the feature point in the helicopter’s body axis.
A standard (3x3) Euler rotation matrix [20] may be used to rotate the point

Py, to the inertial coordinate system. The Euler rotation matrix takes the form

23

cOcV s50sOcV — cPsVU chsOcV + sdsU
X(®,0,¥) = | cOsU sPsOsV + cbc¥ cbsOsU — sdcV |, (3.4)
—s0 s®cO cdcO

where ¢V = cos(¥) and sV = sin(V).
Therefore, the transformation from the helicopter body axis to inertial coor-

dinate system is

P, =%(9,0,9)Py,. (3.5)

The next step is to determine the distance from the camera’s focal point to
the feature location. Assumption 1, stated at the beginning of this section, allows us
to conclude that the Z values of the center of image point and the feature point are

equal in the inertial coordinate system, i.e.
AR (3.6)

The laser range finder returns Z¢., which is the Z value of the center-of-image
point in the camera coordinate system. This point is represented mathematically as

Pe,. = (0,0, Z¢,]". Transforming Pe,, into the inertial coordinate system yields

Xr1o 0 sin®¢ cosO¢ 0
Po=|Yv, |=3®6,9) |1 0 0 0 |. (3.7)
Zie 0 cosOr —sinO¢ Zee

Solving for Zj,, gives,
Zi. = 2, = —sin©@cos OcZe, — cos P cos Osin OcZc,.. (3.8)

Notice if all UAV attitudes equal zero, Equation 3.8 reduces to Z;, = —sin©cZc,.,
which is the law-of-sines equation for a triangle. The reduced equation is negative
because O¢ is defined as a negative angle when rotated down from the helicopter

body axis.

24

A similar method can be used to determine Z¢,. Using Equation 3.2 and

transforming into the helicopter coordinate system gives

Xu, 0 sin®¢ cosO¢ ?OC;Z Zoy
Poo=| Yy |=]1 0 0 rima Ze | s (3.9)
Ly 0 cos®©c —sinBO¢ Zcy
or
X, = Zcn Dy,
Yi, = Zc,Ds, (3.10)
Zup = Zoyp Ds,
where
D = cosO¢ + ;f;?;’l sin O¢,
D = i
Yimg

D3 = —sinBO¢ + cos Oc¢.

Focal

Transforming the feature from the helicopter coordinate system to the inertial frame

produces,

XIF = ZCFF17
Yi, = Ze, B, (3.11)
Zrp = ZopFs,

where F3 = ¥(3,1)D; + 3(3,2)Ds + (3, 3)Ds. Here (i, j) is the ith and jth index
into the standard Euler matrix given in Equation 3.4.

Solving for Z¢,. gives the final equation

Zr
Ze, = - c - , 3.12
“ —s(©) (c(@c) + ol s(@c)) +¢(0)s(P) 722 4 ¢(O)c(P) * T (3.12)

Focal Focal

where $(0) =sin®, ¢(©) = cosO, and I' = (— sin(0¢) 4 2ms cos(@c)).

Focal

25

We can determine the vehicle’s position using the following steps:

1) Select the initial landing site feature and track it during each image update.
2) Calculate Z;, using Equation 3.8.

3) Using the feature location, attitude angles, and 7., calculate Z¢,. as shown

in Equation 3.12.
4) Calculate Pg, with Equation 3.2.
5) Transform Pg, to the helicopter coordinate system.

6) Transform Pp, to the inertial coordinate system using the standard Euler

rotation matrix.

7) Add Py, to the landing sites identified inertial position to determine the

final vehicle position.

3.3 Monocular Experimentation Results

The algorithm in the previous section was implemented in ANSI C/C++ code
and optimized for real-time use. Simulation and debugging was performed using the
RIPTIDE environment. The simulated cameras in RIPTIDE were placed one meter
apart in the Y axis of the helicopter. Each camera was tilted downward at a 45 degree
angle and used a 45 degree field of view. The image width and height were set at 640
by 240 pixels. This size shares the same width as the hardware cameras but is only
half the height, since RIPTIDE had problems producing images that large.

The experimentation setup called for the helicopter to hover 50 feet above
ground level and positioned in such a way that a road cone was centered in the
left cameras image. The objective of the experiment was to estimate the vehicle
position while it flies to the road cone. Data recorded from the experiment included
the actual vehicle position calculated by the math model, and the estimated vehicle
position in the inertial frame. Figure 3.7 shows an overlapping plot of the X, Y, and

altitude positions. As can be seen, the monocular estimate closely follows the actual

26

AX (meters)

AAltitude (meters)

AY (meters)

Estimate vs Actual X Position

8 T T T
— Est
— — Actual -
6]
4 -
2 —
O —
-2 | | | | |
0 50 100 150 200 250 300
Time Step
Estimate vs Actual Y Position
14 T T T T
— Est
12 — — Actual]
-2 | | | | |
0 50 100 150 200 250 300
Time Step
Estimate vs Actual Altitude Position
2 T T T
— Est
0 — — Actual .
_2 - -
_4 - -
_6 - -
_8 - -
_10 - -
-12 | | | | |
50 100 150 200 250 300
Time Step

Figure 3.7: Estimated vs actual positions

27

values. The fact that the estimated position never deviates more than a quarter of a
meter suggests that the monocular estimation could be used in place of GPS position
coordinates during closed-loop flight.

Although the previous experiment took place in simulation, some hardware
experimentation has also been conducted. The first hardware experiment tested the
feature tracking algorithms using the iBot web cameras. This allowed the algorithms
to run on real images that were captured and processed in real-time. The optimized
feature tracking code ran at 30 frames per second, which is the frame rate for the
iBot camera system. It successfully tracked features while the camera was moved by
hand. Since the iBot camera’s position and attitude cannot be determined, monocular
position estimation was not tested.

The second hardware experiment took place on the Yamaha RMAX. The
RMAX was fitted with two cameras that point downward at 35 degrees and are sepa-
rated by 1.056 meters along the helicopter Y axis. All monocular position estimation
code was transferred over to the RMAXs on-board vision computer. A controlled
experiment was set up that positioned the RMAX over a runway, at NASA Ames
Research Center, hovering autonomously at 150 ft above ground level. A glide-slope
path was preplanned to allow the RMAX to travel from its first hovering point down
toward the ground at the same angle that the stereo cameras pointed. This allowed
objects in the center of the cameras image to remain in the image during descent.
Since a laser range finder has not yet been integrated into the RMAXSs sensor suite,
a software simulated range finder was created.

The UAV autonomously traversed the glide slope numerous times, each time
tracking a different feature and generating position estimates. Test results showed
that the feature tracker successfully tracked the selected features in real-time. How-
ever, the tracking could be further improved by adjusting the template size and the
search window size. Increasing the template and window size can improve the accu-

racy of the matching features, but doing so rapidly increases computer computation.

28

The results of the position estimation did not match with the actual positions.
Upon post-processing it was discovered that the focal length used for the position

estimation equations was incorrect.

29

30

Chapter 4

Stereo Machine Vision

This chapter contains the implementation details of the stereo vision algo-
rithms. Described first is the camera calibration used to create accurate camera
models that are required by the stereo machine vision algorithms. Following this are

the methods used for choosing a safe landing location with their respective results.

4.1 Camera Calibration

Accurate camera calibration is one of the most important steps in using stereo
vision algorithms [21]. Camera calibration is the method for determining camera
parameters for use in sensor models. The sensor models are then used to extract
information from corresponding stereo images.

There are multiple camera models that have been developed over the years and
many different methods for finding values for the parameters of those models. Two
camera models which have proved popular include the Tsai camera model, developed
by Roger Tsai [22], and the CAHV or CAHVOR camera model, initially developed
by Yakimovsky and Cunningham [23]. This section will compare the two camera
models and explain the procedure for producing a model for use in the stereo vision

algorithms.

4.1.1 Tsai Camera Model

The Tsai camera model is based on the pin hole camera model shown in Figure
3.6. This camera model was developed to estimate the projection of a 3D point in

space onto a 2D image plane. There are 11 different parameters in the Tsai camera

31

Table 4.1: Tsai Model Intrinsic Parameters

f camera focal length

K 1st-order radial lens distortion

Cx and Cy | x and y coordinates of the center of radial lens distortion and

the exit point of the camera’s Z axis in the camera coordinate system

Sx the skew factor of a pixel

Table 4.2: Tsali Model Extrinsic Parameters

Rx, Ry, Rz | 3 rotation angles for the transformation from inertial to camera

coordinate system

Tx, Ty, T, | 3 translation values for the transformation from inertial to camera

coordinate system

model which are divided into two subcategories: intrinsic (interior) and extrinsic
(exterior). The intrinsic parameters of the Tsai camera model are shown in Table
4.1, along with the extrinsic parameters in Table 4.2.

Projecting a 3D homogeneous point onto a 2D image plane requires an de-
warping procedure to remove radial distortion common in commercial cameras. This
uses the intrinsic parameter x along with a 3rd-order polynomial equation. Once the
3D point has had the effects of distortion removed from its position, a simple linear

mapping can produce the projected 2D point. The linear mapping is

T
Ximg foSx Cx|[1 000 R T
Yimg | =10 f Cy |0 100 s (4.1)
1 0 0 1 001 oflo L]

32

Table 4.3: CAHVOR Model Parameters

Center of focus, the 3D coordinates of the pinhole focus point

The normal to the image plane which is not always forward

Horizontal information vector, not normalized

Vertical information vector, not normalized

Optical axis used for lens-distortion correction

JTIO|<|E|>»|Q

Radial lens-distortion coeflicients

where R is a 3 x 3 rotation matrix created by using rotation angles Rx, Ry, Rz, and

T =[Tx,Ty, TZ]T is a 3 x 1 translation vector.

4.1.2 CAHVOR Camera Model

The CAHV (no distortion information) or CAHVOR camera model is based
on vectors that embed the camera model information. CAHVOR is an acronym where
each letter of CAHVOR stands for a distinct vector used in the camera model. The
different vectors and a short description are displayed in Table 4.3.

To transform a point P = [X,Y,; Z]" to 2D image coordinates the following

equations are used:

Ximg = (f:: g)) f (4.2)
Yy = (]Jj _—g) X (4.3)

A detailed description of the CAHVOR camera models and a derivation of these
equations can be found in [24].

This thesis acquired stereo vision algorithms that generate range maps for
use in safe landing area detection algorithms from the Jet Propulsion Laboratory’s
Machine Vision Group. The stereo vision algorithms use the CAHVOR camera model

exclusively, which is the primary reason the CAHVOR camera model was selected.

33

4.1.3 Camera Model Generation

A number of tools were received from JPL to facilitate the creation of a
CAHVOR camera model. This software inputs images acquired from the cameras,
and uses post-processing techniques to determine the camera parameters. A camera
calibration target was built to aid this process. The steps for creating a CAHVOR

camera model using stereo images are shown below:

1) Capture multiple stereo images of the calibration target shown in Figure 4.1. The
images are to be taken with the calibration target placed at increasing distances
away from the cameras, and oriented at different angles relative to the camera’s line

of vision.

2) Use centroid finding software that extracts the centers of the black calibration dots
in pixel coordinates. This generates a file that contains all the coordinates for the

corresponding dots.

3) Generate a Tsai camera model using the extracted dot information and the spacing

between dots, in meters.

4) Using the Tsai model, reverse project the 2D image coordinates to generate a list
of 3D world coordinates that correspond to the placement of the actual dots in the

inertial coordinate system.

5) The 3D world coordinates and 2D image coordinates are used to identify the
CAHVOR camera parameters.

These steps were followed to produce the camera models on the Yamaha
RMAX. The tools produced a left and right CAHVOR, camera model that may be
used in the stereo vision software, and they also identified the individual camera focal
lengths for use in monocular position estimation.

Although the tools were useful in identifying hardware camera parameters, the
simulated cameras, used in the RIPTIDE environment, could not be calibrated by

following the same method. The solution to finding the simulated camera CAHVOR

34

A)

B) Left and right images of the target placed at an offset angle

Figure 4.1: Calibration target images from stereo cameras.

35

model was quite simple. Because RIPTIDE simulates ideal cameras that are aligned
vertically without orientation differences between the two, use of these two facts
allowed the CAHVOR parameters to be calculated using the derived camera model

equations.

4.2 Stereo Range Mapping

Stereo range mapping is the process of gathering two separate images of the
same scene from different viewpoints, and then extracting 3D information from those
images. Extracting the 3D information requires the two images to be modified using
the known camera models. The reason for modifying the images is to assure that dis-
tinguishable features lie on the same horizontal pixel lines, making feature matching
from the first image to the second image a 1D search problem. This step is called
rectification.

After rectification, the stereo algorithms pass through the images and find the
matching features. Since the images are at different viewpoints and they are already
rectified, the only difference in feature locations are their horizontal positions. This
difference is called a disparity. The stereo algorithms will pass through and create
a disparity map that encodes the differences of the matched features. If a feature is
not found, possibly because of occlusion, there will be a gap in the image. Smoothing
techniques have been developed to remove these gaps.

Once a disparity map has been generated, the stereo algorithms use the camera
model and a disparity map, to generate a range map. The range map holds the X, Y
and Z locations of all the matched features.

Although these steps appear straight forward, there are many problems that
can arise when computing range maps. One problem occurs when one camera detects
more light in the scene due to reflections. This can cause image saturation making
similar features look completely different. Another problem comes from the fact that
obstacles can occlude one camera’s view. A detailed discussion on error analysis of

stereo vision is presented in [25].

36

The algorithms provided by JPL follow the steps below.

1) Capture the stereo images. In the hardware setup, this involves sending a
message to the firewire cameras requesting a black and white image to be captured
synchronously. In RIPTIDE this causes the 3D graphics display to render two dif-
ferent scenes from different positions and angles, and then transfer the images, in

memory, to the stereo algorithms.

2) Read in the camera models. This also sets up the de-warping tables for

removing lens distortions.

3) Create image pyramids. This step creates an image pyramid where the lowest
level of the pyramid is the original image and each level of the pyramid reduces the
image size by a factor of 2. Doing so removes high frequency noise from the image
and decreases computation time because there are less features to match in a smaller

image.

4) Use Laplacian or bilateral filtering on the stereo images. This step is
needed to reduce the image differences due to brightness seen in one image and not

the other. It also reduces the amount of noise.

5) Compute the disparity map. This step involves de-warping the filtered im-
ages, then rectifying them to remove camera misalignment. It then runs a feature

correspondence algorithm on the image to generate a dense disparity map.

6) Determine the range map. The range map is generated using the disparity
map and the camera model. This holds the 3D information that is used in the safe

landing area determination algorithms.

These algorithms were tested on images gathered in both hardware and soft-
ware. On one of the RMAX’s autonomous flights, a series of stereo images was
gathered. The stereo images were post processed to generate the 3D scene viewed

from the sky. Figure 4.2 shows a left camera view with the superimposed range map

37

Figure 4.2: Range map information overlaid onto left camera image

information. Unfortunately, it is hard to test the accuracy of the hardware stereo vi-
sion in flight. A specialized obstacle would need to be created with known dimensions.
However, in software simulation, obstacles can be constructed with exact dimensions.
For this thesis, the verification of the stereo range mapping takes place in software
with a known obstacle field.

Figure 4.3 shows the simulated obstacle field. It is created from a number of
simple primitives: rectangles, squares, cylinders, and wedges used to test the accuracy
of slope calculations. The obstacles were built into the RIPTIDE environment so that
stereo ranging could take place. A picture of the obstacles in RIPTIDE is shown in
Figure 4.4.

At first the stereo range mapping had troubles identifying the obstacles and
making good feature matches. The source of the problem was that the obstacles were
not textured with a sufficiently large gradient of pixels. To remedy this problem, a

texture map of a city scape was applied to the primitives. With all the different build-

38

WEDGE
25 °
17.51t.
< 2ft. =
A
2,
Tar |2t
¥
A
2ft.
¥
7.
Tall

O O O

Figure 4.3: Obstacle field setup

Figure 4.4: Obstacle field seen from inside RIPTIDE

39

ing shapes and colors, it made a random-like pattern with enough distinguishing
figures for the matching algorithms to function properly.

The results of the range mapping were quite accurate. The range mapping
algorithms were able to discern objects of six inches or higher at an altitude of 50 ft.
The algorithms were also capable of calculating slopes within 5 degrees at the same

altitude.

4.3 Safe Landing Area Determination

Once a 3D point cloud, shown in Figure 4.2, has been created over a poten-
tial landing site, Safe Landing Area Determination (SLAD) algorithms can process
the 3D information. The SLAD algorithms look for a location that passes two key
requirements: distance from obstacles, and landing area slope.

This thesis makes use of JPL algorithms for safe area selection, written by
Andrew Johnson [26]. This section will briefly describe the different parts of John-
son’s algorithm, including the inputs required to make it function properly, and the

resulting outputs.

4.3.1 Elevation Map

The stereo vision algorithms, listed in Section 4.2, return a range map for all
the corresponding features viewed from the camera. If the camera is looking at a flat
surface, but viewing it from an angle, the surface will not look flat, but will have the
same angle as the camera’s incidence angle. Removing this artifact requires that the
3D range map be rotated by the camera Euler angles. Also, since a camera’s view
is a perspective and not an orthographic view, objects farther away will look smaller
than objects nearby. To eliminate these factors, an elevation map must be created
from the range data.

The elevation map generator operates by re-sampling the range data into an
equally-spaced linear grid. The grid is a function of row and column indices, where
Z(r, c) represents the height at that index. When setting up the grid, the horizontal
extent (width of the grid) must be determined along with the size of the individual

40

grid cells. Johnson shows that if the field of view is known, along with the average
range to the scene, the general formula for calculating horizontal extent (h) and grid

size (s) is

h =2Rtan (f/2) (4.4)
s=h/n (4.5)

where R is the average range to the scene, f is the camera focal length, and n is the
number of samples across the scene.

This research tested these equations and concluded that the easiest way to
determine grid size is to look at the minimum and maximum values of the range
data, and use this information to set the bounds on the elevation map grid. All range
data information would be accounted for, using this method. 100 x 100 grid cells
were used to compromise between computation speed and accuracy. When a grid cell
does not line up with any range map data, an interpolation process can determine
the elevation at that cell. This interpolation process used all the surrounding grid

cell heights to fill the void.

4.3.2 Hazard Maps

After the range data is re-sampled into a grid, the SLAD algorithms need to
identify the hazardous areas. Once these areas have been found they are removed from
the search space. This method creates a smoothness map which is then subtracted
from the original elevation map to determine hazardous locations.

To generate the smoothness map, a 3D plane is fitted over the elevation data
in the 3 x 3 grid surrounding each cell. Once a plane is fit to a grid, the normal
to the plane can be compared to the UAV’s landing vector. The angle between the
landing vector and every grid cell can be calculated to create a new map A,,q, (7,).
The algorithms search over this map to remove areas with dangerous landing slopes.

The next problem is to efficiently fit a plane to the elevation data. One possi-
bility is to use Least Mean Squares (LMeanSQ) fitting. A problem occurs when using

LMeanSQ if large outliers exist. The plane will be more shifted toward the outliers

41

rather than the average of the inlier points. It is shown in [26] that Least Median
Square (LMedSQ) fitting is more robust to outliers, but it does not fit the data as
well as LMeanSQ. So the overall method is to first compute a LMedSQ plane to the
data. If the distance away from the plane is above a certain threshold it is rejected.
When all inlier points are found a LMeanSQ plane is fitted to the remaining data.
When the entire elevation map has been fitted by planes, the angle and rough-
ness maps can be created. The A,,.,(r, ¢) is computed by taking the dot product
between the landing vector and the fitted plane’s normal vector. The roughness map,

Rynap(r,), is the subtraction of the original elevation map and the smoothness map.

4.3.3 Cost Map

The cost map is the combined values of the angle and roughness map. If the

landing grid angle is above the specified unsafe landing angle or

Apap(r,€) > Ao (4.6)
then
Crnap(r, ¢) = 1.0. (4.7)
Likewise, if the roughness map height is above the maximum or
Rinap(r,€) > Riaa (4.8)
then
Crap(r, ¢) = 1.0. (4.9)

The remaining elements of the cost map are calculated by the normalized

product of the angle and roughness maps using

Riap(1, €) Apap(T, €)
RmafEAmal' .

Crnap(r,€) = (4.10)

Searching through the cost map for the minimum values yields the safest po-
sition to land. A smoothing filter can be applied to the cost map to assure that the

chosen landing site is not near high-cost areas. The minimal value returned from

42

the cost map is a 3D position (X,Y, 7). Since the monocular tracker needs to know
where this landing site is on the image for tracking purposes, the point needs to be

reverse projected. Equations 4.2 and 4.3 may be used for this procedure.

4.3.4 SLAD Inputs and Outputs

The SLAD algorithm has many inputs and outputs. Table 4.4 presents all
the inputs and outputs along with a brief description of each. Tuning of the input
parameters is an important task when trying to get SLAD to function properly. One
problem that was noticed is that the input parameters need to be a function of the
distance away from the landing site, especially when using a stereo vision system
to acquire the range data. This comes from the problem associated with stereo
ranging accuracy. At farther distances, the accuracy of the stereo vision system
suffers, requiring the maximum deviation parameter to be increased. But if the
maximum deviation parameter is increased, it is possible that the SLAD algorithms
could choose an unsafe landing site.

One possible solution is to first find a safe landing site with an increased
maximum deviation parameter. Then as the UAV is approaching the landing site,

the SLAD algorithms can re-verify the feasibility of the landing location.

4.4 Stereo Experimentation Results

The entire stereo machine vision package was thoroughly tested in RIPTIDE.
This involved using stereo vision for generating a range map, and SLAD for finding a
safe landing site. The accuracy of the stereo range mapping was discussed in Section
4.2. This section will present the results of the SLAD algorithms which make use of
the range map.

A simple obstacle field was set up in RIPTIDE including tables and cones
scattered over a runway. One area of the cluttered environment was intentionally
left void so that the UAV could land. The obstacle field was viewed by the UAV at
different angles and positions, in each case running the stereo vision code. Figure 4.5

shows the left stereo camera’s view of the landing site.

43

Table 4.4: Inputs and Outputs for the SLAD Algorithm

Inputs

Grid Rows The number of grid rows in the elevation map

Grid Columns The number of grid columns in the elevation map

Xmin, Xmaz The minimum and maximum values used for calculating
Yiins Yimaz the bounds of the elevation map

Border Size

The amount the border is interpolated allowing

for a possible landing on the border of the image

Data Size

Stereo ranging holes are filled in by this size

Max Slope

The maximum allowable landing slope

Max Deviation

The maximum allowable deviation in the roughness map

(used to classify hazardous areas)

Lander Base Size

The size of the landing vehicle

Max Rock Size

The sample spacing used for calculating the 3D

plane fitting (increases computation speed)

Up Vector

The (X, Y, Z) vector corresponding to the vehicle’s
landing approach

Outputs

Elevation Map

A matrix holding the height values of the

newly-created elevation map

Roughness Map

A matrix containing the roughness values of the grid cells

Slope Map

A matrix containing the slope values for the grid cells

Cost Map

The cost calculated for all the grid cells

Safe Distance Map

A matrix containing the safe distance values from hazards

Safe Landing Map

The safe landing site displayed on the elevation map

Landing Site 3D Position

The (X,Y, Z) value of the landing site

Landing Site Pixel Position

The pixel corresponding to the (X, Y, Z) landing site

in the image

44

Figure 4.5: Cluttered landing area

Figure 4.6: Elevation map

The output of the SLAD algorithms produced an elevation map. An image
representation of the elevation map is shown in Figure 4.6. The elevation map is a
top down view of the obstacle field. Regions with darker pixels correspond to lower
elevations. The outputed maps from the SLAD algorithms are square. The reason
for this is that we choose to calculate an elevation map which is 100 x 100. Doing so
removes the perspective view inherent with cameras, allowing the SLAD algorithms
to search over an equally spaced grided elevation map.

Figure 4.7 shows a slope map that was created by the SLAD algorithms. Each
pixel records a slope value at that particular grid cell. When the pixel intensities
change rapidly across scan lines it indicates that the slope has also changed rapidly.
An example of a discontinuity in slope values is a table. When the SLAD algorithms

are searching across the slope map, it will see the table as having too large of a slope

45

Figure 4.7: A) Slope map B) Roughness map

A B

Figure 4.8: A) Cost map B) Safe distance from obstacles C) Safe landing site selection

and mark it as an unsafe place to land. It is important to note that at the center of
the slope map the pixels do not change as rapidly. This indicates that the slope is
relatively flat, which agrees with the obstacle field setup.

The roughness map is also displayed in Figure 4.7. The roughness map is the
subtraction of the smooth planes from the original elevation. Areas that have darker
pixels correspond to a rougher landing site. Obstacles can be more easily seen here.

After the slopes and obstacles have been filtered, the cost, safe distance, and
landing site selection maps are created, as shown in Figure 4.8. In the cost map,
only the white areas are acceptable landing positions. This takes into account the
lander size as well as the slopes and obstacles. The safe distance map determines the
location which is farthest away from any obstacles but still meets the slope criteria.
Finding the farthest point away produces the safe landing location shown as a cross

in Figure 4.8C.

46

Figure 4.9: Safe landing position displayed on the cluttered landing area

Now that the vehicle has pinpointed a 3D location, this point is then projected
onto the image. Figure 4.9 shows the chosen landing point overlaid onto the original
clustered site image.

Repeated tests showed that the same landing site was selected in each case,
regardless of the viewing position or angle. An additional series of tests were per-
formed to identify the deficiencies of the vision algorithms. The key points that were

examined were:

e Maximum distance away from the landing site,
e Minimum distance away from the landing site,

e Safe landing site selection accuracy, given a number of random obstacles.

The first two items were tested by creating a random cluttered environment
using the road cones in RIPTIDE. The idea was that when the vehicle is positioned
too close or too far away from the road cones, it will have a difficult time distinguishing
the cones, thus making an incorrect landing site decision. This test was repeated fifty
times at each different altitude. The findings are displayed in Table 4.5.

Higher altitudes were not tested because it was unclear whether the chosen

landing point was correct or just a series of lucky guesses. Based on this test, it

47

Table 4.5: Safe Site Selection Range Accuracy

Altitude(ft) | Accuracy(%)
10 N\A
20 N\A
30 85
40 89
50 100
60 98
70 65

appears the optimal height above ground, given a 1 meter base line, is approximately
50 ft.

The final test determined how well the stereo vision algorithms reacted to
different shapes, rather than just road cones, when selecting a safe landing site. This
test used the primitives that were developed previously for use in checking the stereo
ranging accuracy. A single shape was selected at random and positioned in the
camera’s field of view while the UAV was hovering 50 ft above ground level. The
results showed that the vision algorithms were capable of correctly identifying the
hazards and selecting safe landing sites. The vision algorithms would also choose to
land on top of some of the obstacles if they were large enough and had a locally flat
surface. An example of the flat surface was a rectangular box. The dimensions of the
rectangle were larger than the RUAVs landing footprint. Therefore, the algorithms
were correct in choosing that as a safe landing location because it passed the two

SLAD landing requirements: distance away from hazarads and surface area slope.

48

Chapter 5

Mission Simulation

To execute an entire mission simulation, all of the different pieces of technology
must work cooperatively with each other. This chapter discusses some of the diffi-
culties that arose while building a complete mission demonstration. Final simulation

results will also be discussed.

5.1 Integration Issues

Up to this point, all the previous sections discussed separate pieces of tech-
nology that have their own specific uses. When the technologies were combined,

unforeseen problems appeared.

5.1.1 Monocular Tracking with Inner-loop Control

The monocular position estimator is meant to take the place of a GPS unit. In
the current control laws, provided by the Autonomous Rotorcraft Project, a Kalman
filter is used to combine sensor information from the inertial measurement unit and
the GPS. It was decided that instead of replacing the GPSs signal in the Kalman filter
with the vision estimate, the vehicle would run a separate Kalman filter. The reason
for running two parallel filters is that the vision system could have different noise
characteristics requiring unique Kalman filter gains. Also, when switching between
the two Kalman filters, a discontinuity in the position could create a large velocity

estimate.

49

When the control loops first started functioning using the monocular vision
estimate, the UAV would crash almost instantly. Inspecting the Kalman filter veloc-
ities showed that they were extremely noisy and that the UAV’s actuators did not
have the dynamic range capable of sustaining flight. Figure 5.1 shows the instability
that the Kalman filter would produce.

After inspecting the algorithms, it was found that the update rate from the
vision system to the Kalman filter was not synchronized. The Kalman filter was
expecting a 10 Hz update rate while the vision system would produce estimates as
fast as possible, sometimes reaching up to 30 Hz. Correcting this problem cleaned up
the velocities slightly, but it did not cause the UAV to behavior properly. The next
step was to reduce the Kalman filter gains so that the high-frequency velocity estimate
relied more on the on-board inertial measurement unit, and the low-frequency position
estimate relied more on the vision. This drastically improved the velocity estimate as
shown in Figure 5.2, but when attempting to fly the UAV in simulation the vehicle
would still eventually crash.

The crashing problem was found when a number of different control loop gains
were tested. It appeared that the integral gain was set at too high of a value for
use with the monocular position estimate. Reasons for this could include the noisy
nature of the vision estimate, or there may have been a bias introduced into the vision
estimate. A negative effect of reducing the integral gains comes when the vehicle is
flying in coordinated-turn mode. Since the integral gain is low, the vehicle will have
a tendency to fly off course. This situation is not a concern for flying to a landing

site since the path segments are typically straight.

5.1.2 Stereo Ranging for SLAD

One of the issues that was faced during the integration was to get a precise
range map with correct units from the stereo vision. At first the range maps appeared
to have a pitch rotation applied to them, even though the camera rotation had already
been applied to correct the data. If an additional amount of rotation was applied it

would fix the problem, but this was not an elegant solution. Also, the distance metrics

50

40

20

-20
0

20

10

-10

-20

50

-50

-100
0

X Vel Est

— 9gps
— — mte

Y Vel Est

Z Vel Est

— 9gps
— — mte

Figure 5.1: Unstable UAV velocity estimates

51

12

14

X Vel Est

-1 | | | |
0 5 10 15 20 25
Y Vel Est
1 T T T T
— gps
— — mte
_05 1 1 1 1
0 5 10 15 20 25
Z Vel Est
0.5 T T T T
— gps
— — mte
_05 1 1 1 1
0 5 10 15 20 25

Figure 5.2: Improved UAV velocity estimates

52

appeared to be incorrect. If a measurement was taken from one side of the camera’s
image to the other side, the distances were off by an order of magnitude. This caused
serious problems in the safe landing area determination algorithms because they were
searching for a lander base size which was a great deal smaller than the resolution of
the data.

The solution to the problem was to change the focal lengths of the cameras.
It appears that the wrong calculation was used when the original focal lengths were

determined. Fixing this problem resolved the issues with the stereo ranging.

5.2 Results

When the integration issues were resolved, a full working demonstration was
presented. The UAV would first fly under GPS navigation to a final destination
chosen by the user. Once it arrived, the vehicle would hover 50 feet above ground
level, and use stereo range mapping and safe landing area determination to calculate
the safest point to land. After the vehicle had its landing position locked in the
feature tracker, the monocular position estimation would be enabled.

Because the velocity estimates, using machine vision, are not as precise as GPS
velocity estimates, the vehicle appeared less stable. However, this behavior was not
significant enough to cause it to lose sight of the landing point. Finally the vehicle
descended to the landing site and touched down onto the ground. A graph of the
landing approach using the full mission simulation, operating with closed-loop control
laws around the monocular estimator, is shown in Figure 5.3. Errors in the estimate
come from monocular tracking errors and not knowing the exact landing location.
The end result was still the same. The UAV landed at the exact point chosen by the
SLAD algorithms.

53

10

-10

=20

60

40

20

=20

100

80

60

40

20

X Pos Est

T T T T T
— gps
— — mte
| | | | |
0 10 15 20 25 30 35
Y Pos Est
T T T T T
— gps
- — — mte
| | | | |
0 10 15 20 25 30 35
Z Pos Est
T T T T T
— gps
= — - mte H
| | | | |
0 10 15 20 25 30 35

Figure 5.3: Mission landing results

o4

Chapter 6

Conclusions and Recommendations

The PALACE mission was to demonstrate a complete autonomous landing
of an unmanned aerial vehicle in a non-cooperative environment. In this thesis we
created a demonstration that allows the vehicle to first fly to the remote landing
site. We then used stereo vision algorithms to generate 3D information about the
landing zone. Using the camera attitudes and known placement of the camera, the
3D data was rotated and translated creating an elevation map. The 3D data was
searched by the safe landing area determination algorithms. A landing point was
chosen and converted into 2D screen coordinates. The 2D pixel location was tracked
by the monocular position estimation algorithms for use in a second Kalman filter.
Velocities were estimated by the Kalman filter and fed into the control laws. The
vehicle was then directed to fly a normal waypoint path to the landing site.

The scenario described above currently works in the RIPTIDE simulator and
portions have been demonstrated in hardware. Although the algorithms work ade-
quately in many situations, there are limitations with the current implementation.

One limitation that requires addressing is the safe landing area determination
algorithms. When the vehicle is at a high altitudes, the stereo ranging algorithms do
not produce accurate results for small objects on the ground. This could cause small
objects to be excluded from the search space, when in actuality the zone should be
marked as hazardous.

Another obstacle that is hard to detect using stereo vision, is power wires or

antenna wires. Since they are small, vision algorithms have a hard time differentiating

95

between the wires and the background. Perhaps a different sensor could be used to
locate these types of obstacles.

There are also some limitations with the monocular position estimator. Since
the feature tracker is updating its matching template after every camera frame, a
sudden occlusion of the landing site would cause the new tracking template to be
updated with incorrect information. For example, this could happen if a bird flies in
between the camera and the landing point.

Several options for future research are listed below:

e Multiple trackers. If the monocular tracker was updated to search and
track multiple features it would be less susceptible to lost features. Another
option would be to run multiple monocular position estimators in parallel. It
could use the feature tracker’s coherence value to place a weight on the current

position estimate.

e Dynamic safe landing area determination parameters. Allowing the
landing parameters to change dynamically, based on the vehicles current dis-
tance away from the landing site would be a great improvement. This change

would allow the vehicle to validate the landing site as it moves closer.

e Full hardware integration. Limited testing on a hardware platform was
performed. This included feature tracking while the vehicle was under GPS
waypoint navigation. The early results of the hardware tests look promising,
but the algorithms will need to be tested thoroughly before inner-loop control

is used with the monocular position estimation.

56

Bibliography

1]

Ross DBritton, “Unmanned Aerial Vehicles: Changing
the Sense of Self for the U.S. Military”, March 2002,

http://www.sit.wisc.edu/ wrbritton/Index.htm.

John Roos, “Organic Air Vehicle”, Intelligence Surveillance Reconnaissance,

2002, http://www.afji.com/ISR/Mags/2002/Issue2/organic.html.

Jay Farrell, “GPS/INS Based Lateral and Longitudinal Control Demonstration”,
Tech. Rep. FINAL, University of California, Riverside, 1998.

Srikanth Saripalli, James Montgomery, and Gaurav Sukhatme, “Vision-based
Autonomous Landing of an Unmanned Aerial Vehicle”, in Proceedings of the

IEEE International Conference on Robotics and Auotomation, May 2002.

Srikanth Saripalli and Gaurav Sukhatme, “Landing on a Moving Target using
an Autonomous Helicopter”, in Proceedings of the International Conference on

Field and Service Robotics, July 2003.

Sierra Nevada Corporation, “Tactical Automatic Landing System”,

http://www.sncorp.com/uav2.html, January 2004.

Sebastian Thrun and Mark Diel, “Scan Alignment and 3D Surface Modeling
with a Helicopter Platform”, in Proceedings of the International Conference on

Field and Service Robotics, Lake Yamanaka, Japan, 2003.

Paul Bellutta and Larry Matthies, “Terrain Perception for DEMO III”, Pro-
ceedings of the Intelligent Vehicle Conference, October 2000.

57

http://www.sit.wisc.edu/~wrbritton/Index.htm
http://www.afji.com/ISR/Mags/2002/Issue2/organic.html
http://www.sncorp.com/uav2.html

[9]

[10]

[11]

[13]

[14]

[15]

Larry Matthies and Hebert Maclachan, “A Portable, Autonomous, Urban Recon-
naissance Robot”, International Conference on Intelligent Autonomous Systems,

July 2000.

Patrik Nilsson, “Stereo Vision for Mobile Robots”, Tech. Rep. FINAL, Depart-
ment of Engineering and Technology, 2003.

Larry Matthies, Yalin Xiong, and Clark Olson, “Computing Depth Maps from
Descent Imagery”, Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, vol. 1, pp. 392-397, 2001.

Srikanth Saripalli, James Montgomery, and Gaurav Sukhatme, “Augmenting In-
ertial Navigation with Image-Based Motion Estimation”, in IEEE International

Conference on Robotics and Automation, May 11-15 2002, pp. 4326-33.

Larry Matthies and Andrew Johnson, “Precise Image-Based Motion Estimation
for Autonomous Small Body Exploration”, &th International Symposium on

Artificial Intelligence, Robotics and Automation in Space, June 1999.

Omead Amidi, An Autonomous Vision-Guided Helicopter, PhD thesis, Carnegie
Mellon University, 1996.

Omead Amidi and Takeo Kanade, “A Visual Odometer for Autonomous Heli-
copter Fight”, in Proceedings of the Fifth International Conference on Intelligent
Autonomous Systems (IAS-5), June 1998.

Qurban Memon and Sohaib Khan, “Camera calibration and three-dimensional

world reconstruction of stereo-vision using neural networks”, Internation Journal

of Systems Science, vol. 32, no. 9, pp. 1155-1159, 2001.

Hossein Mansur and Weiliang Dai, RIPTIDE Installation and User’s Guide,
NASA Ames Research Center, 2003.

Bernard Mettler, Mark Tischler, and Takeo Kanade, “System Identification
Modeling of a Small-Scale Unmanned Rotorcraft for Flight Control Design”, J.
American Helicopter Society, vol. 47, no. 1, pp. 50-63, January 2002.

58

[19]

[20]

[21]

[22]

23]

[20]

Matthew Whalley, Mark Takahashi, Greg Schulein, Michael Freed, Daniel Chris-
tian, and Robert Harris, “The NASA/Army Autonomous Rotorcraft Project”,

in American Helicopter Society Annual Forum, 2003.

Jan Roskam, Airplane Flight Dynamics and Automatic Flight Controls, De-
sign,Analysis and Research Corporation, 3rd edition, 2001.

Ginés Garcia Mateos, “A Camera Calibration Technique using Targets of Cir-
cular Features”, Department of Computer Science and Systems, University of

Murecia.

Roger Tsai, “An Efficient and Accurate Camera Calibration Technique for 3D
Machine Vision”, in IEEE Conference on Computer Vision and Pattern Recog-
nition, Miami Beach, Florida, 1986.

Yoram Yakimovsky and Roger Cunningham, “A System for Extracting Three-
Dimensional Measurements from a Stereo Pair of TV Cameras”, Computer

Graphics and Image Processing, vol. 7, pp. 195-210, 1978.

Mark Maimone, “CAHVOR Camera Model Information”,

http://telerobotics. jpl.nasa.gov/people/mwm/cahvor.html.

Larry Matthies and Yalin Xiong, “Error Analysis of a Real-Time Stereo Sys-

tem”, Proceedings of IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 1997.

Andrew Johnson, Allan Klump, James Collier, and Aron Wolf, “LIDAR-base
Hazard Avoidance for Safe Landing on Mars”, in AAS/AIAA Space Flight Me-
chanics Meeting, Santa Barbara, CA, February 2001.

59

http://telerobotics.jpl.nasa.gov/people/mwm/cahvor.html

	Autonomous Landing of a Rotary Unmanned Aerial Vehicle in a Non-cooperative Environment using Machine Vision
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Complexity
	Objectives
	Related Work
	Safe Landing Methods
	Position Estimation Methods

	Contributions
	Outline

	Simulation Environment and Experimental Apparatus
	RIPTIDE
	Hardware Setup

	Monocular Position Estimation
	Feature Tracking
	Position Estimation
	Definition of Coordinate Frames
	Notation
	Derivation

	Monocular Experimentation Results

	Stereo Machine Vision
	Camera Calibration
	Tsai Camera Model
	CAHVOR Camera Model
	Camera Model Generation

	Stereo Range Mapping
	Safe Landing Area Determination
	Elevation Map
	Hazard Maps
	Cost Map
	SLAD Inputs and Outputs

	Stereo Experimentation Results

	Mission Simulation
	Integration Issues
	Monocular Tracking with Inner-loop Control
	Stereo Ranging for SLAD

	Results

	Conclusions and Recommendations
	Bibliography

