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Energy Efficiency of Hydrogen Sulfide Decomposition  
in a Pulsed Corona Discharge Reactor 

 
Sanil John,1 Jerry C. Hamann,2 Suresh S. Muknahallipatna,2 Stanislaw Legowski,2 John 

F. Ackerman1, and Morris D. Argyle1∗ 
(1) Department of Chemical & Petroleum Engineering, (2) Department of Electrical & 
Computer Engineering, University of Wyoming, 1000 E. University Avenue, Laramie, 

WY  82071 
 
Abstract 

A novel pulsed corona wire-in-tube reactor with quartz view-ports allowed visual 

observation of the effect of charge voltage and gas composition on the corona 

distribution.  The H2S conversion and energy efficiency of H2S decomposition in this 

pulsed corona discharge reactor varied at constant power due to the selected values of the 

electrical parameters of pulse forming capacitance, charge voltage, and pulse frequency.  

Low pulse forming capacitance, low charge voltage, and high pulse frequency operation 

produce the highest energy efficiency for H2S conversion at constant power.  H2S 

conversion is more efficient in Ar-N2 gas mixtures than in Ar or N2.  These results can be 

explained by corona discharge observations, the electron attachment reactions of H2S at 

the streamer energies, and a proposed reaction mechanism of H2S dissociation in the Ar-

N2 gas mixture.  The energy consumption per molecule of converted H2S in an equimolar 

mixture of Ar and N2 is the lowest that has been reported for any plasma reactor operated 

at non-vacuum pressures.  The results reveal the potential for energy efficient H2S 

decomposition in pulsed corona discharge reactors.  
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1. Introduction 

The annual demand for hydrogen in the U.S. chemical and refining industries for 

2005 was about 8.2 million metric tons (2005), mainly for use as a reactant in the 

synthesis of ammonia and methanol and in petroleum hydrodesulfurization, 

hydrocracking, and upgrading processes.  Merchant hydrogen production for use in 

refineries and chemical plants was about 1.4 million metric tons per year (2005).  

Although the total hydrogen consumption is growing at about 4 percent annually, growth 

in the merchant hydrogen business is higher, estimated to be about 10 percent, as 

refineries shift away from captive hydrogen production (2008).  With the cost of sweet 

crude oil increasing, refineries are processing more heavy sour crude, which requires 

additional hydrogen for sulfur removal.  Legislation limiting sulfur content in gasoline 

and diesel require more hydrotreating process steps in refineries.  In addition, as 

hydrogen is being developed as an energy carrier, the predominant hydrogen production 

method, steam reforming of natural gas, may be insufficient for future needs.  For 

example, by 2040, the use of hydrogen in fuel cell powered cars and light trucks is 

anticipated to require annual production of approximately 136 million metric tons of 

hydrogen (2004).  

Hydrogen sulfide (H2S) is a common contaminant (from ppm concentrations to 

90% by volume) in many of the world’s natural gas wells.  In natural gas processing, it is 

viewed as a pollutant because it corrodes pipelines and deactivates metal-based catalysts 

used in steam methane reformation (Huang and T-Raissi, 2008).  Traditionally, H2S is 

converted via the Claus process to sulfur and water, resulting in a loss of the hydrogen 

content of the H2S as low-grade steam.  H2S would be more economically valuable if 
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both hydrogen and sulfur could be recovered.  We estimate the U.S. H2S production rate 

from natural gas plants and oil refineries to be on order of 10 million metric tons per year.  

The theoretical energy required to produce hydrogen from H2S is only 20.63 kJ/mol H2 as 

compared to 63.17 kJ/mol H2 for steam methane reforming and 285.83 kJ/mol H2 for 

water electrolysis, all calculated from standard heats of formation at 298 K (Smith and 

Van Ness, 1987).  Therefore, H2S represents a significant potential future source of low-

cost hydrogen, if efficient processes are developed to extract and recover the H2.  

H2S decomposition in various types of plasma reactors has been investigated as a 

method to recover the H2.  Unfortunately, the reported energy consumptions are much 

higher than the theoretical energy requirement of 0.21 eV per decomposed H2S molecule 

(20.63 kJ/mol H2).  All but one of the reported efficiencies exceed the energy requirement 

of 3.6 eV per H2 molecule produced required for conventional steam methane reforming, 

the predominant hydrogen production method, with all separation equipment included 

(Cox et al., 1998).   Dalaine et al., (1998a,b) investigated H2S conversion in gas systems 

with concentrations of 0–100 ppm H2S in air using gliding arc discharges.  This type of 

reactor is rather inefficient, with an energy consumption of 500 eV/H2S molecule 

dissociated.  A large amount of work on microwave decomposition of H2S was carried 

out in the former Soviet Union (Asisov et al., 1985; Bagautdinov et al., 1992, 1993a,b, 

1995, 1998).  Very low energy consumptions of 0.76 eV/H2S were reported in both 

laboratory and pilot units used for the decomposition of pure H2S or mixtures with CO2.  

Encouraged by these reports of high conversions and low energy requirements, a joint 

project for H2S conversion using microwave plasmas was undertaken by the Alberta 

Hydrogen Research Program, Atomic Energy of Canada, and Shell Canada Limited.  
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Unfortunately, this group reported the energy consumption for H2S conversion to be 

about ~4.5 eV/H2S (Cox et al., 1998) and thus was unable to reproduce the low energy 

consumption reported by the Russian researchers.  All microwave plasma experiments for 

H2S conversion in the Canadian studies were performed at pressures below 1 atmosphere, 

which requires additional energy consumption for compression and vacuum costs.  Traus 

and Suhr (1992) and Traus et al. (1993) investigated conversion of H2S at 10–100 mol% 

concentrations in Ar, N2, and H2 in a silent discharge reactor and in a rotating glow 

discharge reactor.  They found that the energy consumption for H2S conversion in a 

rotating glow discharge reactor (~27 eV/H2S) is less than that in a silent discharge reactor 

(~81 eV/H2S).  In addition, Abolentsev et al. (1995) and Ma et al. (2001) investigated 

decomposition of low (ppm) concentrations of H2S in different balance gases, including 

air, N2, H2, He, and CH4, using a silent discharge reactor.  H2S conversion in pulsed 

corona discharge reactors was also studied by several investigators (Averin et al., 1996; 

Helfritch, 1993; Ruan et al., 1999; Wiseman and Douglas, 1972).  These investigations 

were conducted at low H2S concentrations (<2 mol %) with high (>100 eV/H2S) energy 

consumption, which are not practical conditions for commercial application. 

We previously reported the lowest energy consumption of 17.4 eV/H2S molecule 

for moderately high concentrations of H2S, 16% H2S in Ar, (Zhao et al., 2007) at non-

vacuum pressures (134 kPa).  Also, at higher H2S concentrations (>16 mol %), H2S 

decomposition in Ar produced higher conversions and reaction rates, as compared to 

those in He, N2, and H2.  Therefore, Ar was selected as the balance gas for most of the 

future experiments.  Although Ar can be separated from H2S and H2 at the reactor outlet 
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and recycled to the process, it is relatively expensive compared to N2.  Therefore, Ar 

diluted with N2 was also used as a balance gas with improved performance.   

The electrical parameters of charge voltage (Vc), pulse frequency (f), and pulse 

forming capacitance (Cp) have been reported to impact the conversion of various 

reactants in plasma reactors.  For methane conversion, the moles of methane converted 

per unit of energy supplied decreased with increasing charge voltage and increased with 

increasing pulse-frequency (Ma et al., 2001), while methane conversion and energy 

efficiency were higher at a pulse forming capacitance of 1280 pF as compared to 1920 pF 

at different power inputs (Zhao et al., 2006b).  H2S conversion increased with increasing 

charge voltage for ppm concentrations of H2S in an ozonizer (Haas and Khalafalla, 

1973).  NO conversion at ppm concentrations (Mok, 2000) increased with increasing 

pulse frequency and capacitance.  In all these studies, the total power supplied to the 

reactor changed as each of these parameters changed because power input is defined as P 

= ½CpVc
2f, where Cp is the pulse forming capacitance, Vc is the charge voltage, and f is 

the pulse frequency.  This study reports the effect of these parameters at constant power 

to isolate the effects on H2S conversion as these parameters were varied at constant 

power input.  

 

2. Experimental 

The experimental system, shown in Figure 1, consists of a stainless steel reactor, a 

flow control and distribution system, and an electrical system.  The reactor is a vertical 

wire-in-tube design, with gas flow from top to bottom.  The anode is a 0.001 m diameter 

stainless steel wire passing axially through the center of the cathode tube.  The cathode is 
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a stainless steel tube, 0.024 m in diameter and 0.889 m long, with 7 quartz view-ports and 

7 ports for sampling and temperature measurement placed equidistantly along its length.  

The 0.01 m diameter quartz view-ports permitted visual inspection of the corona 

discharge.  At the same operating conditions, similar H2S conversions were obtained in 

geometrically similar cathode tubes, with and without ports, indicating negligible effect 

of the cathode viewports on the corona discharge.  The stems of the bimetallic 

thermometers were immersed about 0.025 m into tees to be flush with the cathode tube 

inner wall.  The thermometers proved to be unresponsive and displayed near ambient 

temperatures even when the tube was warm to touch.   

Gas mixtures entered the reactor at ambient temperature (~300 K) and a 

controlled flow rate (1.18 × 10-4 SCMs-1).  The pressure in the reactor was maintained at 

134 kPa by a back pressure regulator.  The H2S in Ar gas mixture was prepared by 

mixing ultra high purity (UHP) H2S (Airgas) with UHP Ar (US Welding).  The desired 

entrance mole fraction of H2S was set with two well-calibrated mass flow controllers 

(Brooks Mf50x & Mf51x).  The reactant and product gases were analyzed with a mass 

spectrometer (Stanford Research Systems QMS 100 Series Gas Analyzer).  To perform 

quantitative measurements, an internal standard method (Watson, 1997) was used to 

calibrate the ion signal response at an m/z ratio of 34 with the H2S mole fraction, in which 

Ar was used as an internal standard.  For experiments involving mixtures of nitrogen, 

UHP N2 was introduced to the H2S-Ar mixture by a calibrated rotameter.  The mixture 

compositions used for the H2S decomposition experiments involving nitrogen are shown 

in Table 1.  The mass spectrometer was calibrated for H2S concentrations ranging from 

4% to 10% in 23% N2 (balance Ar), 46% N2 (balance Ar), and 69% N2 (balance Ar).  For 
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the gas mixture 5 in Table 1, N2 was used as an internal standard to calibrate the mass 

spectrometer.   

The structure of sulfur deposits in the reactor was analyzed by an X-ray 

diffractometer (SCINTAG XDS2000 producing Cu Kα X-rays and equipped with a theta-

theta goniometer and a solid state X-ray detector). 

The reactor electrical circuit diagram is shown in Figure 2.  The electrical system 

produces a positive DC pulsed corona discharge and is capable of delivering charge 

voltages from 6.9 kV to 30 kV and pulse frequencies from 0 to 1000 Hz.  It consists of a 

high voltage DC power supply, a capacitive energy storage medium, and a hydrogen 

thyratron connected to the reactor.  A 40 kV oil-cooled, high voltage supply charges the 

capacitor bank, which could be increased in four increments of 720 pF (using TDK FHV-

10AN capacitors).  The hydrogen thyratron (L-3 Electron Devices Type L-4945) is an 

electrical switch that uses hydrogen gas as the switching medium.  The switching action 

is achieved by a shift from the insulating properties of neutral gas to the conducting 

properties of ionized gas.  The thyratron is designed to withstand a high voltage in the 

‘off’ state, to trigger at a precisely defined time, to pass high peak current pulses in the 

‘on’ state, and to recover rapidly to the ‘off’ state to allow high repetition rate operation 

(2002).  When the thyratron triggers, the stored energy in the capacitor bank is discharged 

in a few nanoseconds to the anode, which creates the plasma in the gas flowing through 

the reactor tube.  The formation of corona discharge can be detected by a discharge 

waveform recorder (Tektronix TDS 220).  The energy released by the capacitors per 

pulse was calculated as ½CpVc
2, where Cp is the pulse forming capacitance in pF, and Vc 

is the constant charge voltage before discharge in volts.  The power consumed, W (J⋅s-1), 
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was calculated as the product of the input energy per pulse (½fCpVc
2,) and the pulse 

frequency (f) in Hz.  Tables 2 and 3 show the electrical parameters for the constant power 

(100 W) experiments and the experiments involving nitrogen, respectively. 

The charging capacitors, limiting resistor, hydrogen thyratron switch, and 

electrical connections to the reactor were all enclosed in Teflon.  The Teflon insulation 

ensures very low stray capacitance in the range of 0.1 to 0.5 pF because of its high 

dielectric strength.  The electrical lines connecting the capacitors, thyratron, and reactor 

are solid steel rods enclosed in Teflon, again ensuring very low stray capacitance and low 

inductance. 

 

3. Results and Discussion 

3.1. Visual observations of the corona reactor 

The corona discharge was visible around the wire through the viewports, as 

shown in Figure 3.  Visual observation confirmed that intensity of the discharge was not 

uniform along the length of the tube.  The corona was not observed in all viewports 

simultaneously during the discharge duration.  The location of the brightest and constant 

discharge depends on the type of gas, concentration of individual gases in the case of 

mixtures, and charge voltage.  In pure Ar, the brightest and constant discharge occurred 

in the upper region (0.3-0.6 m from the top of the reactor), while in pure N2, the 

discharge occurred in the lower region (0.3-0.6 m from the bottom of the reactor).  These 

observations were interpreted with respect to the molecular structure of these gases, as Ar 

is monatomic while N2 is diatomic.  As the gases travel through the cathode tube from 

top to bottom, they interact with the electrons energized by the pulsed electric field 
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between the wire and the tube.  In a monatomic gas, like Ar, electrons predominantly 

experience elastic collisions with Ar atoms without energy loss, if the electron energy is 

less than the energy (11.6 eV) (Fridman and Kennedy, 2004d) of the lowest electronically 

excited state of Ar, Ar(3P2).  The electrons that experience these elastic collisions are 

further accelerated and hence gain more energy in the electric field.  When electron 

energy exceeds the excitation energy (11.6 eV) required to excite ground state argon to 

Ar(3P2), the electrons may experience inelastic collisions and lose kinetic energy.  In 

contrast, when energetic electrons collide with diatomic molecules, like N2, the electrons 

may lose energy through many other processes unavailable to monatomic species, such as 

dissociation (10 eV) (Ma et al., 2001), electronic excitation of lower energy transitions 

(~6.1-12 eV) (Zhao et al., 2004), rotation (~10-4-10-5 eV) (Fridman and Kennedy, 2004c), 

and vibration (1.7-3.5 eV) (Fridman and Kennedy, 2004c), depending on the electron 

energy.  This implies that electron energy cannot be accumulated in diatomic balance 

gases to the same levels as in monatomic gases.  Therefore, diatomic gases, such as N2, 

have to travel further through the applied electric field within the tube before a corona 

discharge can occur.  Hence, the brightest discharge in N2 takes place lower in the reactor 

than in Ar.  This explanation also describes the observed downward shift of the brightest 

discharge in Ar on dilution with a polyatomic gas like H2S.  

In an earlier study of positive streamers in ozone for a wire-plate pulsed corona 

discharge system (Winands et al., 2006), the thickness, intensity, and velocity of primary 

streamers increased as the applied voltage increased.  The number of streamers leaving 

the anode also increased, but the number reaching the cathode was independent of 

voltage.  In the same study, pulse frequencies up to 400 Hz had no effect on the diameter, 
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intensity, and number of streamers.  This implies an increase in primary streamer volume 

with voltage which could potentially increase conversion.  Although we did not measure 

the thickness, intensity, and velocity of streamers, we observed that the number of 

viewports where corona could be seen decreased with an increase in the charge voltage.  

As charge voltage is increased from 11 kV to 21 kV, the discharge moved from the lower 

portion of the reactor to the upper portion.  This increase in voltage causes an increase in 

the electric field around the wire, which imparts more energy to the electrons, causing the 

corona discharge to occur earlier as the gas flows from top to bottom.  At lower voltages 

(11 kV, 13 kV & 15 kV), the corona discharge was observed through 2, 3, or even 4 view 

ports in the middle and lower regions of the reactor, while the remaining view ports were 

dark.  At higher voltages (17 kV, 19 kV & 21 kV), the corona was seen only in the upper 

region through 1 or 2 view ports.  This indicates that the plasma volume in the reactor 

increases with decreasing voltage and increasing frequency.  Thus, the reactor volume is 

used more efficiently in this condition as indicated by an increase in conversion, 

discussed below.  

3.2. H2S conversion in Ar increases with decreasing charge voltage and 

increasing pulse frequency at constant pulse forming capacitance and power 

Figures 4(a) and 4(b) show the effect of increasing charge voltage on H2S 

conversion for four different values of capacitance.  Figure 4(a) contains data for 8 mol% 

H2S in Ar, while Figure 4(b) contains data for 12 mol% H2S in Ar.  For any particular 

value of capacitance, the H2S conversion decreased with increasing charge voltage, 

which corresponds to decreasing pulse frequency at a constant power input of 100 W.  

High pulse frequency and low charge voltage conditions were the best for H2S 
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conversion for all values of pulse forming capacitances.  The highest conversions 

obtained were 27.7% for the 8% H2S-92% Ar and 24.9% for the 12% H2S-92% Ar 

mixtures.  The proposed explanation for this behavior is based on the energy of electrons 

in the streamers.  

In pulsed corona discharges in air and flue gas, a difference in the streamer 

characteristics with increasing charge voltage has been reported (Yan et al., 1998).  

Streamers are thin ionized luminous channels formed between the electrodes.  They are 

of two types:  primary and secondary.  For our case with a positive pulsed corona 

discharge, the streamers propagate from the wire (anode) to the tube (cathode) within tens 

of nanoseconds.  The primary streamers carry high energy electrons (~10 eV), while 

secondary streamers carry low energy electrons (~1-3 eV) (Winands et al., 2006).  

Secondary streamers develop when the primary streamers approach the cathode (Yan et 

al., 1998).  With increasing charge voltage, the average streamer propagation velocity 

increases, resulting in a decrease in the duration of primary streamer propagation (Yan et 

al., 1998).  This increase in streamer velocity due to increasing voltage is supported by 

the decrease in duration of the primary streamer discharge observed in the discharge 

voltage waveform during methane conversion in a pulsed corona discharge reactor (Yao 

et al., 2001).  As the primary streamers die out faster with increasing voltages, the 

secondary streamers start developing at higher voltages.  Thus, at higher charge voltages, 

both primary and secondary streamers are formed, while at lower charge voltages, only 

primary streamers are formed.  This behavior has been reported in both wire-plate and 

wire-cylinder reactors, irrespective of power system specifications (Yan et al., 1998).  

Therefore, the low charge voltage condition produces more electrons with an average 
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energy of 10 eV, which is closer to the excitation energy (11.6 eV) for the lowest 

electronically excited state of Ar (Ar(3P2)) and higher than the electron energy range (8-9 

eV) in which the maxima in the absolute total electron-scattering cross section for H2S 

occurs (σmax = 40 × 10-20 m2) (Szmytkowski et al., 2003).  These electron energies are 

more than sufficient for dissociation of H2S into HS and H because the H-SH bond 

strength at 298 K is 3.96 eV (Lide, 2003).  Excitation of Ar and direct dissociation of H2S 

by electron impact have been proposed as the two initiating mechanisms responsible for 

H2S decomposition in Ar (Zhao et al., 2007). 

The rates of dissociative electron attachment reactions of H2S are higher with 

electrons in the secondary streamer than with electrons in the primary streamer.  The 

dissociative electron attachment reactions of H2S with the low energy (~1-3 eV) electrons 

of the secondary streamers and the high energy electrons (~10 eV) of the primary 

streamers are shown in Table 4 (Rao and Srivastava, 1993).  These processes are likely in 

our reactor because the appearance potentials of the ions (defined as the minimum energy 

of the electrons in the ionizing beam necessary to produce a given fragment ion) are 

lower than or approximately equal to the energy of the electrons in the streamer.  The 

approximate cross sections shown in Table 4 correspond to the energies of electrons in 

the primary and secondary streamers.  HS- formation due to dissociative electron 

attachment processes occurs at a faster rate (2 orders greater, based on the data in Table 

4) within secondary streamers due to its greater cross section, while S- formation will 

occur at similar rates compared to the reactions in the primary streamers.  Such electron 

attachment processes are considered essential in weakly ionized plasmas, like corona 

discharges, with low electron concentrations and low degrees of ionization and are first 
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order with respect to electron concentration (Fridman and Kennedy, 2004b).  As these 

processes capture electrons and decrease their concentration, the rates of electron 

collision reactions decrease, as observed previously (Zhao et al., 2005b,c) and may 

reduce H2S decomposition rate, as suggested previously (Zhao et al., 2007). In the 

primary streamers, the decrease in electron concentration by dissociative electron 

attachment is more than compensated by the direct electron collision ionization of H2S 

leading to H2S+ production.  The cross section of this ionization process is at least two 

orders of magnitude higher than that of the electron attachment processes in primary 

streamers (see Table 4).  Other positive ion formation by electron-impact dissociative 

ionization is unlikely in our reactor because the appearance potentials for HS+, S+, H+, 

H2
+, H2S++, and S++ ions are 14.35 eV, 13.45 eV, 15.50 eV, 16.50 eV, 32.00 eV, and 

40.50 eV, respectively (Rao and Srivastava, 1993), which are all significantly greater 

than the average energy (10 eV) of electrons in the primary streamer. 

Energy efficiency has previously been suggested to decrease with secondary 

streamer formation.  For example, for ppm-concentration SO2 removal in pulsed corona 

discharges, the energy utilization efficiency decreased with increasing charge voltage 

(Bingyan et al., 2005).  Energy utilization efficiency is defined as the ratio of the primary 

streamer energy to the total pulse discharge energy.  Two peaks have been reported in the 

discharge voltage, discharge current, and power waveforms from an oscilloscope over the 

pulse duration.  The first and the second peaks represent the primary streamers and the 

secondary streamers, respectively (Bingyan et al., 2005; Yao et al., 2001).  The primary 

streamer energy is calculated by integrating the first power peak, while the total pulse 

discharge energy is calculated by integrating the discharge power waveform.  Analogous 
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to SO2 removal, the observed decrease in conversion (Figure 4) at higher voltages is 

likely due to additional energy being used in secondary streamer formation, thereby 

reducing the energy utilization efficiency. 

In these experiments, any increase in charge voltage is accompanied by a decrease 

in pulse forming frequency to keep the input power constant.  Consistent with the data 

shown in Figure 4, the decrease in conversion at higher charge voltages is likely caused 

by formation of energy-inefficient secondary streamers.  Thus, although the power 

supplied to the pulsed corona reactor is the same, low voltage and high frequency 

operating conditions are desirable for H2S decomposition to maximize energy efficiency 

by minimizing secondary streamer formation. 

3.3. Energy consumption for H2S conversion in Ar decreases with decreasing 

pulse forming capacitance at constant power.  

Figure 5 shows the energy consumption per H2S molecule converted as a function 

of charge voltage for four values of pulse forming capacitance, again at constant power 

input of 100 W, for 8 mol% H2S in Ar (Figure 5(a)) and for 12 mol% H2S in Ar (Figure 

5(b)).  The energy consumption decreases with decreasing pulse forming capacitance 

values at constant power.  For example, for the 12% H2S-88% Ar mixture, at a constant 

charge voltage of 17 kV, the energy consumption at 720 pF is only 8.2 eV/H2S molecule 

compared to 15 eV/H2S molecule at 2880 pF.  The lowest pulse forming capacitance (720 

pF) tested provides the least energy consumption per H2S molecule converted (9.8 

eV/H2S for the 8% H2S-92% Ar mixture and 7.3 eV/H2S for the 12% H2S-88% Ar 

mixture), which corresponds to the highest energy efficiency.  This phenomenon can be 
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explained by the optimum energy transfer condition proposed by Uhm and Lee (1997) 

and by Mok (2000). 

In their analytical investigation of corona discharge systems, (Uhm and Lee, 

1997) reported the optimum energy transfer condition as 

)11.1ln(
)ln(212 0

0 ζ
c

R

e RR
C
C

+=                                                        (1) 

where, Ce is the capacitance of the external circuit (pulse-forming capacitance), CR0 is the 

initial capacitance of the reactor chamber, R0 is the radius of the wire, Rc is the radius of 

the tube, and ζ is the normalized plasma mobility, which is related to the ionization front 

velocity.  The normalized plasma mobility is proportional to the pulse-forming 

capacitance and is inversely proportional to the reactor volume. 

In Mok’s experimental study of ppm-concentration NO decomposition in a wire-

plate reactor (Mok, 2000), he calculated the initial capacitance of the reactor (CR0) by 

measuring the discharge voltage and current, when the charge voltage is lower than the 

corona onset value, as follows:  

dt
dVCI ROcap =                                                            (2) 

where, Icap is the measured capacitive current and dV/dt is the rate of change in the 

discharge voltage.  As the charge voltage applied was less than the corona onset value, 

the measured current was purely capacitive and did not include corona current.  Mok 

found that the reactor capacitance increased and reached a value three times the initial 

reactor capacitance during the corona discharge.  Further, he found that the energy 

transferred from the pulse-forming capacitance to the reactor reached a maximum when 

the pulse-forming capacitance was three times the initial capacitance of the reactor.  He 
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verified this by electrical measurements and by the NO decomposition experiment by 

increasing pulse-forming capacitance.  As a result, he proposed the optimum energy 

transfer condition as,  

3  
)(Creactor  of ecapacitanc Initial 

)(C ecapacitanc forming-Pulse

R0

P ≈
                                    (3)

 

The initial capacitance of the reactor (CR0) can be calculated using a capacitance 

formula for the wire-in-tube geometry (Shin et al., 2000): 

( )  pF.
rR
LπkεCR 716

ln
2 0

0 ≈=                                             (4) 

Here, R  is the cathode tube radius (0.012 m), r is the anode wire radius (0.00057 m), L is 

the reactor length (0.914 m), ε0 is the permittivity of free space (8.854 x 10-12 F/m), and k 

is the dielectric constant of the mixture of H2S and Ar (~1).  For our case of high 

concentration H2S decomposition in Ar at constant power, results similar to the ppm-

concentration NO decomposition were obtained.  However, in the present study, the 

capacitance was increased to maintain constant power input by decreasing charge voltage 

and frequency, unlike in Mok’s work.  Thus, at 720 pF capacitance, a higher fraction of 

the 100 W of supplied energy is transferred into the reactor, resulting in higher H2S 

conversion and lower energy consumption.  Table 5 shows representative data of energy 

consumption as a function of the pulse forming capacitance and the capacitance ratio 

(pulse forming capacitance/reactor capacitance) for the four values of pulse forming 

capacitance used in this study.  Figure 6 shows the representative data graphically. 

Although the capacitance ratio for the reactor used in this study is far from the optimum 

proposed by Mok, the trend of decreasing energy consumption (corresponding to 
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increasing energy efficiency) as the capacitance ratio approaches the optimum energy 

transfer ratio is clear.   

3.4. H2S conversion in N2-Ar mixtures 

H2S conversion is higher in monatomic gases (Ar and He) than in diatomic gases 

(N2 and H2) (Zhao et al., 2007).  At high H2S concentrations (>16%), H2S conversion in 

Ar was the highest.  However, as Ar is more expensive than N2, the process could be 

more economical if Ar were diluted with N2 and comparable H2S conversions to that in 

pure Ar could be obtained.  Further, energy efficiency might be further improved by 

establishing a corona in more of the reactor volume.  As noted earlier, the corona was 

observed only in the upper region of the reactor in a pure monatomic gas (Ar) and only in 

the lower region in a pure molecular gas (N2).  If it were possible to produce a corona 

along the entire length of the reactor, the plasma volume would increase which should 

increase H2S conversion at a given input power.  This hypothesis was explored by mixing 

a molecular gas (N2) with a monatomic gas (Ar).  H2S is not a suitable candidate as a 

molecular gas because of its high dielectric strength (~2.9) (Christophorou et al., 1987) 

and is already present as the reactant.  Therefore, N2 was mixed with Ar and H2S to 

increase plasma volume and H2S conversion.  

H2S decomposition was performed in various concentrations of Ar and N2 at three 

different input power values (60 W, 80 W, and 100 W) to verify repeatability of the 

results.  The H2S conversion and energy consumption at the three input powers as a 

function of composition for the four mixtures are shown in Figures 7 and 8, respectively.  

The H2S conversion initially increases with increasing addition of N2, reaches a 

maximum for the 46% N2-46% Ar mixture, and then decreases (Figure 7).  As the energy 
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consumption is inversely proportional to the H2S conversion, energy consumption 

initially decreases with increasing addition of N2, reaches a minimum for the 46% N2-

46% Ar mixture, and then increases.  Consistent with our earlier experiments (Zhao et al., 

2007), the H2S conversion in N2 is lower than in Ar.  The deviation of conversion for 60 

W input power, which for 92% N2 is slightly higher than that at 80 W input power, is not 

significant because these data points fall within the experimental uncertainty of +/-10% at 

a 95% confidence interval.   

The location of the brightest and constant discharge and the number of viewports 

through which corona was observed, changed with the feed gas composition.  As the N2 

concentration was increased from zero, the brightest and constant discharge descended.  

For example, at 100 W, the top two viewports for the 8% H2S-92% Ar and the 8% H2S-

23% N2-69% Ar mixtures were lit, while the 5th and 6th viewports were lit for the 8% 

H2S-69% N2-23% Ar and the 8% H2S-92% N2 mixtures.  More importantly, the number 

of viewports through which corona was observed, increased from two for the 8% H2S-

92% Ar mixture to five for 8% H2S-46% N2-46% Ar mixture, and then decreased to three 

for 8% H2S-92% N2 mixture at 100 W.  Therefore, the plasma volume is greatest for the 

46% N2-46% Ar-8% H2S mixture, filling approximately 70% of the reactor, compared to 

40% for the 8% H2S-92% N2 mixture and 30% for the 8% H2S-92% N2 mixture at 100 

W.  For the 8% H2S-46% Ar-46% N2 feed mixture, the energy consumption was the 

lowest, at 6.0 eV/H2S for 100 W, 5.3 eV/H2S for 80 W, and 4.9 eV/H2S for 60 W.  This 

value of 4.9 eV/H2S is the lowest reported value for H2S decomposition at non-vacuum 

pressures for any H2S concentration. 
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For H2S-Ar mixtures, our previous investigation (Zhao et al., 2006a) concluded 

that the major product for direct electron collision with Ar is the lowest excited state of 

Ar, Ar(3P2), which has an excitation energy of 11.55 eV. 

e + Ar → Ar(3P2) + e                                                                         (R1) 

The Ar(3P2) contributes to H2S dissociation and H2 dissociation through Reactions R2 

and R3 (Gundel et al., 1976; Velazco et al., 1978).  

Ar(3P2) + H2S → Ar + H + HS        k = 5.18 × 1014 cm3⋅mol-1⋅s-1         (R2) 

Ar(3P2) + H2 → Ar + H + H            k = 3.97 × 1013 cm3⋅mol-1⋅s-1        (R3) 

 

For H2S-N2 mixtures, the major products from electron collision reaction with N2 

are N radicals and the first electronic excited state of N2, N2(A), which requires an 

excitation energy of 6.1 eV (Zhao et al., 2004).  

e + N2 → N + N + e                                                                               (R4) 

e + N2 → N2(A) + e                                                                                (R5) 

The previous investigation (Zhao et al., 2005a) reported that the rate of electron collision 

reaction R5 is about 7 times higher than that of R4.  These active species react with N2, 

H2S, and H2 (Aleksandrov et al., 1994; Herron, 1999; Kossyi et al., 1992), according to 

the following reactions: 

N + H2 → NH2                            k = 1.14 × 104 cm3⋅mol-1⋅s-1                (R6)   

N + N → N2                                k = 8.54 × 1010 cm3⋅mol-1⋅s-1              (R7)   

N2(A) + H2 → N2 + 2H               k = 2.11 × 109 cm3⋅mol-1⋅s-1               (R8) 

N2(A) + H2S → N2 + H + HS      k = 1.81 × 1014 cm3⋅mol-1⋅s-1             (R9) 
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There are no reports of rate constants for reactions between H2S and N.  However, by 

analogy to the extremely low rate constant of the reaction between N and H2O (4 × 103 

cm3⋅mol-1⋅s-1 at 1073 K) (Cohen and Westberg, 1991), we presume that N does not 

contribute significantly to H2S conversion.  The N atom radicals predominantly 

recombine to N2 because rate constant of R7 is about 8 × 106 higher than that of R6.  In 

addition, no byproducts of ammonia were detected during our analysis, which confirms 

that the only significant products of H2S conversion in N2 are H2 and S. 

For H2S-Ar-N2 mixtures, the interaction of Ar(3P2) with N2 and the interaction of 

Ar with the excited states of N2 can enhance H2S decomposition.  As confirmed with 

H2S-Ar and H2S-N2 mixtures, Ar(3P2) and N2(A) appear to be directly involved in H2S 

dissociation through reactions R2 and R5, respectively.  Ar(3P2) can collide with N2 to 

generate the excited state, N2(C) (Velazco et al., 1978). 

Ar(3P2) + N2 → Ar + N2(C)            k = 2.17 × 1013 cm3.mol-1.s-1    (R10)   

N2(C) is transformed to N2(B) either through radiative emission or through collision-

induced radiation. 

N2(C) → N2(B) + hν    k = 2.73 × 107 s-1    (R11)   

N2(C) + Ar → N2(B) + hν              k = 8.19 × 1011 cm3.mol-1.s-1
   (R12)   

Any of the three reactions shown below, can lead to formation of N2(A) from N2(B).  

N2(A) can then directly dissociate H2S through R5. 

N2(B) + N2 → N2(A) + N2   k = 1.81 × 1013 cm3.mol-1.s-1
   (R13)   

N2(B) + Ar → N2(A) + Ar   k = 9.63 × 1011 cm3.mol-1.s-1
   (R14)   

N2(B) → N2(A) + hν    k = 2.00 × 105 s-1    (R15)  
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Thus, in H2S-Ar-N2 mixtures, in addition to N2(A) formation by electron collision with 

N2 (R5) as in the H2S-N2 mixtures, there is a parallel route (R10-R15) to form N2(A).  

N2(A) and Ar(3P2) are responsible for H2S dissociation through reactions R2 and R9.  

This increase in N2(A) production is the probable reason for the increase in H2S 

conversion in H2S-Ar-N2 mixtures compared to that in H2S-Ar or H2S-N2 mixtures. 

3.6. Sulfur formation 

Sulfur is a product of direct decomposition of H2S.  Initially, atomic sulfur is 

formed in high temperature areas of the discharge and then it dimerizes, forms clusters, 

and condenses in the low temperature zone on the discharge periphery (Fridman and 

Kennedy, 2004a).  S and S2 have been reported in gas discharges (Elbanowski, 1969; 

Meyer, 1976).  Formation of sulfur clusters (S4, S6 and S8) have also been reported during 

the microwave decomposition of H2S (Fridman and Kennedy, 2004a).  However, in the 

equilibrium vapor, below 400 K (close to our reactor temperature), S8 accounts for over 

90 mol% of the vapor, while S6 and S7 make up the rest (Meyer, 1976).  The sulfur 

formed in the vapor phase in our reactor condenses as a grayish (sometimes grayish-

yellow) deposit.  All sulfur allotropes with ring structures are yellow, while the sulfur 

chains are dark colored (Meyer, 1976).  An X-ray diffraction study of the deposit shows 

the presence of orthorhombic-α sulfur, indicating that the sulfur formed in our reactor is a 

mixture of orthorhombic-α and other allotropes. 

 

4. Conclusions 

A novel reactor design, wire-in-tube configuration with view-ports, allowed 

visual observation of the corona all along the length of the reactor.  The H2S conversion 
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and energy efficiency of H2S decomposition in the pulsed corona discharge reactor varied 

greatly at a constant power.  Low charge voltage, high pulse frequency, and low pulse 

forming capacitance operation produce the highest energy efficiency for H2S conversion 

at constant power.  Low charge voltage and high pulse frequency operation apparently 

does not produce inefficient secondary streamers, compared to high charge voltage and 

low pulse frequency conditions.  Low pulse forming capacitance operation is closer to the 

optimum energy transfer condition, which allows better transfer of energy to the reactor 

and improves H2S conversion and energy efficiency.  The trend of increasing energy 

efficiency as the capacitance ratio approaches the optimum energy transfer ratio confirms 

these are the optimum energy transfer conditions for a high pressure, high concentration, 

and high flow rate system.  Dilution of H2S-Ar feed mixtures with N2, increases the 

plasma volume within the reactor and may increase production of N2(A) species, which 

along with Ar(3P2) appear responsible for H2S dissociation.  The lowest energy 

consumption for H2S decomposition in a plasma reactor at non-vacuum pressures was 

obtained in an equimolar mixture of Ar and N2 at the lowest value of pulse forming 

capacitance.  H2S decomposition in an equimolar mixture of Ar and N2, combined with 

improved reactor geometry to optimize pulse forming capacitance for maximum energy 

transfer, should increase energy efficiency further.   
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Figure Captions 

Figure 1. Experimental setup 

Figure 2. Reactor electrical circuit diagram 

Figure 3. Corona discharge as seen through a viewport 
 
Figure 4. Conversion of H2S as a function of charge voltage and capacitance. (a) 8% 

H2S – 92% Ar (b) 12% H2S – 88% Ar  
Data: 720 pF (■), 1440 pF(▲), 2160 pF (×), 2880 pF (♦) 

 
Figure 5. Energy consumption per H2S molecule converted as a function of charge      

voltage and capacitance. (a) 8% H2S – 92% Ar (b) 12% H2S – 88% Ar 
                 Data: 720 pF (■), 1440 pF(▲), 2160 pF (×), 2880 pF (♦) 
 
Figure 6. Energy consumption per H2S molecule converted as a function of 

capacitance ratio at a charge voltage of 17 kV.  
                 Data: 8% H2S – 92% Ar (■),12% H2S – 88% Ar (▲) 
 
Figure 7. H2S conversion in Ar-N2 mixture as balance gas 

Data: 100 W (♦), 80 W (■), 60 W(▲) 
 

Figure 8. Energy consumption for H2S decomposition in Ar-N2 mixture as balance 
gas  
Data: 100 W (♦), 80 W (■), 60 W(▲) 
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Figure 1. Experimental setup 
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Figure 2. Reactor electrical circuit diagram 
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Figure 3. Corona discharge as seen through a viewport 
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Figure 4.  Conversion of H2S as a function of charge voltage and capacitance. 

(a) 8% H2S – 92% Ar (b) 12% H2S – 88% Ar 
Data: 720 pF (■), 1440 pF(▲), 2160 pF (×), 2880 pF (♦) 
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Figure 5. Energy consumption per H2S molecule converted as a function of charge 

voltage and capacitance. (a) 8% H2S – 92% Ar (b) 12% H2S – 88% Ar 
Data: 720 pF (■), 1440 pF(▲), 2160 pF (×), 2880 pF (♦) 
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Figure 6. Energy consumption per H2S molecule converted as a function of 

capacitance ratio at a charge voltage of 17 kV.  
Data: 8% H2S – 92% Ar (■),12% H2S – 88% Ar (▲) 
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Figure 7. H2S conversion in Ar-N2 mixture as balance gas 

Data:  100 W (♦), 80 W (■), 60 W(▲) 
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Figure 8.  Energy consumption for H2S decomposition in Ar-N2 mixture as balance 

gas Data: 100 W (♦), 80 W (■), 60 W(▲) 
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Table Captions 
 
Table 1. Molar composition of feed gas mixtures for experiments involving nitrogen 

Table 2. Electrical parameters for constant power experiments at 100 W 

Table 3. Electrical parameters for experiments involving nitrogen 

Table 4. Electron collision with H2S in primary and secondary streamers 
(* denotes an excited state as proposed by (Rao and Srivastava, 1993)) 

Table 5. Decrease in energy consumption with decrease in capacitance ratio 
(Representative data, at 17 kV) 
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Gas Mixture # H2S (%) Ar (%) N2 (%) 
1 8 92 0 
2 8 69 23 
3 8 46 46 
4 8 23 69 
5 8 0 92 

 
Table 1. Molar composition of feed gas mixtures for experiments involving nitrogen 
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Pulse forming capacitance (CP, pF) Charge voltage (V, kV) 
Pulse frequency (f, Hz) 

720 11 13 15 17 19 21 
- - - 961 769 630 

1440 11 13 15 17 19 21 
- 822 618 481 385 315 

2160 11 13 15 17 19 21 
765 548 412 320 256 210 

2880 11 13 15 17 19 21 
574 411 309 240 192 157 

 
Table 2. Electrical parameters for constant power experiments at 100 W 
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Power (P,W) 60 80 100 

Pulse forming capacitance (CP, pF) 720 720 720 
Charge voltage (V, kV) 13 15 17 
Pulse frequency (f, Hz) 986 988 961 

 
Table 3. Electrical parameters for experiments involving nitrogen 
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Primary streamer processes Approximate cross section (10-23 m2) 

H2S + e(~10 eV)  H* + HS- 0.15 
H2S + e(~10 eV)  2H* (or H2*) + S- 3.8 

H2S + e(~10 eV)   H2S+ + 2e 100 
H2S + e(~10.45 eV)   H2S+ + 2e 758 

Secondary streamer processes Approximate cross section (10-23 m2) 
H2S + e(2.28 eV)   H + HS- 18 

H2S + e(2.5 eV)  H2 + S- 3.3 
 

Table 4. Electron collision with H2S in primary and secondary streamers 
(* denotes an excited state as proposed by (Rao and Srivastava, 1993)) 
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Pulse forming capacitance 
(CP, pF) 720 1440 2160 2880 

Capacitance ratio 
(CP/CR0) 

45 90 135 180 

Energy consumption in 8% H2S-92% Ar mixture   
(E, eV/H2S molecule converted) 10.8 13.2 16.6 18.8 

Energy consumption in 12% H2S-88% Ar mixture   
(E, eV/H2S molecule converted) 8.2 9.2 11.4 15.0 

 
Table 5. Decrease in energy consumption with decrease in capacitance ratio 

(Representative data, at 17 kV)  
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