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ABSTRACT 
 
 
 

ESTABLISHING A QUANTITATIVE FOUNDATION FOR EXACTLY 

CONSTRAINED DESIGN 

 
 

Alisha M. Hammond 
 

Department of Mechanical Engineering 
 

Master of Science 
 
 
 

Exactly constrained (EC) design is a robust design method which can be used for 

mechanical assemblies.  It entails using the minimum number of constraints to eliminate 

all desired motion.   

While found by some engineers in industry to have many benefits (including 

robust assembly, no binding or play, ease of assembly, and the ability to tolerate the wear 

of parts), EC designs remain somewhat unrecognized by academia.  One reason for this 

minimal exposure may be the lack of a quantitative foundation for such designs.  This 

thesis describes the history and current background for EC designs, and it also begins to 

develop a quantitative foundation for EC design based on several mathematical methods. 

 EC designs can be analyzed quite simply by understanding that they are statically 

determinate.  Because of this, the equations of equilibrium can be used to validate the 

rules and the nesting force window that have been defined by Blanding [1999].   In 



addition, a generalized method using the equations of equilibrium has been developed in 

this thesis to analyze an EC design based on the locations of the constraints and to find 

the nesting force window. 

 The direct linearization method (DLM) is another mathematical method used to 

quantify information in an EC design.  While EC designs provide many advantages, some 

EC assemblies may be “better” than others.  A quantitative measure of goodness is 

developed in this thesis using the DLM.  The goodness value assigned to each design 

through this process can either be used to make a decision on an individual design, or it 

can be used to compare similar EC designs. 

 Finally, the robust nature of EC design is examined using a Monte Carlo 

simulation.  In general, the results show that EC designs have a higher rate of assembly 

than similar designs that are over-constrained.  They are more robust.  In addition, EC 

designs have lower assembly error than the similarly over-constrained assemblies. 
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CHAPTER 1 MOTIVATION FOR ESTABLISHING A QUANTITATIVE 

FOUNDATION FOR EXACTLY CONSTRAINED DESIGN 
 
 
 
1.1 INTRODUCTION 

An increasingly competitive marketplace has sparked the demand to find more 

effective design methods that produce higher quality, cost-competitive mechanical 

assemblies.  Yet, quality and cost often become competing objectives in many 

manufacturing processes because of unanticipated variability. 

 

Unanticipated variability can adversely affect mechanical assemblies.  Examples 

of unanticipated variability may include worn tools, varying dimensions among similar 

parts, varying job skills among technicians, or changing environments (such as 

temperature or load changes).  Ultimately, variability leads to designs that do not always 

properly assemble as desired.   

 

Avoiding the effects of variability can lead to higher quality, cost-competitive 

assemblies.  Therefore, a prominent need has surfaced to find design methods that allow 

parts to correctly assemble, even when subjected to variation. 

 



 2 

1.2 MOTIVATION FOR THE RESEARCH 

Recent design methods have focused on eliminating the effects of variability.  

Collectively called “robust design”, they are intended to reduce the effects of variability 

without necessarily eliminating the causes.   

 

For example, smart assemblies have recently been recommended as a robust 

design method.  Smart assemblies include “features, not otherwise required by the 

function of the design, which allow the design to absorb or cancel out the effects of 

variation” [Downey et. al. 2002].   Some examples of smart assemblies include adjustable 

screws, springs that absorb variation, and slotted holes [Downey 2001].  The smart 

features can adjust as needed to allow the assembly to be used under a wide range of 

conditions. 

 

Traditionally, however, robust designs get overlooked in favor of the more 

familiar methods of problem solving in manufacturing.  These traditional methods 

include tightening tolerances on parts, re-design, and brute-force. 

 

Designers tighten tolerances to try to control variability in an assembly.  It seems 

logical that if parts will not come together in an assembly, those parts must be re-

manufactured with dimensions closer to the nominal position.  To avoid any future re-

work, the parts are assigned tighter tolerances.  However, assemblies that require high 

accuracy can have tolerances so tight that certain parts are almost without tolerances, 

leading to very costly designs.  Perfect parts are high expectations from imperfect 

manufacturing processes and environments. 
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Another popular method to deal with variability in assemblies is to redesign parts 

mid-process until everything comes together as desired.  Shapes change; different 

materials are explored; designs are altered; and the new design is progressively 

implemented.  Problematic variability is simply eliminated through design changes made 

over time that seem to work.  Re-design is a very real, very popular, and often very costly 

solution in industry.  

 

Often, the most popular or common method employed to fix the effects of 

variability does not involve much thought about tolerances or the various properties of 

the parts.  Instead, sheer brute force, often leading to deformations or dysfunctional 

assemblies, becomes the solution of choice.   

 

However, the recent work of engineers, especially at the Eastman Kodak 

Company, has suggested that the solution may be more basic or fundamental than 

currently practiced or understood.  Faulty assemblies may not be the effect of 

dimensions, tolerances, shapes, or material.  The problem may well be with the total 

number of constraints found in an assembly.  If a design does not behave as intended, it 

could be due to not enough or too many constraints in the assembly.  This thesis will 

explore another robust design method called exactly constrained design that absorbs 

variability through minimizing the total number of constraints in an assembly, while still 

eliminating all necessary motion. 
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1.3 EXACTLY CONSTRAINED DESIGN 

For any unconstrained part in 3D, six directions of motion are allowed:  

translation in the x, y, and z directions, and rotation about the x, y, and z axes.  Likewise, 

for 2D parts, translation in the x and y-directions and rotation about the z-axis is possible.  

There are no limitations on motion if there are no constraints. 

 

As parts come together to form an assembly, the joints formed by mating parts 

introduce constraints into the system.  The constraints limit the allowable motion of the 

assembly.   

 

Exactly constrained (EC) design uses a minimum number of constraints to 

eliminate undesired motion.  In addition, each constraint must have a complementary 

force applied (called a nesting force) that keeps the part and the constraint in contact.  

Strategic placement of the minimum number of constraints coupled with the nesting force 

constitutes an EC design.   

 

As a simple example, consider Fig. 1.1, which is a block resting on a table.  In this 

case, the block must not be allowed to move.  Currently, however, this block can slide in 

the x and y directions, and it can rotate about z.   
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          (a)          (b) 

Figure 1.1 – Block resting on a table.  (a) Front view (b) Top view 

 

To inhibit the motion currently allowed, constraints must be added (Fig. 1.2).  To 

constrain translation in the x-direction, a peg (C1) is placed to the right of the block.  To 

constrain y-translation, a peg (marked C2) is placed at the top of the block.  In order to 

inhibit rotation, a final peg (marked C3) is added to the bottom left of the block.  As 

mentioned earlier, it is necessary to have a nesting force for each constraint (Fig. 1.2a), 

but these forces may be combined to find one resultant nesting force for the design (Fig. 

1.2b). 

 

x

y

C1

C2

C3

 

x

y

 

(a) (b) 
 

Figure 1.2 – Constraints and nesting forces to make the box immobile 
(a) Individual nesting forces (b) Resultant nesting force 



 6 

A simple comparison of two common assemblies may further help to understand 

EC design.  Imagine a three-legged stool versus a normal table chair with four legs.  Both 

assemblies need to stay flat on the ground for optimal convenience.  When just one leg is 

attached to the seat of the stool or chair, each assembly can still rotate in all three 

directions.  When two legs are attached, each assembly can still rotate about the line 

formed by the two points where the legs rest.  When a third leg is added, all three legs sit 

flat on the ground.  There is no rotation or translation.  All the legs will rest squarely on 

the ground regardless of incline or roughness.  Adding a fourth leg now makes the chair 

over-constrained.  In order for all four legs to sit squarely on the ground (and thus allow 

no “wobble”), the ground must be perfect and the legs must be the same height.  

Otherwise, there must either be deformation between the ground and the legs so the chair 

sits flat, or the user must have a tolerance for “wobble.”  The fourth leg makes a 

difference.  The exactly constrained stool has more flexibility for use than the four-legged 

chair, although the four-legged chair has greater stability (and hence the reason four-

legged chairs are used more often).   

 

1.4 ADVANTAGES OF EXACTLY CONSTRAINED DESIGN 

Exactly constrained design yields some highly desirable advantages.  As will be 

discussed throughout this thesis, EC designs will assemble under a wide range of 

conditions with no looseness or binding.  In fact, EC assemblies will not just assemble 

under a wide variety of conditions, but they will operate under a wide variety of 

conditions as well.  For example, changes in material due to temperature often become a 

non-issue.  This kind of robust design methodology means that assemblies can be 

produced with lower priced, less accurate parts.   
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Additional advantages include other benefits as well.  Assemblies can be 

assembled and reassembled with very little overall change to the function of the system.  

Tolerances can be looser.  Costs are often reduced due to less re-work.  Less time and/or 

resources are spent in re-design or problem solving to fix an EC assembly.     

 

1.5 ADVOCATES FOR EXACTLY CONSTRAINED DESIGN 

Exactly constrained design is unusual because the greatest advocates have come 

not from academia, but from industry.  Lawrence Kamm [1993], who refers to EC design 

as “MinCD”, states the benefits of such a design. 

 

When you do minimum constraint design (MinCD), you support 

and guide each body only at points, and at as few points as possible to get 

the desired performance.  If you do so, you will achieve zero looseness 

and zero binding of moving parts; you will achieve assembly of fixed parts 

without strains or rework; and you will do so despite loose manufacturing 

tolerances and semiskilled assembly labor.  You will minimize the 

manufacturing cost of your mechanism, you will make it more reliable, 

you will make it easier to disassemble and reassemble, and you will make 

it easier to maintain. 

 

Douglass L. Blanding [1999] of the Eastman Kodak Company, and one of the 

leaders in defining principles related to EC design, explains some of the advantages he 

has found in his experience with EC design. 

 

The use of these [EC design] principles, collectively called Exact 

Constraint Design principles, provides the designer with a better 

understanding of a machine’s behavior.  This understanding allows the 
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designer to easily create new designs which are both low in cost and high 

in performance. 

 

… Among the benefits to be attained in following these principles 

are extreme precision, predictable performance, and infinitesimal 

distortion of the component parts. 

 

Jon Kriegel [1994], also of the Eastman Kodak company, made a plea to include 

EC design as part of the engineering curriculum. 

 

Based on…an unending list of…examples, it is suggested that 

these problems represent a major weakness in the undergraduate 

engineering educational system.  The objective…is to solicit the support 

of academicians in including Exact Constraint Design as a basic topic in 

Machine Design classes and textbooks.  This involves vocabulary, 

concepts, and examples or case-studies, (the author could personally 

supply 30), and deserves an independent chapter heading. 

 

Michael French, who has included EC design in his textbooks Form, Structure 

and Mechanism [1992] and Conceptual Design for Engineers [1998], writes, “It must not 

be used blindly or invariably…, but it is perhaps the most useful principle in machine 

design.” 

 

1.6 CURRENT PRACTICES 

Current techniques to analyze and use EC design have primarily centered on 

intuition and graphical methods.  They often rely on the designers’ experience to make 

decisions on where to place constraints.   
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For example, Blanding [1999] has developed a system where all constraints are 

schematically the same (essentially pin joints) thus leading to a 6 Rs interpretation—

where any translation is really just a rotation at infinity.  He observes that the type of 

constraint is not as important as where it is placed.  As will be shown in Chapter 2, rules 

primarily based on experience have been developed by him to find a location for the 

constraints in an assembly.  Included in his method is a graphical approach, which shows 

“windows” where nesting forces may sit to keep the assembly properly seated.   

 

1.7 OBJECTIVES OF THE THESIS 

The purpose of this thesis is to build a solid quantitative foundation for exactly 

constrained design.  This foundation will be built upon two primary concepts.  First, it 

has been observed that EC designs are statically determinate.  This observation allows 

equilibrium equations to be used to compute forces.  Second, EC designs can be analyzed 

using the direct linearization method (DLM).  The vector loops in the DLM are utilized to 

show the effects of variation on EC designs. 

 

The concepts stated above will be used to build a quantitative foundation for 

exactly constrained design by: 

 

• Developing a solid definition of exactly constrained design based on 

quantitative principles 

• Developing quantitative methods for analyzing locations of constraints 

• Developing quantitative methods for analyzing the nesting force window 
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• Developing a quantitative method to determine the “goodness” of an EC 

design 

• Examining the effects of variation in exactly constrained designs vs. over-

constrained designs 

 

1.8 DELIMITATIONS 

The thesis presented will primarily treat 2D assemblies.  The results found for 2D 

assemblies can be generalized for 3D assemblies. 

 

Also, mechanisms are not included in this thesis.  Only immobile assemblies are 

presented as examples. 

 

1.9 THESIS OVERVIEW 

The remainder of the thesis will proceed in logical fashion.  Chapter 2 will give 

much more detail and further background for exactly constrained design.  Chapter 3 will 

define and use mathematical or quantitative principles to validate many of the heuristic 

rules developed over time for EC design.  Chapter 4 will expand the work of Chapter 3 

by presenting a general method to analyze the placement of constraints in an EC design.  

Chapter 5 builds upon the work in Chapter 4 by showing a procedure to find a measure of 

“goodness” between several configurations of an EC design.  Chapter 6 will then show 

how EC designs are more robust than similarly over-constrained designs.  Finally, 

Chapter 7 will state all contributions, conclusions, and recommendations related to this 

thesis. 
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CHAPTER 2 BACKGROUND AND LITERATURE REVIEW FOR EXACTLY 

CONSTRAINED DESIGN 
 
 
 
2.1 INTRODUCTION 

As mentioned in Chapter 1, exactly constrained (EC) design can be a useful tool 

in the engineering world.  Chapter 2 will discuss the background, history, and current 

analysis methods for EC design.   

 

EC design is a robust design method for mechanical assemblies with a history 

dating back to at least the early 1840’s.  The history, background, and current methods of 

analysis will be followed by an explanation of the antitheses to EC design:  over-

constrained and under-constrained design.  Examples of EC design will be followed by 

the explanation of several tools that will help to ultimately develop the quantitative 

foundation presented in this thesis. 

 

2.2 EXACTLY CONSTRAINED DESIGN AS A ROBUST DESIGN METHOD 

 Parkinson [1995] has defined robust design as “a design that works properly even 

when subjected to variation, which may be introduced by manufacturing processes, by 

the environment, by the end user, or by parts provided by outside suppliers.”  Although 

applicable to assemblies, robust design also pertains to all types of design models. 
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 As will be illustrated in Chapter 6, EC designs fall into the category of robust 

design because they can appropriately assemble and reassemble even when subjected to 

variation.  As will be explained in Section 2.4, EC designs do so by using the minimum 

number of constraints to hold an assembly in place.   

 

 Before the technical details are presented for such a robust design, however, the 

history of the method will be reviewed.  The purpose in reviewing the history is best 

explained by Chris Evans [1989] in Precision Engineering as a way to “show the present 

to itself by revealing its origin.”  The history shows that the basic principles were 

understood and preserved by a handful of followers in the generations that followed the 

original pioneers. 

 

2.3 HISTORY OF EXACTLY CONSTRAINED DESIGN 

 One of the earliest leaders in EC design was Robert Willis, who extensively 

lectured and published his Principles of Mechanism beginning around 1841.  Presumably 

as a result of Willis’ work, William Thomson (Lord Kelvin) and James Clerk Maxwell 

carried on the principles known in that day as “geometric” or “kinematic” design.   

 

In 1876, James Clerk Maxwell [Niven 1890] clearly described the basic ideas 

relating to what was often referred to as “kinematic design”.   

 

Each solid piece of the instrument is intended to be either fixed or 

movable, and to have a certain definite shape.  It is acted on by its own 

weight, and other forces, but it ought not to be subjected to unnecessary 

stresses, for these not only diminish its strength, but (what for scientific 
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purposes may be more injurious), they alter its figure, and may, by their 

unexpected changes during the course of an experiment, produce 

disturbance or confusion in the observations we have to make.   

 

We have, therefore, to consider the methods of relieving the 

pieces of an instrument from unnecessary strain, of securing for the fixed 

parts a determinate position, and of ensuring that the movable parts shall 

move freely, yet without shake.   

 

This we may do by attending to the well-known fact in 

kinematics—‘A RIGID BODY HAS SIX DEGREES OF FREEDOM’. 

 

A rigid body is one whose form does not vary.  The pieces of our 

instrument are solid, but not rigid.  They are liable to change of form 

under stress, but such change of form is not desirable, except in certain 

special parts, such as springs.   

 

Hence if a solid piece is constrained in more than six ways it will 

be subject to internal stress, and will become strained and distorted, and 

this in a manner which, without the most exact micrometrical 

measurements, it would be impossible to specify.   

 

In instruments which are exposed to rough usage it may 

sometimes be advisable to secure a piece from becoming loose, even at 

the risk of jamming it; but in apparatus for accurate work it is essential 

that the bearings for every piece should be properly defined, both in 

number and in position (emphasis added). 

 

 Thus, Maxwell described that any solid piece must not be constrained in more 

than six ways; otherwise, the part will become strained and disfigured.  He continued by 
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illustrating “[m]ethods of placing an instrument in a definite position”.  His example 

explains the three V’s method for a geometrical or kinematic clamp (Fig. 2.1a), which he 

compares to Kelvin’s kinematic clamp (which uses a trihedral hole, a V-groove, and the 

horizontal plane of the base to constrain motion).  While more specific details will be 

discussed in Section 2.4, the six degrees of freedom are constrained by three joints to 

allow no motion between parts in both clamps. 

 

 

(a)      (b) 

Figure 2.1 – Examples of kinematic clamps (a) Maxwell’s 3 V’s example (b) Lord 
Kelvin’s clamp (after Evans [1989]) 

 
 

 In 1937 and again in 1954, T. N. Whitehead published his Design and Use of 

Instruments and Accurate Mechanism which is based on the principles described by 

Maxwell.  It resurrected and developed the ideas promoted by the previous experts, and it 

formed the basis for what is today called exactly constrained design. 

 

Kinematic design, as that term is frequently used, implies a design 

whereby the various links of each element, forming an instrument, are 
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constrained by the theoretically minimum number of point contacts, given 

the degrees of constraint required. 

 

 Lawrence Kamm [1993] developed an entire career based on the principles as 

outlined in Whitehead’s book.  In his book, Designing Cost-Efficient Mechanisms, Kamm 

follows Whitehead’s approach in presenting “a book of ideas and not of calculations.”  

He offers a basic description and many ideas on designing mechanisms based on the 

number and placement of constraints. 

 

Several other industrial leaders also built their careers on principles as defined in 

the work of Whitehead.   Most notably, engineers from the Eastman Kodak Company 

used EC design for over 20 years to solve many problems.  John McLeod (who coined 

the term “exact constraint design”) and John E. Morse (“Exact Jack” Morse) used the EC 

principles for designs ranging from structures to conveyor belts to flexure mechanisms. 

 

 The design principles of EC design were more fully described by another member 

of the Eastman Kodak Company, Douglass L. Blanding, author of Exact Constraint:  

Machine Design Using Kinematic Principles.  He had the benefit of working with and 

learning from Jack Morse for about two years.  This mentoring helped him establish and 

further define many basic principles in EC design.  Blanding’s work is the basis for many 

of the EC designs in use today. 

 

Before a detailed overview can be presented for the current methods developed by 

Blanding and others on how to use the principles of EC design, the underlying concepts 
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must be discussed.  A brief background for EC design will be followed by the methods 

currently in use. 

 

2.4 BACKGROUND FOR EXACTLY CONSTRAINED DESIGN 

An assembly is comprised of smaller, interconnecting parts.  It can be immobile, 

such as a stool is an assembly made of a seat and legs, or it can have motion, such as a 

robot. 

 

Each part in an assembly connects to another part by way of a joint.  Each time 

parts are joined together, the degrees of freedom are affected. 

 

The degrees of freedom define the motion that is allowed.  It is well known that 

for 2D solids with no constraints (Fig. 2.2), there are three degrees of freedom:  x-

translation, y-translation, and rotation about the z-axis.   

 

x

y

 

Figure 2.2 – 2D object with three degrees of freedom.  The object can translate 
along the x and y-axes, and it can rotate about the z-axis. 
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For 3D solids with no constraints (Fig. 2.3), there are six degrees of freedom.  

There will be x, y, and z translation, as well as rotation about the x, y, and z-axes. 

 

y

x

z

 

 
Figure 2.3 – 3D object with six degrees of freedom.  The object can translate along 

and rotate about the x, y, and z-axes. 
 
 

When parts assemble together and form joints, the degrees of freedom change.  

Each type of joint in the assembly constrains motion in one or more directions, but the 

joint may also continue to allow motion in other directions.  For each direction inhibited 

by a joint, one degree of freedom is lost, thus adding one degree of constraint to the 

assembly.  The types and number of joints used ultimately determine the degrees of 

freedom in an assembly. 

 

Chase [1999] has suggested that all mating parts in 2D assemblies can be 

described by the six kinematic joint types in Fig. 2.4 (a similar graphic for 3D assemblies 

is found in Appendix F).  The rigid joint provides three constraints.  A planar joint 

provides two constraints.  An edge slider joint provides one constraint, and so on. 
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Rigid Planar Edge
slider

Cylinder
slider

Revolute Parallel
cylinders  

Figure 2.4 – Six kinematic joints for 2D assemblies.  The arrows represent the 
allowable degrees of freedom (after Chase [1999]). 

 

It should be noted that while Blanding [1999] has chosen to limit his designs to 

the cylinder slider type joint, any of the joints presented in Fig. 2.4 can be used in an EC 

design.  Figure 2.24, for example, shows a block assembly which uses a revolute joint to 

constrain two degrees of freedom. 

 

 With a basic understanding of assemblies and their constraints, EC design can be 

easily described.  An EC design entails assigning a minimal number of constraints to 

eliminate each necessary degree of freedom in an assembly.  Constraints are achieved 

through joints, and the appropriate type and number of joints to use depends on which 

degree(s) of freedom should be constrained.  The 2D joints shown earlier (Fig. 2.4) can 

provide one, two, or three constraints per joint, depending on the type of joint chosen. 

 

Placing a constraint includes more than just finding a location for a joint.  If the 

constraint does not stay in constant contact with its mating part in an assembly, it is as if 
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no constraint exists and unexpected motion results.  Therefore, every constraint must also 

have a nesting force to guarantee constant contact with the part.   

 

If there are three constraints, the assembly must then also have three nesting 

forces.  However, these three nesting forces can be combined into one resultant nesting 

force that would properly seat the assembly.  It is important to emphasize that to properly 

seat the assembly, the nesting force must be applied so as to provide force in all 

necessary directions; thus, there must be a nesting force that provides seating in both the 

x and y-directions.   

 

Examples of nesting forces may be the weight of an assembly, an applied force, 

friction, and smart features that absorb variability.  Pearce [2003] gives a method to 

design nesting forces using smart features. 

 

2.5 CURRENT METHODS TO ANALYZE EXACTLY CONSTRAINED DESIGN 

The basic background to EC design naturally leads to a discussion on the current 

methods used by the experts.  EC design requires several major considerations.  First, 

how many constraints will be required to exactly constrain the assembly as necessary, 

and where should those constraints be placed in an assembly?  Then, where should the 

nesting force(s) be placed? 

 

2.5.1 DEFINING THE CONSTRAINTS 

 As mentioned earlier, the type and number of constraints depend on the required 

motion of the assembly.  However, certain rules have been described by Blanding to help 
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correctly place constraints for EC design.  Those rules are presented as summarized by 

Skakoon [2000]. 

 

2D rules for exactly constrained design 

1. No two constraints are co-linear. 

2. No four constraints are in a single plane. 

3. No three constraints are parallel. 

4. No three constraints intersect at a point. 

 

3D rules for exactly constrained design 

1. No four constraints are parallel. 

2. No four constraints intersect at a point. 

3. No four constraints are in the same plane. 

 

2.5.2 DEFINING THE NESTING FORCE 

Blanding describes a graphical method to find a proper position for the nesting 

force.  His method finds a “window”, and the nesting force can be placed in this region 

without causing motion or instability in the assembly.  His method can be summarized, as 

follows. 

 



 21 

1. Draw constraint lines to find the instant centers between constraints. 

2. Remove the constraints one at a time to find the effects on the assembly. 

3. Determine the proper rotation of the block with respect to the pertinent instant 

center to enable the constraint to restore contact with the assembly. 

4. Determine which line segments of the constraint lines drawn allow a force to 

cross it and still maintain the proper rotation for each instant center. 

5. If the conditions in step 4 are met, the segment is allowed into the nesting 

force window. 

 

This method can be better understood with an example.  Therefore, consider the 

constrained triangle given in Fig. 2.5. 

 

 

Figure 2.5  – Triangle with three constraints 

 

The resultant nesting force must sit within a certain window in order to be 

effective.  To find that window, “constraint lines” must first be drawn.  They are 

infinitely long lines normal to the object’s surface at the point of contact.  The 

intersection of each of these lines is called an instant center (Fig. 2.6). 
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Figure 2.6 – Triangle with constraint lines drawn and instant centers defined 

 

Next, each constraint must be moved away from the triangle, one at a time, to 

determine the effects on the assembly.  What would need to happen for the object to 

restore contact with the constraints?  As an example, if the top constraint were moved as 

shown in Fig. 2.7a, the triangle would need to pivot counterclockwise about the instant 

center of the two remaining constraints in order to restore contact with the top constraint.  

Therefore, a counterclockwise arrow is drawn around that instant center to show what 

would need to happen to restore contact between the part and the constraint (Fig. 2.7b). 
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(a)      (b) 

Figure 2.7 – Finding rotation on the left instant center (a) Moving the top constraint 
(b) Direction of necessary rotation at the instant center to restore contact between 

the constraint and the triangle 
 

 
Next, the constraint on the hypotenuse is moved away from the triangle (Fig. 

2.8a).  In order to re-establish the contact between the constraint and the object, it will 

again be necessary to rotate the triangle counterclockwise about the instant center for the 

two remaining constraints (Fig. 2.8b). 

    

(a)         (b) 

Figure 2.8 – Finding rotation on the top right instant center (a) Moving the 
constraint on the hypotenuse  (b) Direction of necessary rotation to 

restore contact between the constraint and the triangle 
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After moving the left side constraint away from the triangle, the final rotation can 

be found.  The object would need counterclockwise rotation about the remaining instant 

center to maintain its current position (Fig. 2.9). 

 

  

Figure 2.9 – Direction of all necessary rotations on each instant center 
 
 

After finding the proper rotations on each instant center, each segment of each 

constraint line is individually evaluated to determine if it is allowed in the nesting force 

window.  Certain conditions must be met for a line segment to qualify to be in the 

window. 

 

1. The line of action for the nesting force must intersect the segment, AND 

2. The direction of the force must cause correct rotation about each of the instant 

centers related to the segment of the constraint line that is being evaluated. 
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If the conditions are met, the segment is part of the allowable region of the nesting 

force window.  If the conditions are not met, a thick, bolded line is imposed on the 

drawing to show which segments the nesting force line of action cannot cross.   

 

To continue the example presented earlier, consider the line highlighted in Fig. 

2.10 below, with a force crossing the segment (only the rotations for the relevant instant 

centers are shown).  The force causes counterclockwise rotation about the instant center 

for the top left instant center, as well as the bottom instant center.  Thus, the line of action 

for a nesting force would be allowed to cross this segment, and it is an acceptable region 

of the nesting force window. 

 

 

Figure 2.10 – Test to see if the nesting force is permitted to pass through the 
highlighted line. 

 
 
 

Now, consider the highlighted line segment in Fig. 2.11a, which has a force 

passing through it.  The force allows correct rotation for the lower instant center, but the 

rotation is incorrect for the top instant center.  Therefore, this line segment is not allowed, 



 26 

and the highlighted line is blackened to show that the line of action for the nesting force 

cannot pass through this line segment (Fig. 2.11b). 

 

  

(a)     (b) 

Figure 2.11 – Testing a segment in the nesting force window (a)  Testing a line 
segment to determine if it is in the nesting force window (b) Bolded line to 

show the line segment is not allowed in the nesting force window 
 
 

Each segment of each constraint line in turn can be tested.  Fig. 2.12a shows the 

nesting force window after all line segments have been checked.  Again, the bolded lines 

show where the line of action for the nesting force cannot cross.  Also, a resultant nesting 

force is shown on the assembly.   

 

The nesting force window can be more easily understood if it is projected onto the 

surface of the assembly.  While specific details showing how to project the graphical 

nesting force window onto the boundary of the assembly have never been seen in 

publication, this projection is easily accomplished by placing a nesting force along each 

segment of the boundary.  If the nesting force passes through the unacceptable region of 
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Fig. 2.12a, that portion of the boundary is bolded.  If it does not pass through the 

unacceptable region, all constraint line segments through which the line of action for the 

nesting force passes must be re-tested to ensure proper rotation at the instant centers.  

Figure 2.12b shows the nesting force window projected onto each surface.   

 

    

    (a)          (b) 

Figure 2.12 – The allowable nesting force window.  The bolded lines show the 
segments through which the nesting force line of action cannot go (a) The 

line of action of the nesting force cannot pass through the bolded region (b) 
A perpendicular nesting force cannot be placed in any bolded portion of the 

assembly. 
 

 

Thus, the graphical method used by Blanding finds the nesting force window 

based on the position of the constraints and the intersection of the constraint lines.  The 

nesting force itself can be placed anywhere in the acceptable region of the window. 

 

2.6 ALTERNATE DESIGNS 

With such a powerful tool in engineering, one may wonder why EC design is not 

used more frequently.  As the principles of EC design are not generally taught in school, 
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engineers are not usually familiar with, or they simply do not have an appreciation for the 

method.  They tend to have more experience with two other modes of design:  over-

constrained design and under-constrained design. 

 

2.6.1 OVER-CONSTRAINED DESIGN 

 It is not fair to say that all designs must be exactly constrained, although there are 

indeed many advantages to making a design exactly constrained.  For example, lower 

cost, inaccurate parts can be assembled and reassembled with a very high level of 

precision (meaning that the results can be consistently reproduced in the same assembly).  

However, sometimes higher stability, or greater load sharing is desired.  One alternative 

is to over-constrain the design, at a higher cost (and often lower quality) to the 

manufacturer.  

 

An over-constrained (OC) design simply uses more constraints than the minimum 

number necessary, and it is very common in design today.  Two or more of the 

constraints compete to hinder the same degree of freedom. 

 

 As a very simple example, consider the block assembly in Fig. 2.13a below.  The 

base plate of the assembly has two rigidly-connected pegs.  They fit through the two 

drilled holes of the top plate.   
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   (a)      (b) 

Figure 2.13 – Slotted block OC and EC design (a) Over-constrained assembly        
(b) Exactly constrained assembly 

 
 

The left peg constrains the assembly in the x and y-directions.  Only one more constraint 

is needed—something to eliminate rotation; however, the right peg not only eliminates 

rotation, but it also competes to constrain the block in the translational x-direction.  If the 

location of either peg is manufactured with any variability in the x-direction, this block 

will not assemble.  A similar design that is exactly constrained is shown in Fig. 2.13b.  

This new assembly could absorb variation in the x-direction. 

 

Over-constrained assemblies often happen without the designer realizing what is 

causing the assembly problems in a design.  Designers have learned to tighten tolerances, 

develop manufacturing methods with higher precision, expect higher accuracy from 

intermediate parts, and just force something to work when they do not understand that the 

design is over-constrained.  Valuable resources are used in redesign, and time is lost 

when things do not work correctly.  In all of the redesign, very rarely does an engineer 

turn to the root of the problem—the design is not properly constrained to allow for 

flexibility in an assembly. 

x 

y 



 30 

In the case of over-constrained designs, the designer must determine if the 

advantages of over-constraint outweigh the advantages of an EC design.  Symptoms of 

over-constraint include binding or loose fitting parts, built-up stresses in assemblies, and 

the need for tighter tolerances. 

 

2.6.2 UNDER-CONSTRAINED DESIGN 

 An under-constrained design is a design that should not have motion in a 

particular direction, but motion still occurs.  There is insufficient constraint or insufficient 

nesting force to inhibit the motion.   

 

 An example of an under-constrained design can be found in a simple four bar 

mechanism.   

 

 

Figure 2.14 – Four bar mechanism. 
 
 

Under most circumstances, a designer would want one degree of freedom in the four bar 

mechanism.  However, sometimes designers use the four bar for immobile designs, such 

as fences or platforms.  If not properly constrained, the design will fail.  An exactly 

constrained immobile design is shown in Fig. 2.15. 
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Figure 2.15 – Exactly constrained design. 
 
 

2.7 EXAMPLES OF EXACTLY CONSTRAINED DESIGN 

Now that the background has been presented, several examples will be offered to 

show just how effective EC design can be.  Kelvin’s kinematic clamp will first be 

revisited, followed by an example from Blanding.  Finally, an industrial example will be 

given to show how EC design improved a copy machine component.  

 

2.7.1 KELVIN’S KINEMATIC CLAMP 

 Lord Kelvin’s [Evans 1989] kinematic clamp example from Fig. 2.1 (shown 

below as Fig. 2.16) provides a simple case in which to see the strength of EC design.  

Three simple joints will provide six constraints which eliminate all six degrees of 

freedom to provide a repeatable assembly.  

 

 

Figure 2.16 – Kelvin’s kinematic clamp (after Evans [1989]) 
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To begin, imagine the triangular top piece with three pegs, and the circular fixed 

base without any notches.  If the two pieces are assembled, the design would obviously 

not be immobile.  Rather, three points from the triangular part would slide along the face 

of the base.  The assembly would be partially constrained, allowing two directions of 

translation and one direction of rotation.  

 

After adding the trihedral notch (on the left), three degrees of freedom are 

eliminated (x, y, and z positions have been set) because the trihedral has three points of 

contact with its mating peg.  The trough shape eliminates two more degrees of freedom 

(two rotations) after two points of the right-back peg make contact with it.  The top piece 

can now only rotate about the line formed between the trihedral notch and the trough.  

That leaves one degree of freedom, and thus the third peg contacts the face of the base, 

which eliminates the remaining rotation.  In this example, the weight of the clamp is the 

nesting force.  Notice that this clamp shows high precision because it can be assembled 

and reassembled with no change to the overall function of the clamp.  Also, the 

tolerances on any of the parts would not have much effect on the function of the 

assembly.  Inaccurate parts can be used with similar results. 

 

2.7.2 BLANDING’S 2D BODY ON TWO PINS EXAMPLE 

Douglass Blanding [1999] shows the example depicted in Fig. 2.17.  This 2D 

assembly has the body situated on two pins.  The left pin provides two constraints for the 

assembly, which leaves the body to rotate.  The right pin provides the constraint against 

rotation.   
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Figure 2.17 – 2D body located by two pins (after Blanding [1999]) 

 

 Figure 2.18 shows an industrial example in 3D based on the same principles.  It is 

called the MicronWorm, and it is used in optical research.  Notice at the base of the 

machine that two rollers move along a shaft, while to the bottom right of the design a 

roller moves along the base. 

 

 

Figure 2.18 – Industrial example using the assembly presented in Fig. 2.17 
(after Savoie, MIT) 

 
 

2.7.3 KRIEGEL’S COPY MACHINE EXAMPLE 

Kriegel [1994] used the theory of EC design to resolve over-constraint in an 

office copier machine.  The copier machine had two large foam rolls mounted inside the 

part in question, called a baffle.  The rollers inside the baffle feed paper around a turn, 
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and they send it on to the staple hopper.  The initial baffle design (Fig. 2.19) had four 

mounting screws holding the part in place between the side plates of a major frame.  

Unless the baffle was nearly perfect when manufactured, there was some clearance 

between the baffle and the side plates.  As the screws were tightened, the side plates 

deflected inward, and that in turn inhibited other parts of the machine from performing 

properly. 

Y

XZ

 

Figure 2.19 – Initial baffle design (after Kriegel [1994]) 
 
 

In an attempt to stop the side plates from deflecting, an engineer added angle-iron 

channels to be welded onto the side frames (Fig. 2.20).  This step indeed stopped the 

deflection of the side plates; but when the screws were tightened, the baffle arched in 

such a manner that there was a gap in the foam rolls, and the paper-drive was lost. 
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Figure 2.20 – Baffle with angle-iron channels (after Kriegel [1994]) 
 

 

In response, the engineer added an additional stiffening brace to the baffle (Fig. 

2.21) to eliminate the possibility of the rolls losing their function.  Hence, when the 

screws were tightened, the ears fractured, and they tore off the baffle. 

 

 

Figure 2.21 – Baffle with an additional stiffening brace (after Kriegel [1994]) 
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A designer began to focus on the source of the problem instead of just the 

symptoms of the problem.  To counter the latest issue, two relatively expensive fasteners 

were designed into the system to be used at whichever end had the screws tightened last 

(Fig. 2.22).  The fastener could now be adjusted at the time of assembly to set a specific 

gap for each baffle. 

 

 

Figure 2.22 – Fastener for the baffle (after Kriegel [1994]) 

 

Kriegel explained that the solution to this problem was to be found in the number 

of constraints controlling the baffle.  Once the first two screws were tightened on one end 

of the baffle, the final position of the baffle along the z-axis (see Fig. 2.19) was already 

decided.  Trying to tighten the screws on the other side of the baffle competed with the 

already established position of the screws on the first side.  In fact, the first two screws 

fixed all degrees of freedom for the assembly except rotation about the line connecting 

the two screws. 

 

Thus, on the free end, a pin may be inserted through one, but not both of the 

remaining ears.  To ensure that the baffle would not rattle (which may result with just one 
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pin inserted), a single straight tab through the frame allowed for a natural clamp without 

applying a load along the z-axis (Fig. 2.23).  As Kriegel states, “Slots in both parts, 

arranged at 90o to each other, allow loose tolerances and low cost with no compromise to 

positional accuracy.” 

 

Y

XZ  

ear from the baffle
with a horizontal slot

frame bent back
with a vertical slot

 

Figure 2.23 – Final design for the baffle (after Kriegel [1994]).  The double slot 
absorbs variation in the design without affecting the assembly along the z-

axis. 
 
 
 

Thus, EC design provided Kriegel, Blanding, and Kelvin simple, inexpensive 

solutions to some very complicated problems.  They all showed that controlling the 

constraints in a system can be beneficial and productive. 

 

As illustrated in the examples, a designer does not always realize a design is over-

constrained (or perhaps under-constrained) until it is too late.  Methods have been 
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developed to help determine the constraint status of an assembly.  For example, Adams 

[1998] has developed a tool to find the constraint status of a design.  This method will be 

discussed in the next section. 

 

2.8 USING SCREW THEORY FOR CONSTRAINT ANALYSIS 

 It is not the aim of this thesis to redevelop the concepts behind screw theory as a 

method for constraint analysis.  A detailed description of the method can be understood 

by reading Adams [1998].  In short, screw theory [Ball 1900] can be used to find whether 

an assembly is under-constrained through an analysis in “twist” space or over-constrained 

through an analysis in “wrench” space.  If the assembly is not shown through screw 

theory to fall into either of these cases, the design is exactly constrained. 

 

 To find whether a design is under-constrained, the designer must develop a twist 

matrix for each joint in an assembly.  In the twist matrix, each row represents one degree 

of freedom allowed by the joint.  A reciprocal operation (which is a series of matrix 

operations described in Appendix A) transforms each twist matrix into a wrench matrix.  

All the wrenches are unionized (combined into the same matrix), and the reciprocal 

operation is again applied to transform the matrix into a resultant twist matrix.  From this 

twist matrix, any under-constraint can be detected. 

 

 To find whether a design is over-constrained, the designer must develop a twist 

matrix for each joint in the assembly (these are the same twist matrices as found above 

for the under-constrained analysis—they are not the resultant twist matrix).  They are 

initially unionized, and then the reciprocal operation is applied.  The resulting wrench 
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matrix shows the over-constraint that is present.  Additional explanation can be found in 

Adams [1998], Adams and Whitney [2001], Whitney et. al [1999], Phillips (1984), Roth 

(1984), Waldron (1966), Konkar (1993), and Konkar and Cutkosky (1995). 

 

 As an example of Adams’ constraint analysis method, consider the 2D assembly 

in Fig. 2.24.  Similar examples are outlined in several documents [Adams 1998, 2001].  

The assembly has a base block with two rigidly connected pegs.  A top plate has two 

features machined out such that the left peg fits exactly into the left hole of the plate.  The 

right peg fits in the slot.  The dimensions of the hole and slot are not under consideration; 

however, the angle of the slot is allowed to vary from assembly to assembly.  Note that 

the specific details and calculations for this example can be found in Appendix A. 
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Figure 2.24 – Slotted block example for Screw Theory 
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To determine if this assembly is exactly constrained, twist matrices must be 

found.  To do so, a transformation matrix relates each feature to the parts in the assembly.   

 

 From these transformation matrices, a twist matrix can be found.  Each twist 

matrix will have a row for each possible degree of freedom allowed by the joint.  For 

brevity, only the twist matrices are shown here.  More detail on how to find the twist 

matrix can be found in Appendix A. 

 

[ ]05.23100Twistleft −=  

 








 −
=

001000

05.63100
Twist right  

 

 A motion analysis is performed to learn if the assembly is under-constrained.  

This entails applying the reciprocal operation (Appendix A) to each twist to form wrench 

matrices.  These wrenches are combined into the same matrix by a union, and the 

reciprocal operation is applied to the unionized wrench matrix, leading to a resultant twist 

matrix.  For Fig. 2.24, the resultant twist matrix is empty, as shown below. 

 

[ ]000000 

zy x          

=Twist

θθθ zyx  

 

Thus, for the given setup, this assembly is not under-constrained.  All degrees of freedom 

are constrained, and there will be no unanticipated motion. 
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 A force analysis is performed to learn if the assembly is over-constrained.  This 

time, the twist matrices are unionized at the beginning.  Then, the reciprocal operation is 

applied.  The first three columns in the resulting wrench matrix show translation in the x, 

y, and z directions.  The last three columns show rotation in x, y, and z, respectively.  For 

this example, the wrench matrix shown below illustrates that this assembly is not over-

constrained.  Based on the description above, there is no translation in x or y, and there is 

no rotation about z.  As this example is only in 2D, the over-constrained directions shown 

in the wrench matrix (z-translation and x and y-rotation) do not apply. 
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2.9 THE DIRECT LINEARIZATION METHOD USED FOR VARIATION 
ANALYSIS OF EC DESIGNS 

The direct linearization method [DLM] is a tolerance analysis method for 

assemblies [Chase, 1999].  The analysis shows the effects that tolerances from various 

parts have on the overall assembly.  Understanding how the tolerances propagate through 

an assembly can help the designer choose good tolerances on dimensions for the parts.  

The method applied to tolerance analysis by the DLM can be adjusted to perform a 

“variation analysis” for EC design. 

 

One of the major issues in manufacturing and assemblies is variability in 

dimensions from part to part.  As has been suggested earlier and in literature, variability 



 42 

is much less of an issue for EC design.  The effects of dimensional variation on EC 

assemblies versus over-constrained (OC) assemblies will be explored (Chapter 6) using 

the vector loops from the DLM. 

 

Several steps from the DLM can be used to find the effects of variation in 

assemblies.  They are listed here, and each is briefly described. 

 

1. Create an assembly graph. 

2. Locate the datum reference frame for each part. 

3. Locate the kinematic joints and create datum paths. 

4. Create vector loops. 

5. Generate vector loop equations. 

6. Calculate derivatives and form matrix equations. 

7. Solve for assembly sensitivities. 

 

The general method will be illustrated with the simple assembly shown in Fig. 2.25. 

 

 

Figure 2.25 – Sample assembly to show variation analysis method 
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2.9.1 CREATE AN ASSEMBLY GRAPH 

The assembly graph is a diagram representing connectivity relationships in an 

assembly.  For the given example, the diagram looks like Fig. 2.26.  The assembly graph 

shows that there will be one vector loop for this example. 

 

The number of vector loops can also be determined by using a simple equation. 

# Loops (L) = # joints (J) - # parts (P) + 1 

Thus, for the example in Fig. 2.26, J = 3, P = 3, and L = 1. 

 

Block

Circle Triangle
 

Figure 2.26 – Assembly graph 

 

2.9.2 LOCATE THE DATUM REFERENCE FRAME FOR EACH PART 

The datum reference frame (DRF) is a local coordinate system for each part.  The 

datum reference frames for each part in Fig. 2.25 are illustrated as black solid shapes on 

Fig. 2.27. 

 

2.9.3 LOCATE KINEMATIC JOINTS AND CREATE DATUM PATHS 

The next step is to relate all the joints to the datum reference frames established in 

Section 2.9.2 through vectors that form what is called a datum path.  The kinematic joints 

are the contact points between parts.  A datum path is a chain of vectors that link a joint 
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to all relevant datum reference frames.  The chain starts at a joint and goes to all the 

related datum reference frames for that joint.   

 

Figure 2.27 shows an example of the datum paths.  The arrows represent the 

datum path vectors. 

  

Figure 2.27 – Datum paths 

 

2.9.4 CREATE VECTOR LOOPS 

The vector loops are formed from the datum paths.  The loops are formed by rules 

established in Chase [1999].  

 

1. Enter through a joint. 

2. Follow the datum paths. 

3. Follow a second datum path leading to another joint. 

4. Exit to the next adjacent part in the assembly. 
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In short, vector loops are created by linking together datum paths tip-to-tail 

passing through all the joints, but not passing through any part or joint twice.  The vector 

loop for Fig. 2.25 is shown in Fig. 2.28. 

 

x1

x2
u1

y1

u2

y2

r

y2 = r + height   

Figure 2.28 – Vector loop for the assembly 

 

2.9.5 GENERATE ASSEMBLY EQUATIONS FROM VECTOR LOOPS 

 Three assembly equations per vector loop can be derived by summing all the 

vectors in the x and y-directions and by finding the overall sum of the rotations of all 

vectors in the loop.  The vector loops for Fig. 2.28 are shown below.  A non-linear 

equation solver can be used to find the unknowns. 
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2.9.6 CALCULATE DERIVATIVES AND FORM MATRIX EQUATIONS 

In the case of tolerance analysis, only small changes in the components are of 

interest.  Finding the unknowns as stated in Section 2.9.5 is not the final goal.   

 

Finding small changes is easily done by linearizing the vector loop equations by a 

first-order Taylor series expansion.  The linearized equation for hx is shown below.  All 

the equations can be linearized in similar fashion. 
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 The linearized loop equations are written in matrix form.  If the partial derivatives 

of all known variables are placed in a matrix called [A], and the partial derivatives of the 

unknown variables are placed in a matrix called [B], the vector loops are given by the 

matrix equation below. 

 

[ ]{ } [ ]{ } { }0=+ UBXA δδ  

 

2.9.7 SOLVE FOR ASSEMBLY SENSITIVITIES 

 The matrix equation can be solved to find the assembly sensitivities, as shown 

below.     

{ } [ ]{ }XABU δδ 1−−=  

The matrix [B-1A] is the matrix of assembly sensitivities.  It is a key matrix in tolerance 

analysis of assemblies because it represents how the dependent variables change with 
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small variations in the independent variables.  It will be used and further explained in 

Chapter 5. 

 

2.10 CONCLUSIONS 

This chapter showed the history and background of EC design to better 

familiarize the reader with the long history of this method.  It also described over-

constrained and under-constrained designs.  Examples were presented that helped to 

illustrate some of the benefits of EC design when properly used.   

 

Rules for the placement of constraints in an EC design and a method to find the 

nesting force window were presented in this chapter.  Chapter 3 will take this information 

and validate it through a quantitative means.  Chapter 4 will continue to build upon that 

foundation by presenting a generalized method to analyze EC design. 

 

Screw theory was applied in this chapter to determine the constraint status of a 

design.  It will be revisited in Chapter 5 during the formulation of a method to find a 

measure of “goodness” for EC designs. 

 

Finally, the background and steps for the DLM were presented in preparation for 

Chapters 5 and 6.  In Chapter 5, it will be used to help establish a method to find the 

“goodness” of EC designs.  In Chapter 6, it will be used to help validate the claim that EC 

designs are more robust than over-constrained designs. 
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CHAPTER 3 VALIDATION OF THE CURRENT RULES AND METHODS FOR 

EXACTLY CONSTRAINED DESIGN USING A QUANTITATIVE 
FOUNDATION 

 
 
 
3.1 INTRODUCTION 
 

Chapter 2 presented the fundamental concepts and current methods that exist for 

generating exactly constrained (EC) designs.  In addition, examples were given which 

illustrated the advantages allowed by EC design.  

 

Kriegel’s baffle example [1994] especially showed the efficiency and strength of 

EC design.  The final solution was more robust than previous versions, and the tolerances 

did not control the overall design and function of the baffle.  In addition, the threat of 

binding or tearing of key parts disappeared.   

 

However, considering the strength of the methodology, relatively few designs use 

the principles of EC design.  And, despite pleas to include some of the basic principles of 

EC design in engineering curriculum [Kriegel, 1994], the material is largely unknown to 

the engineering community.  One reason for the apparent oversight may be the lack of a 

solid quantitative foundation for the rules, principles, and design methods already in 

practice for EC design. 
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If this is the case, EC design need not be so unfamiliar to the engineering world.    

The reason is that the mathematical premise for EC design rests in basic engineering 

principles.  It has been independently observed by the author and others (Hammond and 

Parkinson [2003], Kamm [1993]) that EC designs can be analyzed quantitatively based 

on the following principle: 

 

Exactly constrained designs are statically determinate. 

 

 With this definition in hand, the heuristic rules established by Blanding can be 

validated based on the equations of equilibrium.  A review of the basic rules governing 

the application of the equations of equilibrium will be followed by several sections 

validating the rules and guidelines established through years of experience for EC design. 

 

3.2 STATICALLY DETERMINATE ASSEMBLIES 
 

Forces acting on an assembly come in two forms:  applied forces and reaction 

forces.  An applied force is an external force which pushes or pulls on the assembly, such 

as a nesting force.  A reaction force is the resulting force at any joint or constraint of the 

assembly. 

 

If an assembly is statically determinate, it means that the equations of equilibrium 

can be used to find all the unknown (reaction) forces in a system.  It is commonly known 

that the sum of the forces must equal zero for a system in static equilibrium.  If all of the 
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forces are not pointing in the same direction, they must be broken down into their 

directional components before they can be summed together.   

 

ΣF = 0 

OR 

ΣFx = 0 

ΣFy = 0 

ΣM = 0 

 

Because EC designs are statically determinate, the equations of equilibrium can 

be used to analyze them.  Later in this chapter, the equilibrium equations will be used to 

validate the rules that have been established for EC assemblies.   

 

First, however, recall from Chapter 2 that no two constraints should be co-linear.  

Nevertheless, there are some situations where the equations of equilibrium require co-

linear constraints.  Therefore, a brief discussion will first explore the various force 

systems (two force, three force, four force, etc.) that can be analyzed using the equations 

of equilibrium, and this discussion will show which kinds of force systems qualify as an 

EC design. 

 

3.2.1 TWO-FORCE MEMBERS 

Recall that Newton’s laws require that the sum of the forces for a system in 

equilibrium must equal zero.  If only two forces act on a system, those forces must then 
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be equal in magnitude, opposite in direction, and co-linear in placement.  Otherwise, the 

forces would not properly balance, and some motion would occur.  Figure 3.1 shows an 

example of a two-force member. 

 

 
 

Figure 3.1 – Two-force member 

 

 While the two-force member will not rotate as long as the forces are co-linear, the 

member itself is not constrained from motion.  Any applied force will cause this system 

to no longer be in equilibrium.  Therefore, a two-force member cannot be exactly 

constrained. 

 

3.2.2 THREE-FORCE MEMBERS 
 

Again, for any system in equilibrium, the forces must balance and sum to zero.  

Therefore, if only three forces are acting on a system, the lines of action for the forces 

must intersect at a point.  Otherwise, the force whose line of action does not intersect the 

other two lines at the same point would cause a resultant moment about the instant center 

of the other two forces.  It should be noted that none of the constraints have to be co-

linear, only that all three forces must be concurrent at the same point.  Figure 3.2 shows 

an example of a three-force member. 



 53 

  

Figure 3.2 – Three-force member 

 

 As in the two-force member, there is nothing actually constraining this three-force 

member.  It is in equilibrium as long as no outside forces displace or cause the member to 

rotate.  It is not an EC design. 

 

3.2.3 FOUR FORCES IN A SYSTEM 
 

Especially in 2D space, a four-force assembly provides more design flexibility 

than the two or three force systems because the attributes (direction, magnitude, and point 

of contact) of each force no longer must follow such rigid restrictions to maintain 

equilibrium.  Equilibrium can be maintained with many different configurations of the 

forces.  All attributes for each force can vary according to the needs or limitations of the 

design. 

 

If the four forces in the system are all reaction forces, the system is statically 

indeterminate, and the equations of equilibrium cannot be used.  If there are at most three 

reaction forces, which would make the final force an applied force, the system is 

statically determinate and the equations of equilibrium can be applied.   
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An EC design can be a four-force system if there are at most three reaction forces 

(constraints) and one applied force (a resultant nesting force).  The three reaction forces 

must be placed in such a manner as to constrain the motion in each direction only once.  

The nesting force is required to keep the assembly seated.   

 

3.2.4 FIVE OR MORE FORCES IN A SYSTEM 
 

An assembly with five or more forces can only be statically determinate if there 

are no more than three reaction forces that constrain three different degrees of freedom.  

All remaining forces must be applied forces.     

 

This condition could exist, for example, as in Fig. 3.3.  In this EC design, there 

are three reaction forces (one at each constraint), and one nesting force perpendicular to 

the block in each necessary direction.  This EC assembly is statically determinate. 
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Figure 3.3 – Statically determinate block 
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Again, four or more reaction forces leave the assembly statically indeterminate.  It 

also makes the design over-constrained.   

 

3.3 VALIDATING THE RULES FOR EXACTLY CONSTRAINED DESIGN 
 

With this explanation of forces in a system, two main considerations for EC 

design can be validated using the equations of equilibrium.  First, the rules established by 

Blanding [1999] will be quantitatively validated by using the equations of equilibrium.  

Then, the nesting force window will be constructed using the equations of equilibrium, 

and the results will be compared to the nesting force window found by the graphical 

approach.   

 

This section will validate the rules for 2D EC assemblies using simple examples 

in conjunction with the equations of equilibrium.  As mentioned in Chapter 2, Blanding’s 

rules for 2D assemblies can be summarized in four points [Skakoon, 2000].   

 

1. No two constraints should be co-linear. 

2. No four constraints are in a single plane. 

3. No three constraints are parallel. 

4. No three constraints should intersect at a point. 

 

3.3.1 NO TWO CONSTRAINTS SHOULD BE CO-LINEAR 
 

The equations of equilibrium validate the rule that no two constraints should be 

co-linear in an EC design.  Remember that there are at least four forces in an EC design:  
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three reaction forces and one or more nesting forces.  In general, if any two of the three 

reaction forces become co-linear, they will not be able to resist a moment, and motion 

(such as “wobble”) may result.  The equations of equilibrium make it easy to understand 

this general result: the two reaction forces of the co-linear constraints can no longer act as 

a force couple and resist a moment applied by the nesting force.   

 

As an example, Fig. 3.4 shows a block with three edge slider constraints.  The 

dimensions can be found in the figure.  Constraints 1 and 2 do not move during the 

analysis; however, constraint 3 is allowed to slide along the top of the block in the x-

direction.  Note that while the nesting forces to seat an assembly in the translational 

directions are usually applied perpendicular to the surface of an assembly, for simplicity, 

one resultant nesting force is here placed at a 45o angle to the side of the block to provide 

the necessary seating in the x and y-directions.   
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Figure 3.4 – Block with three constraints 
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To mathematically see what happens when constraints 1 and 3 line up, a moment 

is taken about M12 (which is the instant center between constraints 1 and 2, thus allowing 

R1 and R2 to fall out of this stage of the analysis) to find the reaction force on constraint 3 

as it moves along the top of the block.  The values for R3 are plotted on a graph to see the 

results. 

 

Figure 3.5 shows the results of the moment analysis in Excel®.   (Please note that 

while the overall results are presented here, the detailed analysis may be found in 

Appendix B.)  When constraints 1 and 3 line up, the reaction force R3 (constraint 3) 

necessary to keep the block immobile goes to infinity! 
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Figure 3.5 – Reaction force on C3 required to keep the block immobile 

 

As noted earlier, the co-linear reaction forces on constraints 1 and 3 cannot resist 

the moment caused by the nesting force.  As will be described in more detail later in this 

thesis, the block becomes over-constrained in the y-direction, and under-constrained in 

rotation.   



 58 

This simple example quantitatively demonstrates the information presented in the 

first paragraph of this section.  Although only one simple example has been presented, 

the result is general.  No two constraints should be co-linear.   

 

It should also be noted that this example violates another rule when two constraint 

lines become co-linear:  no three constraint lines should intersect at a point.  These two 

rules are simultaneously violated because of the use of the edge slider joints to constrain 

the assembly.  The rule that no three constraint lines should intersect at a point will be 

investigated later in this chapter. 

 

3.3.2 NO FOUR CONSTRAINTS ARE IN A SINGLE PLANE 
 

Figure 3.6 shows a similar block to Fig. 3.4, only now there are four constraints 

instead of just three.  A quick glance at the number of reaction forces shows that this 

block has four unknowns.  The equations of equilibrium only provide three equations for 

three unknowns, and thus the block is statically indeterminate.   
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M12
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height = 6.667 units
width = 10 units
Fn = 1 unit

 

Figure 3.6 – Block with four constraints 
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A brief look at the constrained degrees of freedom can also show the over-

constraint that is present.  Constraint 1 eliminates translation in the y-direction.  

Constraint 2 eliminates translation in the x-direction.  Adding constraint 3 now eliminates 

any rotation.  The nesting force ensures that contact is maintained with each constraint.  

Thus, constraint 4 is simply competing with constraint 2 to eliminate translation in the x-

direction, and this block is over-constrained.  Skakoon states, “Since there are only three 

constraints required or possible in one plane, four would be over-constrained” [2002]. 

 

In general, if there are more unknowns than equations of equilibrium, the 

assembly is statically indeterminate and over-constrained.  Additional information would 

be required to find all the reaction forces. 

   

In order for this part to correctly assemble, either some type of deformation to the 

block would be required for all four constraints to be touching it, or the tolerances would 

have to be very tight to ensure a perfect fit.  Regardless, no four constraints are allowed 

in a single plane for an EC design. 

 

3.3.3 NO THREE CONSTRAINTS ARE PARALLEL 
 

Figures 3.7 and 3.8 show equivalent assemblies.  Each assembly has three parallel 

constraint lines.  A simple look at the degrees of freedom shows the block is over-

constrained in the y-direction, and under-constrained in the x-direction.   
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When trying to apply the equations of equilibrium to these assemblies, the force 

equation in the x-direction disappears.  It will not sum to zero if the nesting force is 

applied in any way to the x-direction.  Regardless, there remain three reaction forces to 

be found by two equations (one equation to sum the forces in the y-direction and one 

moment equation), and the assembly is again statically indeterminate. 

 

C1

C2

M12
x

y

height = 6.667 units
width = 10 units
Fn = 1 unit

C3

 

Figure 3.7 – Block assembly with three parallel constraints 
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Figure 3.8 – Similar block assembly with three parallel constraints 
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Suppose another constraint is added, as in Fig. 3.9, to inhibit motion in the x-

direction.  The over-constraint in the y-direction does not go away.   

 

C1
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M12
x

y

C3

C4

  

Figure 3.9 – Adding an x-constraint to the block 

 

3.3.4 NO THREE CONSTRAINTS SHOULD INTERSECT AT A POINT 
 

Figure 3.10 shows a simple triangle with three constraints.  Constraint 3 is 

allowed to move along the right side of the part, while constraint 1, constraint 2, and the 

nesting force remain fixed in the positions shown.  The reaction forces are found using 

the equations of equilibrium, and the baseline results for R3 are shown in Fig. 3.11.  

Again, the detailed results can be found in Appendix B.   
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Figure 3.10 – Triangle assembly with three constraints 
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Figure 3.11 – Reaction force on C3 required to keep the block immobile 

 

As in the case with two co-linear constraints, when all three constraint lines 

intersect at a point, the assembly cannot resist a moment caused by the nesting force.  

This fact is shown in Fig. 3.11 where R3 goes to infinity when the three constraint lines 
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intersect.  The equations of equilibrium thus show that no three constraints should ever 

intersect at a point for an EC design. 

 

Although shown here through a simple example, this result is general for all 2D 

EC assemblies when three constraint lines intersect at a point.  In this case, the equations 

of equilibrium show that the moment equation goes to zero on the left hand side (all 

reaction forces go to zero because the sum of the moments about the point of 

intersection—IC12—leaves no reaction forces); however, when the nesting force is 

applied, the right hand side of the moment equation is no longer zero.  The assembly 

cannot resist the moment caused by the nesting force, and the equilibrium conditions are 

not satisfied. 

 

3.3.5 SUMMARY OF THE RULES 
 

Table 3.1 gives a summary of the results outlined above.  While each rule was 

only illustrated with one simple example, these rules are general and hold for all EC 

assemblies. 

 

Table 3.1 – Summary of the results for the rules 
 

Rule Why it will not work for EC design  
No two constraints should be co-linear Moment equation will not sum to zero 
No four constraints are in a single plane Statically indeterminate 

No three constraints are parallel Statically indeterminate 
No three constraints should intersect at a point Moment equation will not sum to zero 
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3.4 NESTING FORCE WINDOW 
 

One of the most important considerations in EC design relates to the placement of 

the nesting force.  As mentioned in Chapter 2, there is a “window” that shows the 

appropriate locations where a nesting force may be applied. 

 

This section will use the equations of equilibrium to illustrate how to find the 

window in a quantitative fashion.  This quantitative approach will then be compared to 

the graphical approach presented in Chapter 2. 

 

3.4.1 QUANTITATIVE APPPROACH TO FIND THE NESTING FORCE 
WINDOW 

 
The equations of equilibrium provide a straightforward, quantitative approach to 

find the nesting force window.  For this thesis, each constraint is represented as a reaction 

force in compression on the block.  The nesting force is an applied force, also in 

compression.  All of the forces are summed in the x and y-directions, and a moment is 

taken about some point on the assembly.  Solving these equations will find the reaction 

forces, given a determinate system of constraints.   

 

If any of the reaction forces are in tension (recognized as a negative value from 

the equations) for a given placement of the nesting force, that point on the assembly is 

not allowed in the window.  Conversely, for any point along the assembly where all 

reaction forces meet the compression criteria (all forces are positive), that position is a 

valid point in the nesting force window. 
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Figure 3.12 will now be used to show how the nesting force window can be found 

using the equations of equilibrium.  All the constraints remain fixed in the given 

positions, and the nesting force is allowed to slide along each edge of the assembly.  The 

reaction forces are calculated for several points along the path of the nesting force in 

order to determine the allowable window.  Only one nesting force is applied, and it is 

always perpendicular to the surface/edge of the assembly.  Note than only one nesting 

force is necessary because, coupled with the directions of the reaction forces, it provides 

the necessary directions of force to seat the assembly. 
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Figure 3.12 – Triangle assembly example used to find the nesting force window 

 

To begin, a moment is taken about point IC12, and the appropriate equations for 

R3 are developed.  Note that in this example, “left” refers to when the nesting force 

moves along the left edge of the assembly, “right” refers to when the nesting force moves 
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along the right edge of the assembly, and “base” refers to when the nesting force moves 

along the base edge of the assembly.   
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To find the window for the whole system, the other two reaction forces must also 

be found.  Thus, forces are summed in the x-direction to find R2.  And finally, the forces 

are summed in the y-direction to find R1. 
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 For simplicity, Fig. 3.13 shows the results of the equations in a graphical 

representation based on the detailed calculations shown in Appendix B.  The bolded lines 

in Fig. 3.13 show the points along the figure where the nesting force is NOT allowed 

because the reaction forces as found in the equations of equilibrium do not all stay 

positive.  All other points on the assembly are valid positions for the nesting force 

because the reaction forces show that the constraints stay in contact with the part.   
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Figure 3.13 – Nesting force window according to the equations of equilibrium 

 

3.4.2 COMPARISON BETWEEN GRAPHICAL AND QUANTITATIVE 
APPROACHES 

 
Recall from Chapter 2 that Blanding uses a graphical method to find the nesting 

force window based on instant centers, constraint lines, proper rotations, etc.  Figure 3.14 

shows the window as found by the graphical method for the triangle assembly example. 
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(c) (d) 

 
Figure 3.14 – Finding the nesting force window using the graphical method (a) An 

assembly with three constraints (b) Finding instant centers for the constraints 
(c) Removing constraint C3 to find the rotation the nesting force must exert on 
the part to restore contact with the constraint.  (d) The nesting force window—

neither the nesting force nor the line of action of the nesting force can pass 
through the darkened triangle. 

 
 

How does the window found by the equations of equilibrium compare to that 

found by the graphical method?  Before this question can be answered, Fig. 3.14d must 
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be transformed to match the representation of Fig. 3.13.  This transformation is simply 

accomplished by applying a force to each segment of the assembly.  If the force 

maintains the proper rotation through all necessary instant centers, that segment of the 

assembly boundary is allowed.  Figure 3.15 shows a comparison of the two methods, and 

it appears that the two methods match. 
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        (a)                        (b) 

Figure 3.15 – Nesting force window comparison (a) The graphical method 
transformed (b) The window found with the equations of equilibrium 

 

In order to determine just how similar the windows are to each other, the point at 

which the window transitions from the acceptable to unacceptable region was found for 

the graphical method and compared to the point of transition found from the equations of 

equilibrium.  The detailed explanation and results of this analysis can be found in 

Appendix C.  From the analysis, the results show that the nesting force windows are the 

same, within round-off error. 
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 Thus, the nesting force window can effectively be found using the equations 

equilibrium.  They in fact provide a more fundamentally basic approach to find the 

window because they show the designer when and why the design will or will not work 

according to the position of the nesting force. 

 

3.5 CONCLUSIONS 
 
 In conclusion, the equations of equilibrium become a very simple yet powerful 

tool by which to analyze EC design.  Both the rules established through years of 

experience and the nesting force window were validated using these basic equations. 

 

However, looking at every point along the surface of the assembly is rather 

cumbersome and tedious.  Chapter 4 will present a generalized method using the 

equations of equilibrium to more efficiently find both the nesting force window and the 

configuration(s) when assemblies violate EC design rules. 
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CHAPTER 4 GENERALIZED METHOD TO USE THE EQUATIONS OF 
EQUILIBRIUM IN EXACTLY CONSTRAINED DESIGN 

 
 
 
4.1 INTRODUCTION  

Chapter 3 provided a quantitative validation for exactly constrained (EC) design 

based on the equations of equilibrium for the rules governing the placement of constraints 

and the nesting force window.  Various simple examples illustrated how the rules 

established through heuristics and years of experience agree with the results from the 

equations of equilibrium.  

 

Chapter 3 also identified two main design considerations for EC design.  First, the 

location of the constraints must not violate any EC rules.  Second, the nesting force can 

only be placed in a certain region, denoted as the “nesting force window.”  With the 

equations of equilibrium, both these considerations may be analyzed and predicted. 

 

The work in Chapter 3 applied the equations of equilibrium from point-to-point 

along every surface in an assembly to find the resultant reaction forces given a certain 

nesting force.  Validating the rules with simple examples adds strength and integrity to 

the existing methods, and it begins to lay the quantitative foundation for EC design. 
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However, it is quite inefficient to analyze each point along the surface of an 

assembly to determine whether the design meets the criteria for EC design.  A stronger 

foundation could be built by generalizing the method to analyze EC design.  Rather than 

look at each point along the surface of the assembly, a more efficient method utilizes the 

equations of equilibrium to inspect or predict the behavior of a design. 

 

Chapter 4 presents a generalized method to quantitatively analyze an EC design.  

First, the equations of equilibrium are set up in a general matrix form, Cr = b, based on 

the initial locations of the constraints in the design.  Then, a general method will be 

introduced to find the nesting force window, followed by a general approach to either 

inspect or predict the behavior of an EC design. 

 

4.2 INITIALIZING THE ANALYSIS FOR EC DESIGN 

The first step to generalize the quantitative method to analyze EC design is to set 

up the equations of equilibrium in matrix form, Cr=b.  To initialize the set-up of the 

matrix, all necessary information for each reaction and nesting force must be known or 

assumed. 

 

Each force is defined by three attributes: a magnitude, a direction, and a point of 

contact.  The magnitudes of the reaction forces are unknown, but they can be found by 

solving the equations of equilibrium, given the nesting force(s).  For the examples 

presented in this chapter, the positive direction for the reaction and nesting forces are 

assumed to be in compression.  The point of contact for each reaction force may be 

known or assumed.  Initially, the point of contact for the nesting force must be assumed, 
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but a method to find an acceptable point of contact will be presented in Section 4.3, and it 

will be more fully utilized in Section 4.4. 

 

With the initial information defined, the generalized process can begin by 

formulating the equations of equilibrium and setting them up in matrix form to find the 

reaction forces.  Figure 4.1 introduces an example that will be used throughout the 

chapter to illustrate each step in the general process.   
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height = 6.667 units
width = 10.0 units
Fn1 = 1 unit

Fn2 = 1 unit

Fn1

x1 = 2.0 units y1 = 0.0 units
x2 = 0.0 units y2 = 2.5 units
x3 = 8.0 units y3 = 6.667 units
xn1 = 5.0 units yn1 = 0.0 units
xn2 = 10.0 units yn2 = 3.5 units

 

Figure 4.1 – Block with 3 constraints to be used for generalized method 

 

This assembly uses two nesting forces, thus allowing them to be perpendicular to 

the block, while still seating the assembly in both the x and y-directions.  Remember that 

the positions of the nesting forces are assumed.  It would be just as reasonable to assume 

that the vertical nesting force, denoted Fn1, could be along the top of the block. 
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From the information provided in Fig. 4.1, the equations of equilibrium are set up 

in matrix form, Cr = b.  The moment equation is summed about the point M12, which 

corresponds to the coordinate values for x1 and y2.  After forming the matrix equation, it 

can be solved to find the reaction forces. 
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 The information from Fig. 4.1 can be plugged into the matrix equation above to 

find the numerical values for the reaction forces.  They are shown below.   
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 While setting up the equations of equilibrium as a system of linear equations is 

not new, it is a very important step in generalizing the design method.  Using this basic 

process to find the reaction forces, an efficient method to find the nesting force window 

can be presented. 

 

4.3 GENERALIZED METHOD TO FIND THE NESTING FORCE WINDOW 

An applied nesting force can only sit within a specific range of the assembly.  It 

will be shown later on that the nesting force window depends upon the location of the 

constraints.  However, for a given placement of the constraints, the nesting force window 

can be found. 

 

Recall in Chapter 3 that the nesting force window was found by analyzing many 

points along each side of the assembly.  However, here, a more general approach is 

presented where the nesting force window is generated based on transition points. 

 

4.3.1 DEFINITION OF TRANSITION POINTS  

To begin generalizing the method to find the nesting force window requires the 

understanding of one significant term: a transition point.  The transition point is any point 

on an assembly at which the unacceptable portion of the nesting force window transitions 

to an acceptable region of the window.  Figure 4.2 shows the transition points found in 

Fig. 3.13. 
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Figure 4.2 – Transition points marked on the triangle assembly from Fig. 3.13 

 

The acceptable region of the nesting force window shows the possible locations 

for the nesting force that make all reaction forces greater than zero.  This definition 

physically means that all constraints would be in compression on the part. 

 

The unacceptable region of the nesting force window shows the possible 

locations for the nesting force that make any one or more of the reaction forces negative.  

This definition physically means that one or more of the constraints would need to be in 

tension, instead of compression, for equilibrium.   

 

The point at which the acceptable region and the unacceptable region come 

together is the transition point.  To further clarify, a portion of the point-by-point force 

analysis from Chapter 3 is shown in Fig. 4.3.  This section of the force analysis 

corresponds to the transition point located along the left surface of the assembly in Fig. 
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4.2.  Notice in Fig. 4.3 that R1 and R3 turn positive when the x-coordinate of the nesting 

force, xn, is about 1.45 units.  However, R2 is still negative.  R2 does not transition out of 

the negative region until xn is at 2.4375 units.  Based on the requirement defined earlier 

for this thesis that all reaction forces must stay in compression to the main part, the 

transition point does not happen until all reaction forces have turned positive; therefore, 

the transition point in this case is at (2.4375, 4.875).  Notice that the value of R2 at the 

transition point is zero; therefore, the transition point itself is technically in the infeasible 

region. 

 

xn yn R3 R2 R1

1.3 2.6 -0.14959 -1.149592 -0.14959
1.4 2.8 -0.04853 -1.048529 -0.04853
1.45 2.9 0.002003 -0.997997 0.002003
1.5 3 0.052534 -0.947466 0.052534
1.6 3.2 0.153597 -0.846403 0.153597
1.7 3.4 0.25466 -0.74534 0.25466
1.8 3.6 0.355723 -0.644277 0.355723
1.9 3.8 0.456786 -0.543214 0.456786
2 4 0.557849 -0.442151 0.557849

2.1 4.2 0.658912 -0.341088 0.658912
2.2 4.4 0.759975 -0.240025 0.759975
2.3 4.6 0.861038 -0.138962 0.861038
2.4 4.8 0.962101 -0.037899 0.962101

2.4375 4.875 1 0 1
2.5 5 1.063164 0.0631644 1.063164
2.6 5.2 1.164227 0.1642274 1.164227
2.7 5.4 1.26529 0.2652905 1.26529
2.8 5.6 1.366353 0.3663535 1.366353
2.9 5.8 1.467417 0.4674165 1.467417
3 6 1.56848 0.5684795 1.56848

Reaction Force values:  
R3 and R1 are along the same line
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Figure 4.3 – Transition points shown in a force analysis 
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To quickly find the nesting force window, the x and y-coordinates of the 

transition points on each surface must be found.  It is now possible to present a simple, 

yet powerful method to efficiently find the nesting force window. 

 

4.3.2 PRESENTATION OF THE GENERALIZED METHOD 

By understanding the transition points, the nesting force window is generated 

through a series of simple steps. 

 

1. Find all possible transition points from the equations of equilibrium. 

2. Determine which side of the transition point is allowed and which is not. 

3. If desirable, draw the window on a sketch of the assembly. 

 

STEP 1:  FIND THE TRANSITION POINTS 
 

The first step to efficiently define the nesting force window is to find the 

transition points.  Recall from Fig. 4.3 that the transition point is simply where one 

reaction force has gone to zero, and the other reaction forces are positive.  Therefore, 

rather than evaluate every point on the surface of the assembly, it is only necessary to 

find if and where each reaction force goes to zero along each surface. 

 

To find the transition point, therefore, first requires that the equations of 

equilibrium be set-up in matrix form as outlined in Section 4.2.  After formulating the 

matrix equations for each possible surface where the nesting force may be placed, any 

simple iteration routine may be used to find the transition point.   
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For this thesis, a simple and well defined optimization routine called the 

generalized reduced gradient (GRG) method (as found in Microsoft Excel’s Solver®) will 

be used to find the transition points.  As the equations of equilibrium represent a system 

of linear equations, the GRG algorithm will easily converge to the transition points. 

 

As with any optimization routine, the design variables and design functions 

(optimization constraints and design objective) must be defined.  The design variables are 

the x and/or y-coordinates of the nesting force.  Remember that an initial point of contact 

for the nesting force is assumed in the set-up.  That initial guess gives the optimization 

routine somewhere to begin.  In many cases, once the x-coordinate has been chosen, the 

y-coordinate is set based on the geometry of the surface; therefore, an optimization 

constraint may define any relationship between the x and y-coordinates of the assembly 

surface.  Three additional optimization constraints are defined to require the reaction 

forces to stay greater than or equal to zero.  The objective function is to make each 

reaction force go to zero on each surface of the assembly.  Thus, the optimization routine 

will be run three times per surface to find all possible transition points.   

 

It is worthy to note that the objective function is not defined in the traditional 

sense.  Usually, the objective function would be “maximized” or “minimized”.  However, 

using the capabilities of Excel®, it is possible to drive the reaction force to a specific 

target value.   As the transition points will happen when one reaction force is at a value of 

zero, the objective function for this routine will be to drive each reaction force to a target 

value of zero. 
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The transition points will now be found for the assembly in Fig. 4.1.  Because 

there are two nesting forces, the nesting force window analysis will be performed in two 

steps.  The transition points related to the vertical nesting force will be found first.  Then, 

the horizontal nesting force will be added to the assembly to find its transition points.  

This method is a form of superposition, and it can be shown to work the same as having 

both nesting forces applied from the start and iterating through locations until the 

transition points can be found.  This approach will be used to maintain clarity and 

simplicity. 

 

Figure 4.4 shows the assembly as it will be analyzed to find the transition points 

along the base.  Applying the values shown in Fig. 4.1 generates the matrix equation to 

be used for this optimization routine. 
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When R1 = 0
Then R2 = 0
Then R3 = 0

  

Figure 4.4 – Finding transition points for the bottom surface 
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Notice that R1 is negative.  The negative sign gives the indication that the initial 

placement of the nesting force (xn1 = 5.0 units) is not in the nesting force window.  The 

initial guess happens to be in the infeasible region.   

 

Using Excel’s Solver® to find the transition points, the first objective function 

(called the target) will be R1.  It must equal a value of 0.0.  The design variable (changing 

cell) will be xn1 (which currently sits at 5.0 units).  The only optimization constraints 

defined will be that each reaction force must be greater than or equal to zero (R1  ≥ 0, R2  

≥ 0, R3  ≥ 0).  Solving the routine finds where the nesting force resides when R1 goes to 

zero. 
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 when xn1 = 8.0 units, yn1 = 0.0 units 

 

As all reaction forces are greater than or equal to zero, there is a transition point along the 

base of the block at (8.0, 0.0).   
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Note that because the horizontal nesting force has not yet been added onto the 

problem, R2 will always be zero.  It is not necessary to investigate it as an objective 

function at this point.   

 

Thus, the next optimization routine for the base surface of this assembly will be to 

find when R3 equals a value of 0.0.  However, because of the optimization constraints (all 

reaction forces must be greater than or equal to zero), the routine finds that there are no 

transition points for when R3 is driven to zero along the base.  Thus, only one transition 

point is found along the base of the block, as shown in Fig. 4.5.   
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Figure 4.5 – Transition point found along the base 

 

Next, the transition points along the top of the block will be found.  Figure 4.6 

shows the assembly with the problem definition for the nesting force window along the 

top of the block. 
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When R1 = 0
Then R2 = 0
Then R3 = 0

  

Figure 4.6 – Finding the transition points for the top surface 

 

Equations are reformulated based on the nesting force’s current position.  The 

initial coordinates of the nesting force on the top surface are xn1 = 5.0 units and yn1 = 6.67 

units. 
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The transition points can now be found.  R1 will be driven to a value of zero 

(objective function) as xn1 is allowed to translate along the top surface.  However, as R1 
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drives to zero, the optimization constraints cannot be satisfied.  There are no transition 

points found from this optimization run. 

 

Now, the other two reaction forces must be driven to zero.  Again, R2 will always 

equal zero for the given configuration because there is no horizontal nesting force 

assumed on the block yet.  Therefore, only R3 is left to be driven to zero in order to find 

any transition points.  
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  when xn1 = 2.0 units, yn1 = 6.67 units 

 

All reaction forces are greater than or equal to zero, and this point is a transition 

point for the nesting force window.  Figure 4.7 shows all the transition points currently 

found. 
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Figure 4.7 – Transition points along the top and bottom surfaces 
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Now that the transition points for Fn1 have been found, the horizontal nesting 

force, Fn2, will be added to the assembly.  Notice that Fn2 cannot be placed on the left side 

of the block because it would cause the block to displace in the x-direction.  Figure 4.8 

shows the problem definition to find any transition points associated with the right 

surface of the block. 
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Figure 4.8 – Finding the transition points for the right surface 

 

After substituting in the coordinate values as shown in Fig. 4.1 (except now Fn1 is 

placed at xn1 = 8.0 and yn1 = 0.0), the reaction forces are found (see below).  Notice that 

they are positive, and the initial guess for Fn2 lies in the feasible region. 
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The optimization routine can now find the transition points on the right surface.  

First, yn2 will be allowed to change as R1 goes to zero. 
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  when xn2 = 10 units, yn2 = 2.5 units 

 

All values are greater than or equal to zero, and thus (10, 2.5) is a transition point.  Note 

that R2 cannot have any other value than 1.0 because the forces must balance.  Finally, 

running the routine to find the value of yn2 when R3 goes to zero shows that R3 never goes 

to zero.  Thus, only one transition point is found.  Figure 4.9 shows the assembly with all 

the transition points. 
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Figure 4.9 – The block assembly with all transition points 
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With all possible transition points found, the next stage in the process is to find 

which side of each transition point is acceptable and which is not.  That process will now 

be explained. 

 

STEP 2:  DETERMINE WHICH SIDE OF THE TRANSITION 
POINT IS ALLOWED AND WHICH SIDE IS NOT 

 
To find the acceptable side of each transition point requires an examination of the 

reaction forces for some other point along each surface.  A good point to use would be 

the initial guess from step 1 for the location of the nesting force. 

 

For example, recall that while finding the transition point for the base of the 

block, the initial nesting force position (xn1=5.0 units) led to a negative reaction force.  

Therefore, the nesting force is not allowed to the left of the transition point on the base 

surface.  Figure 4.10 illustrates this unacceptable region as a thick, bold line.  Hence, the 

region to the right of the transition point is allowed in the window. 

 

C1

C2

C3

M12

 

Figure 4.10 – The nesting force window on the bottom surface.  The bolded portion 
of the line is the unacceptable region. 
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The same procedure can be done for the other two transition points.  For the top 

surface, the initial guess of xn1 = 5.0 units led to a negative reaction force.  Therefore, all 

points to the right of the transition point along the top surface are not allowed.  When yn2 

was 3.5 units, the reaction forces were all positive.  Thus, everything above the transition 

point on the right surface is allowed in the nesting force window. 

 

STEP 3:  IF DESIRED, DRAW THE NESTING FORCE 
WINDOW ON A SKETCH OF THE ASSEMBLY 

 
It is often easier to visualize the nesting force window if it is drawn on a sketch of 

the assembly.  Figure 4.11 shows the block assembly with the nesting force window 

drawn.  The thick, bolded lines represent the unacceptable locations for the nesting force.  

It is easily seen that the nesting force window found using the general quantitative 

method matches the window found by the graphical method outlined by Blanding [1999]. 
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Figure 4.11 – The nesting force window for the block assembly.  The bolded portion 
is the unacceptable region of the window. 
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Thus, the nesting force window can easily be found using the equations of 

equilibrium to locate transition points.  This simple procedure will now be used as part of 

the generalized method to quantitatively analyze EC design. 

 

4.4 GENERALIZED METHOD TO QUANTITATIVELY ANALYZE EC DESIGN 

Chapter 3 showed how the equations of equilibrium can be used to analyze an 

assembly from point-to-point.  Now, all the information presented in this chapter will be 

brought together to show a general, more efficient method to quantitatively analyze EC 

designs. 

 

There are two primary reasons to analyze any EC design:  to inspect the design to 

make sure all criteria are met for an EC assembly, or to make predictions about the 

behavior of the design.  First, a general method will be presented in Section 4.4.1 to 

inspect an EC design.  A very similar method will be presented in Section 4.4.3 that 

predicts unwanted and avoidable behavior of an EC assembly for design purposes. 

 

4.4.1 GENERAL METHOD TO INSPECT EC DESIGN 

It is the purpose of this section to present a general method using the equations of 

equilibrium to verify that an assembly complies with the rules for EC design.  It is a 

useful method when the designer simply wants to inspect or check an assembly.  (Section 

4.4.3 will show a general method that will predict when an assembly violates EC rules so 

unwanted configurations can be avoided.)  Four steps define the procedure. 
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1. Find the reaction forces using the method outlined in Section 4.2. 

2. Verify that the reaction forces meet EC design rules. 

3. If necessary, determine the appropriate changes to bring the assembly into 

compliance. 

4. Find the nesting force window to appropriately place the nesting force. 

 

Each step will be explained.  Figure 4.1 will continue to be used to illustrate how 

the method works. 

 

STEP 1: FIND THE REACTION FORCES 
 

Section 4.2 shows how to find the reaction forces for an EC design when the 

equations of equilibrium are set up in matrix form.  The matrix equation associated with 

the given assembly in Fig. 4.1 yields the following reaction forces. 
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STEP 2:  VERIFY THAT THE REACTION FORCES MEET EC 
DESIGN CRITERIA 

 
The next step is to verify that the reaction forces meet EC design criteria.   There 

are two criteria in particular which must be monitored:  (1) The magnitude(s) of the 

reaction forces must not approach infinity, and (2) The signs on the reaction forces must 

be positive (according to the definition presented earlier in this thesis). 
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Recall from Chapter 3 that reaction forces go to infinity when the rules of EC 

design are violated.  If any of the reaction force magnitudes approach infinity (i.e. very 

large in comparison to the applied force), it is an indication that the design is close to 

violating the rules in Chapter 3.  Therefore, in quantitative terms, this step means that the 

magnitudes of the reaction forces are not approaching infinity. 

 In Fig. 4.1, the reaction forces are on the same order of magnitude as the nesting 

forces.  They are in no way approaching infinity.  Therefore, the locations chosen for the 

constraints do not violate the rules for EC design.   

 

Notice, however, that R1 is negative.  Clearly, by the end of the analysis, the sign 

on R1 must be positive.  However, the signs on the reaction forces are determined by the 

location of the nesting force(s).  That discrepancy will be remedied in the fourth step 

when the proper nesting force window has been found. 

 

STEP 3:  DETERMINE THE APPROPRIATE CHANGES TO 
BRING THE ASSEMBLY INTO COMPLIANCE 

 
 If any of the reaction forces are approaching infinity, it will be necessary to 

change the location (point of contact) of one or more of the constraints.  To determine 

which one to move, choose the constraint associated with a reaction force that has a large 

magnitude.  The equations of equilibrium are then re-solved.  Continue to move the 

constraints until all magnitudes are acceptable. 

 

 If any of the reaction forces are negative, the nesting force must be moved into the 

acceptable region.  To do so, the nesting force window is found.  Then, the nesting force 
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is moved into the acceptable region.  The matrix equation is re-solved to ensure that the 

signs are correct on each reaction force. 

 

STEP 4:  FIND THE NESTING FORCE WINDOW  
 
 The next step is to find the nesting force window.  The details to do this are found 

in Section 4.3.2, and they will not be repeated here.   

 

Once the window has been found, the nesting force can be placed within the 

allowable region.  The equations of equilibrium are again solved based on the new 

location for the nesting force.  With the nesting force in an appropriate location, all 

criteria should be met for an EC design.  The reaction forces should not be approaching 

infinity, and they must be positive. 

 

Returning to Fig. 4.1 (shown below as Fig. 4.12a), this final step can be 

illustrated.  Recall from step 2 that the magnitudes of the reaction forces were acceptable, 

but the directions were not.  The wrong sign on R1 shows that the nesting force is not in 

the acceptable window.  Also recall that the nesting force window was found earlier for 

this example (Section 4.3.2), and it is shown as Fig. 4.12b. 
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Figure 4.12 – Placing the nesting force (a) Initial set-up for the block example, Fig. 
4.1 (b)  Nesting force window, Fig. 4.11 

 
 

Comparing the information in Fig. 4.12, the initial assignment for the location of 

Fn1 is not in the allowable nesting force window.  Moving the nesting force to where xn1 

rests at 9.0 units changes the values for the reaction forces. 
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 All magnitudes and directions are now appropriate.  Figure 4.13 shows the 

acceptable design. 
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Figure 4.13 – Acceptable design for the block assembly 

 

This generalized method inspects an assembly to determine if it meets all 

quantitative criteria to be exactly constrained.  It shows when changes must be made to 

find an acceptable design.  The major benefit of using the generalized method shown here 

is that it is no longer necessary to check every point on the assembly to ensure that the 

design is exactly constrained.   

 

 In some instances, however, it may be desirable to use the equations of 

equilibrium to design for the locations of the constraints (and not just inspect them).  The 

process shown above can be slightly modified to accommodate this desire. 

 

However, before the method is presented to show how to predict and design an 

assembly based on the equations of equilibrium, it will be important to more fully 

understand when and why EC rules are violated from a mathematical perspective.  

Therefore, a brief discussion about when the C matrix becomes singular will be followed 

by the presentation of a generalized method to predict and design for EC assemblies. 
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4.4.2 SINGULARITY OF THE [C] MATRIX 

 When reaction forces have gone to infinity, it is because the C matrix is singular.  

In turn, the singular C matrix yields a determinant of zero.   

 

Any matrix becomes singular due to one of three reasons.  When the reaction 

forces go to infinity, any of these three reasons could be the contributor.  In addition, at 

the point where the C matrix becomes singular, the EC assembly has become over and/or 

under constrained, as can be seen in the matrix.  In order to learn what caused the 

singular results in the C matrix, each one of these cases must be checked.  

 

1.  A row is zero  

2.  A column is zero 

3.  Linear dependence 

 

4.4.2.1 A ROW OF ZEROS 
 
 Each row in the C matrix represents either the sum of a moment or the sum of the 

forces in a particular direction.  When a row in the C matrix has gone to zero, it 

mathematically shows that there is no resistance to motion in that direction, and the 

assembly is under-constrained. 

 

 Consider the example when two constraints become co-linear, as was discussed in 

Section 3.3.1.  The C matrix for such a design shows that the sum of the moments row 

has gone to zero. 
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 There is no resistive couple in the assembly, and rotation will result because of 

the applied nesting force (i.e. the right hand side has not gone to zero).  In physical terms, 

this will be recognized as rotation in the assembly.  The C matrix shows the under-

constraint in rotation for this assembly. 

 

4.4.2.2 A COLUMN OF ZEROS 
 

Each column in the C matrix contains coefficients from the equations of 

equilibrium relating to the individual constraints.  Physically, the terms in each column 

show the components of direction for each constraint with respect to the main part.   

 

In the moment equation, the coefficients show the moment arm.  In the force 

equations, the coefficients give the angle of each force in each respective direction.  For 

example, assuming that the resultant magnitude of some force is one unit, a coefficient of 

one shows that the force is parallel to the direction being summed.  A coefficient of zero 

shows the force has no influence in the direction being summed. 

 

If one column has gone to zero it means that one of the constraints is no longer in 

contact with the part.  The assembly is again under-constrained.  Whichever column has 

gone to zero will tell the designer which constraint is no longer in contact with the part, 

and the constraint can be modified accordingly. 
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4.4.2.3 LINEAR DEPENDENCE 
 

In order to ensure that the assembly is exactly constrained, the equations of 

equilibrium must be a system of linearly independent equations.  If there is linear 

dependence in the columns or rows, the assembly is no longer exactly constrained.   

 

Linear dependence really means that one equation or constraint is a scalar 

multiple of another.  Thus, when columns are linearly dependent, two or more constraints 

are competing to constrain the same degree of freedom.  Linear dependence shows that 

the assembly is over-constrained in one direction. 

 

Using the example when two constraints become co-linear from Section 3.3.1, the 

first column and the third column are linearly dependent by a factor of -1.   
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The C matrix also shows which two constraints are competing.  In this example, 

constraints 1 and 3 are competing to constrain the y-direction, and thus the linear 

dependence shows that the assembly is over-constrained in the y-direction. 

 

 Notice that in this example, the matrix demonstrates two reasons for the 

singularity.  As mentioned, this matrix is linearly dependent (showing over-constraint in 
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the y-direction).  However, it also reveals the moment equation as a row of zeros 

(showing under-constraint in rotation). 

 

4.4.3 GENERAL METHOD TO DESIGN AND MAKE PREDICTIONS 
FOR EC ASSEMBLIES 

Now that a more thorough explanation has been given concerning why the C 

matrix may become singular, the generalized method can help design for the locations of 

constraints in an EC design.  This method determines the locations of the constraints 

where the assembly will no longer be exactly constrained, and those locations are 

avoided. 

 

The general method to predict and design the location of the constraints is very 

similar to the method presented to inspect an EC design.  Many steps are the same, and 

they are both based on quantitative principles instead of heuristics.  However, in the 

method for design or prediction, the locations (contact points) where constraints violate 

EC rules are found.  The steps are given below. 

 

1. Find the reaction forces using the method outlined in Section 4.2. 

2. Find the constraint coordinates, such that the C matrix becomes singular. 

3. Find an acceptable location for the constraints, taking note to avoid those 

locations found where the C matrix goes singular. 

4. Find the nesting force window to appropriately place the nesting force. 
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STEP 1:  FIND THE REACTION FORCES 
 

Section 4.2 defined the process to find the reaction forces using the equations of 

equilibrium.  Recall that the matrix equation associated with Fig. 4.1 was also presented 

in step 1 of the general method to inspect EC design. 
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STEP 2:  FIND THE CONSTRAINT LOCATIONS TO AVOID 
 

Just as the transition points can easily be found using a GRG algorithm, the 

locations for the constraints that violate the rules for EC design can be found using a 

similar process.  This time, however, instead of setting each reaction force equal to zero, 

each force will be maximized. 

 

To find the desired point of contact using the GRG algorithm, the design variables 

and functions must be defined.  The design variable(s) will be the x and/or y-coordinates 

for the constraint under surveillance.  One optimization constraint will define the 

relationship between the x and y-coordinates of the constraint, if one exists.  Another 

optimization constraint requires that the reaction forces must again be greater than or 

equal to zero.  The objective function will be to maximize the desired reaction force.  In 

connection with this objective, another optimization constraint could set an upper limit on 

the reaction force. 
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This process will need to be repeated for each set of matrix equations developed.  

There will be one set of matrix equations per surface under consideration. 

 

Now the unacceptable contact points for C3 will be found for Fig. 4.1.  First, R1 

will be set as the objective function (target cell in Microsoft Excel’s Solver®) to be 

maximized.  The design variable (changing cell) will be x3.  After solving the routine, the 

reaction forces for constraints 1 and 3 go to infinity. 
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 when x3 = 2.0 units 

 

This result shows that when constraints 1 and 3 line up, the system is no longer 

exactly constrained.  It agrees with all the quantitative and heuristic examples already 

presented.   

 

The C matrix shows what has happened so that this assembly is no longer exactly 

constrained.  It is under-constrained in rotation, as shown by the moment equation going 

to zero, and it is over-constrained in the y-direction as shown by the linearly dependent 

columns for R1 and R3. 
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Because the forces must balance, R2 will never reach infinity.  Thus, for this 

example, the design will remain exactly constrained as long as constraints 1 and 3 do not 

become co-linear. 

 

STEP 3:  FIND AN ACCEPTABLE LOCATION FOR THE 
CONSTRAINTS 

 
This step takes the information found in Step 2 to make an informed decision on 

where to place the constraints.  The points found in that step should be avoided, while 

still maintaining a good balance between the nesting forces and the reaction forces.  In 

other words, the magnitudes for the reaction forces are checked at this stage to ensure that 

they are all on the same order of magnitude.  High reaction forces signal problems, as 

discussed earlier.  This step is similar to Steps 2 and 3 of the inspection method. 

 

For the design in Fig. 4.1, the current placement of the constraints is satisfactory.  

The magnitudes are all about the same order of magnitude.  No one force is controlling 

the assembly.  Now, the directions must be corrected, and this is done through the 

placement of the nesting force. 

 

STEP 4:  FIND THE NESTING FORCE WINDOW 
 

The details to find the nesting force window are outlined in Section 4.3.2.  This 

step is also found in Step 4 of the inspection method, where the current example has also 

been presented and solved.  Figure 4.13 shows the final design based on the nesting force 

window. 
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Figure 4.1 is an extremely oversimplified example, which has been used to 

illustrate the methods in this chapter.  However, it easily shows the benefits and strengths 

of using a quantitative approach to analyze EC design.  Additional examples will now be 

presented to show how easy these methods can be implemented. 

 

4.4.4 MORE SIMPLE EXAMPLES 

Several very simple examples can be used to help further illustrate the methods 

outlined in this chapter.  The first example will illustrate the method for inspection, while 

the second example will use the method for prediction.   

 

EXAMPLE 1:  INSPECTION METHOD 
 

Consider the triangle shown in Fig. 4.14.  The coordinates for all the constraints 

and the initial placement of the nesting force along the left surface are listed.  

 

C2C1

C3

x

y

x1 = 2.0 units y1 = 0.0 units
x2 = 4.0 units y2 = 0.0 units
x3 = 3.6 units y3 = 4.8 units
xn = 1.5 units yn = 3.0 units
Fn = 1 unit

Fn

 

Figure 4.14 – Triangular assembly for the inspection method 
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This triangle is very similar to that shown in Fig. 3.12, except now there are two 

constraints along the bottom, none on the left side, and one constraint on the right side.  

While a visual inspection of this assembly shows that the nesting force cannot be placed 

along the right side or the base of the assembly, all the matrix equations will be analyzed 

to show what happens. 

 

The first step is to set up the equations of equilibrium in matrix form.  The 

equations obviously differ depending on where the nesting force rests.  Therefore, three 

cases will need to be examined:  the nesting force will move along the left surface 

(denoted “left”), it will continue its path along the right surface (denoted “right”), and it 

finishes its path along the base of the assembly (denoted “base”).  
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 Applying the initial values shown in Fig. 4.14 to the matrices given above 

produces the following systems of equations.  The initial point of contact along each 

surface for the nesting force is also listed. 
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 The next step is to solve the equation Cr = b to find the reaction forces.  The 

vectors below show the values for the reaction forces. 
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 Now, it is necessary to make certain that the reaction forces are not approaching 

infinity.  A quick glance shows that indeed this assembly continues to be exactly 

constrained.  In addition, all the forces are about the same order of magnitude, so no one 

force is carrying a disproportionate amount of the load.  Note that when the nesting force 

has been placed along the base of the block, R3 falls out.  Only two constraints are 

carrying the load.  Because of this, the nesting force cannot be placed along the base.  

 

To fix the signs on all the reaction forces, the nesting force must be moved into 

the nesting force window.  All of the negative signs show that the nesting force is not in 

the window. 

 

The nesting force window is created by first finding the transition points.  In 

Microsoft Excel’s Solver®, R1 is chosen to go to zero, and the transition point is found.  

Then, R2 is forced to zero followed by R3 forced to zero.  The process is repeated for each 

surface.  The resulting transition points are found in Table 4.1.   
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Table 4.1 – Transition points along each side of the assembly 

Side of the 
assembly 

Transition point 
Value of Reaction 

Forces 
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Right No point exists N/A 
Bottom No point exists N/A 

 
 

Toggling the x-coordinate a little above and below each transition point shows 

which portion of the segment is allowed in the window and which portion is not allowed.  

From this information, a sketch of the nesting force window is drawn (Fig. 4.15) to get a 

better view of the physical dimensions.  The nesting force window is comprised of a very 

small portion of the overall assembly. 

 

C2C1

C3

 

Figure 4.15 – Nesting force window for the triangle assembly.  The bolded lines are 
the points where the nesting force is not allowed. 
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The nesting force is moved into the allowable region at xn1 = 2.5 units, and the 

reaction forces are re-calculated.  The method outlined in this chapter quickly found that 

Fig. 4.16 is an acceptable EC design. 
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Figure 4.16 – Acceptable EC design for the triangle assembly 

  

This short example showed how the equations of equilibrium can inspect an 

assembly to ensure it is exactly constrained.  In the current set-up, unless constraints 1 

and 2 were placed at the same point, it would be impossible for any two of the three 

constraints to become co-linear or for all three constraint lines to intersect at a point 

because of the two parallel constraints along the bottom. 
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EXAMPLE 2:  METHOD FOR PREDICTION 
 

Now, constraint 2 will be moved over to the left side of the triangular part, as in 

Fig. 3.12 (and shown in Fig. 4.17).  This time, the method to predict bad configurations 

will be used to analyze the part.   

 

C1

C2

C3

x1 = 3.0 units y1 = 0.0 units

x2 = 1.5 units y2 = 3.0 units

x3 = 3.6 units y3 = 4.8 units

xn = 5.5 units yn = 1.0 units

height = 6 units
width = 6 units

F
n

 

Figure 4.17 – Triangular assembly for the design method 

 

First, the matrix equations must be formulated and solved to find the reaction 

forces.  The actual equations can be found in Appendix C.  For brevity, only the analysis 

will be shown for when the nesting force is along the right surface of the assembly.  The 

reaction forces are given below. 
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 The next step is to find the configuration(s) of the constraints that violate the EC 

design rules of Chapter 3.  This step is simply accomplished through Excel’s Solver®:  x3 

is the design variable; y3 = -2 * x3 + 12 (the equation of the right surface); R1 ≥ 0, R2 ≥ 0, 

and R3 ≥ 0 are the optimization constraints; and the objective function is to maximize R1, 

R2, and R3, respectively.  In this example, they all go to infinity for the same 

configuration of the constraints.  Figure 4.18 shows the only configuration for this 

assembly that fails to be exactly constrained.  This configuration violates the rule 

validated earlier that no three constraint lines should intersect at a point. 
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C2
C3

x1 = 3.0 units y1 = 0.0 units

x2 = 1.5 units y2 = 3.0 units

x3 = 4.552 units y3 = 2.896 units

xn = 5.5 units yn = 1.0 units

F
n

 

Figure 4.18 – Configuration that makes the assembly no longer exactly constrained 

 

This configuration is under-constrained in rotation, as shown in the C matrix. 
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The under-constraint means that no resistive moment exists to overcome the moment that 

will be caused by the application of the nesting force.  

 

 Keeping this information in mind, a position now needs to be found for the 

constraints.  The original set-up provided a good representation for the reaction forces.  

None of the forces carried a disproportional amount of the load, and they were all 

positive.  The positive reaction forces show that the nesting force is also in a good place 

(which was known from Chapter 3).  Therefore, Fig. 4.17 represents a good configuration 

for this assembly. 

 

4.5 TRADEOFF BETWEEN THE REACTION FORCES AND THE NESTING 
FORCE WINDOW 

 Each analysis using the generalized method is based on a given placement of the 

constraints.  Consider Fig. 4.19, which shows Fig. 4.1 in several different configurations.  

The constraints, reaction forces, and nesting force windows are all shown.  The detailed 

force analysis for each design may be found in Appendix D.     



 111 

C1

C2

C3

C1

C2

C3

C1

C2

C3

C1

C2

C3

C1

C2

C3

Fn2

Fn1

Fn2

Fn2

Fn2

Fn1

Fn1

Fn1

No nesting force allowed anywhere
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R1 = 0.4
R2 = 1.0
R3 = 1.4

R1 = 0.25
R2 = 1.0
R3 = 1.25

R1 = 0.1
R2 = 1.0
R3 = 1.1

R1 = 0.33
R2 = 1.0
R3 = 1.33

R1 = -infinity
R2 = 1.0
R3 = -infinity
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Figure 4.19 – Various configurations of the same block assembly 

  

Notice that the nesting force window changes according to the locations of the 

constraints.  There is a tradeoff between the location of the constraints and the size of the 

nesting force window.  While the tradeoff is not always negative, in this example, the 

further apart the constraints are to each other, the smaller the nesting force window.  The 

closer the constraints are to each other, the larger the nesting force window, but the 

greater the reaction forces climb until the design becomes unstable. 
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 Recall from Chapter 2 that one of the benefits of EC design is the allowance for 

greater variation in the location of the constraints.  While Fig. 4.19 again validates this 

benefit, it can also be seen that there are some EC designs that may be better than others.  

For example, one design may have lower reaction forces, while another design may 

provide a more flexible nesting force window. 

 

 There may be additional design considerations that help decide where the 

constraints should be placed. 

 

1. Space limitations—it often happens that due to the number of parts or due to 

the locations of the parts within an assembly, space is limited. 

2. Geometry—the geometry of the part often limits the possible locations for the 

constraints or joints in an assembly. 

3. Required function of the assembly—the constraints cannot interfere with the 

function of the assembly, and this stipulation may limit the possible locations 

for the constraints. 

4. Reaction forces exerted on the assembly—high reaction forces should be 

avoided.  In addition, balancing the reaction forces will not place undue stress 

on the assembly. 

 

However, sometimes the designer may simply locate constraints based on 

personal preference.  In that case, it would be beneficial to have a quantitative means 

available to find a factor of “goodness” for each EC design to help make the decision.  
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The equations of equilibrium show the results of the reaction forces, but this is not the 

only mathematical criterion that may be useful for EC design.   

 

Chapter 5 will explore an additional quantitative method to find the “goodness” of 

an EC design.  This method could be used to determine which design might provide the 

most beneficial tradeoff for given conditions. 
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CHAPTER 5 A QUANTITATIVE MEASURE OF “GOODNESS” IN AN 
EXACTLY CONSTRAINED DESIGN 

 
 
 
5.1 INTRODUCTION  

 Chapter 4 introduced a generalized method using the equations of equilibrium to 

quantitatively analyze exactly constrained (EC) designs.  Using this generalized method, 

a designer can either ensure EC design compliance in an assembly, or he can predict 

configurations where an assembly would no longer qualify as exactly constrained.   

 

Another contribution of this generalized method allows for constraint analysis 

when the C matrix becomes singular.  Investigating where the equations of equilibrium 

fail will, at least in part, show why the design no longer meets the criteria for EC design. 

 

Chapter 4 also illustrated a natural tradeoff involving the constraints and the 

allowable range for the nesting force window.  The simple example in Fig. 4.19 showed 

one example of this tradeoff.  Configurations with more distance between constraints 1 

and 3 had lower reaction forces, but they also had smaller windows for the nesting force.  

However, moving the constraints closer together in the x-direction resulted in higher 

reaction forces with an expanded nesting force window.  The reaction forces continued to 

increase until the two constraints in question became co-linear, at which point the 
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assembly became over-constrained in the y-direction, under-constrained in rotation, and 

the window disappeared for the vertical nesting force. 

 

The discovery of this tradeoff now leads to an investigation into the goodness of 

an EC design.  “Goodness” refers to the fact that while many different configurations of 

an assembly may constitute an acceptable EC design, there may be some configurations 

that fulfill design needs better than others. 

 

Just as the general principles of EC design were strengthened by using the 

equations of equilibrium, the goodness criteria must also be founded on quantitative, 

mathematical principles.  Chapter 5 investigates an approach using quantitative methods 

to define the goodness in an EC design.   

 

A brief discussion defining the qualitative goodness of an EC design is followed 

by a brief review of constraint analysis using screw theory.  It will show an additional 

need for a method that will provide a quantitative measure of goodness.  Finally, using 

information from the direct linearization method (DLM), a quantitative method to 

determine goodness for an EC design will be presented. 

 

5.2 THE GOODNESS OF AN EXACTLY CONSTRAINED DESIGN 

One of the major benefits of EC design is the robust ability of a design to assemble 

even when variation may enter into the assembly components.  This benefit will be 

further illustrated in Chapter 6 when variation is introduced into assemblies.  However, 
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while the part may assemble under a wide variety of conditions, Chapter 4 illustrated that 

some configurations may still have certain advantages over others. 

 

  The idea that some configurations may pose greater benefits than others will be 

referred to as the “goodness” of EC design.  Goodness, as referred to here, is defined by 

several aspects. 

 

1. The EC assembly is not on the verge of becoming over-constrained or under-

constrained. 

2. Variation or tolerances of the parts have little to no effect on the ability of the 

design to assemble. 

3. The assembly offers an acceptable trade-off between the size of the nesting 

force window and the distance between constraints in order to minimize the 

magnitudes of the reaction forces. 

4. All possible advantages of EC design are utilized and preserved. 

5. The overall assembly error is at a minimum. 

 

The qualitative goodness criteria defined above for an EC design is not enough to 

determine which designs would rank higher or better.  A mathematical, quantitative 

method will add strength to any decision.  Thus, mathematical techniques will be 

investigated in this chapter as a way to quantitatively measure the goodness of a design. 
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5.3 USING SCREW THEORY TO QUANTITATIVELY MEASURE GOODNESS 

 Recall from Chapter 2 that the screw theory approach to constraint analysis 

presented by Adams [1998] pinpointed where any over and under-constraint exists in an 

assembly.  One of the criteria defined for goodness of an EC design was that the 

assembly was not on the verge of becoming over or under-constrained.  What happens in 

screw theory when an assembly transitions from an EC design to a non-EC design? 

 

 In Chapter 2, the slotted block example was used to show how screw theory 

performs.  When the slot was at an angle of 0o to the block, screw theory found that the 

assembly was exactly constrained.   

 

Figure 5.1 shows the final results for the slotted block as the angle of the slot 

changes.  The detailed calculations for Fig. 5.1 can be found in Appendix A.  As the 

angle of the slot changes, the assembly transitions from an EC design to one of over-

constraint in the x-direction and under-constraint in rotation.  More particularly, this 

analysis with screw theory shows that up to and through 89.9o, this assembly is exactly 

constrained.  However, when the slot is rotated to 90o, the assembly suddenly becomes 

over-constrained in the x-direction and under-constrained in rotation. 
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Figure 5.1 – Results of the Screw Theory Analysis.  EC means that the design is 

exactly constrained. 
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Screw theory identifies the exact point at which the assembly becomes over and 

under-constrained.  However, it gives no indication that the assembly is approaching such 

a state.  In other words, screw theory acts like a “switch.”  It is either “on” or “off.”  

Either the assembly is exactly constrained, or it is not.   

 

While this method provides a powerful way to perform constraint analysis for a 

given arrangement in an assembly, screw theory does not appear to provide any 

indication when the assembly is approaching an over and/or under-constrained state.  It 

does nothing to illustrate a tradeoff between design considerations for an EC design, and 

it cannot show the effects of variation.  It thus shows no difference or superiority between 

EC designs with differing slot angles.   

 

5.4 USING THE DIRECT LINEARIZATION METHOD (DLM) TO PROVIDE A 
QUANTITATIVE GOODNESS CRITERIA 

The direct linearization method (DLM) was developed for tolerance analysis.  

While it is not traditionally applied to constraint analysis, the work of Daniel Smith 

[2001] found a link between it and screw theory. 

 

 Smith found that the 3D representation of the B matrix (a matrix of first order 

partial derivatives with respect to the dependent variables) from the DLM could be used 

in place of the initial twist matrices for the under-constrained (motion) analysis in screw 

theory.  The F matrix (a matrix of first order partial derivatives with respect to the 

geometric feature variables—see Chase et. al [1996]) from the DLM could be used in 

place of the initial twist matrices for the over-constrained (force) analysis.  Then, the 
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same reciprocal operations and steps were applied as in screw theory to find the overall 

constraint status.  Smith called his method the Variation-based Constraint Analysis of 

Assemblies (VCAA). 

 

Screw theory as applied to constraint analysis and the VCAA show when and 

where a design is or is not exactly constrained; however, neither of the methods provides 

a quantitative measure of goodness that signals when the design may be approaching an 

over or under-constrained state.   The measure for goodness must do more than state if 

the assembly is exactly constrained or not.  It must show when a design is close to 

violating the rules from Chapter 3.  It must also provide a means to compare various 

configurations of the same assembly to determine which configuration may best suit the 

functional needs of the assembly.   

 

The DLM provides additional information not utilized by other methods that can 

provide a quantitative measure of goodness.  As will be presented in this chapter, the 

determinant of the B matrix can signify when a design is approaching an unstable state.  

Also, the assembly sensitivities, B-1A, provide a way to quantitatively compare similar 

EC designs to find which configurations are least affected by variation.   

 

A more in-depth discussion of the variables and the partial derivatives (which are 

found when the vector loop equations are linearized) must first be discussed to 

understand why the two matrices of sensitivities work well as a measure for goodness.  

Then, a discussion of the B matrix and its contributions to EC design goodness will be 
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followed by a discussion on using the assembly sensitivities to find an additional 

quantitative value for goodness. 

 

5.4.1 SIGNIFICANCE OF PARTIAL DERIVATIVES IN THE DLM 

 Before proceeding to find a quantitative measure of goodness for EC design, a 

more comprehensive look at the variables and the partial derivatives will be presented.  

This information is explored to give a solid background to the next section, B matrix 

contributions. 

 

 Each vector in a vector loop equation is composed of two or more variables, 

which describe the magnitude and direction of that vector.  There are two types of 

variables:  the length variable describes the magnitude of a vector, while the angular 

variable relates to the direction of the vector in the assembly.  These variables could be 

either independent or dependent in the vector loop analysis. 

 

In the DLM, the independent variables are the known (or user-defined) 

dimensions in the analysis.  For example, the locations of the constraints or the height 

and width of parts are independent length variables; the angles of surfaces or slots are 

independent angular variables.  The independent length variables will be collectively 

denoted as xi, while the independent angular variables will be collectively denoted as φi.   

 

The dependent variables are the resulting dimensions based on the values of the 

independent variables.  They are used in the analysis to absorb changes from the 
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independent variables to allow the vector loop equations to close.  The dependent length 

variables will be denoted as ui, and the dependent angular variables will be denoted as θi.  

Vectors that include dependent length variables always go from an unknown position of a 

joint (where a constraint connects to the main body of the assembly) to a known position 

in the assembly.  These vectors can change in magnitude and direction, according to the 

variation present in the assembly. 

 

The vectors in the vector loops (Section 2.9.4) are summed together in the vector 

loop equations.  For example, the vector loop equation hx sums together the component of 

each vector in the x-direction.  The magnitude of the vector is a length variable, and the 

direction involves the cosine of the angular variables.  Likewise, the hy equation sums 

together the components of each vector in the y-direction.  The hθ equation sums together 

the angles of each vector relative to one another. 

 

While it is possible to find the values of the dependent variables using a non-

linear equation solver, the DLM is more interested in quantifying the effects of small 

changes (variation) in the assembly.  As mentioned in Section 2.9.6, the vector loop 

equations can be linearized, based on a first order Taylor series expansion.  The resulting 

equation takes the form,   

 

[ ]{ } [ ]{ } { }0BA =+ UX δδ   (1) 
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A contains the partial derivatives with respect to the independent variables.  B 

contains the partial derivatives with respect to the dependent variables.   

 

 Variables, vectors, and vector loop equations were presented here because they 

influence the first order partial derivatives.  Information from the partial derivatives with 

respect to each kind of variable (length or angular) will be applied later in this chapter 

when the B matrix contributions are presented.  However, the specific significance of the 

partial derivatives with respect to the each kind of variable will first be explained. 

 

Taking the partial derivative with respect to a length variable will leave the 

component of a unit vector in a certain direction.  For example, taking the partial 

derivative of the hx equation with respect to a length variable will leave the component of 

a unit vector in the x-direction, as illustrated in the example below (which only shows the 

dependent variables from a vector loop equation). 
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To further illustrate, suppose a term representing the partial derivative of hx with 

respect to some length variable in the B matrix gives a value of 0.707. 
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By virtue of being in the x-direction, this value is related to the cosine of an angle.  

Because the partial derivatives are all unit vectors for length variables, the angle of the 

vector is 45o.  The value of the partial derivative taken with respect to a length variable 

will always be between 0 and 1, as it is the component of a unit vector in some direction.   

 

 However, the partial derivative for any angular variable will become the 

component of a resultant vector (not a unit vector) in the opposite direction from the 

vector loop equation under analysis.  For example, Fig. 5.2 shows all vectors in a vector 

loop associated with the variable θ1.   

 

 

Figure 5.2 – All vectors associated with θ1 in a vector loop sample 

 

The tail of vector u1 is the position of one joint connecting a constraint to the main 

block of an assembly, and the tip of u2 is another joint connecting a different constraint to 

the same block.  The portion of the hx equation relating to these vectors is stated below, 
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followed by the partial derivative of the equation with respect to θ1.  Figure 5.3 shows the 

components of each vector labeled.  
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Figure 5.3 – Components of each vector for the example in Fig. 5.2 

 

Taking the derivative with respect to θ1 shows that the partial derivative of the x-

equation with respect to θ1 will be the component of a resulting vector (of some non-unit 

magnitude) in the y-direction.  Using the information in Fig. 5.3, it can be seen that the 

resultant vector for this example will be in the positive direction with a magnitude equal 

to the y-distance between the tail of u1 and the tip of u2 (as shown in Fig. 5.4). 
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Figure 5.4 – Resultant vectors representing the values of 
1θ∂

∂ xh
 and 

1θ∂
∂ yh

 

 

 In review, the partial derivatives found in the A and B matrices have meaning that 

will be used later in this chapter.  The partial derivative in some direction with respect to 

a length variable will be the component of a unit vector in that same direction.  The 

partial derivative in some direction with respect to an angular variable will be the 

component of a resultant vector in the opposite direction. 

 

 The A matrix will be momentarily set aside because it will not contribute any 

additional information until the assembly sensitivities are found.  However, with the 

previous information presented, a deeper understanding of the B matrix contributions can 

begin to be used to define a measure of goodness for EC design.  These contributions will 

also explain why the assembly sensitivities act as a useful indicator for the goodness 

criterion. 
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5.4.2 [B] MATRIX CONTRIBUTIONS 

As previously mentioned, the actual meaning of each term in the B matrix 

depends on which kind of variable the derivative was taken with respect to.  If the 

derivative is taken with respect to ui, the value represents the component of a unit vector 

in a certain direction.  Because it is only the direction of a unit vector, the values for the 

derivatives will always be from 0 to 1.  If, however, the derivative is for θi, the value 

represents the component of a resultant vector in the opposite direction of the row in 

which the term resides. 

 

In order to find the assembly sensitivities, the B matrix must be inverted and 

multiplied by A.  In order to invert the B matrix, it must be square and non-singular.  If 

the matrix is square, the number of variables equals the number of equations.   

 

Recall that singularity means the determinant of the matrix will go to zero.  This 

singularity can happen due to any of three reasons. 

 

1.  A row is zero 

2.  A column is zero 

3.  Linear dependence 

 

Just as with the C matrix for the equations of equilibrium, a careful examination of the 

three criteria for a singular B matrix in the DLM shows useful information relating to EC 

design constraint status.  Following an explanation of what it means to an assembly when 
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the B matrix goes singular for each case listed, a section will present how to use the B 

matrix as a quantitative measure for goodness. 

 

5.4.2.1 A ROW OF ZEROS 

Each row in the B matrix represents the partial derivatives in one direction with 

respect to each dependent variable.  Because the dependent variables allow the vector 

loop equations to sum to zero by absorbing any change from the independent variables, a 

row of zeros in the B matrix shows that any variation of the independent variables will 

not allow the vector loops to close.  The dependent variables can no longer absorb 

changes from the independent variables in the direction corresponding to the row that 

went to zero.  The assembly is over-constrained in the direction corresponding to the row 

that went to zero.  For example, the B matrix shown below illustrates an assembly is 

over-constrained in the x-direction. 
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To better understand what this means, equation (1) can be rearranged. 

[ ]{ } [ ]{ }UX δδ BA =−   (2) 

For this equation to be true, each of the vector loop equations must equal zero.  If any 

row in B is all zeros, the independent variables in that direction cannot have any variation 

or else the vector loops will not go to zero.   
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Consider, for example, when the first row of the following B matrix has gone to 

zero. 
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 (3) 

 

The partial derivative of hx with respect to all dependent variables is zero.  Unless there is 

absolutely no change in the independent variables, the left hand side of the equation will 

not go to zero.  Therefore, the whole vector loop equation itself cannot sum to zero, if 

there is any variation. 

 

The row of zeros in the B matrix shows that the assembly has become over-

constrained in the x-direction.  That is to say, any variation of the independent variables 

in the x-direction cannot be absorbed by the dependent variables in that direction; 

therefore, the vector loop equation will not sum to zero. 
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5.4.2.2 A COLUMN OF ZEROS 

Each column in the B matrix represents the partial derivatives in each direction 

with respect to one dependent variable.  When the derivative is taken for ui in each of the 

vector loop equations, the column in the B matrix shows the components of a unit vector 

pointing in the x and y-directions.  Because it only involves the components of a unit 

vector in some direction, a column for a ui variable can never have all zeros.  The square 

root of the sum of the squares for the x and y-components in the column will always be 

one. 

 

A column can only be full of zeros for a θi variable.  Recall that the partial 

derivatives for θi involve both a non-unit magnitude and the components of direction; in 

other words, each term in a column of the B matrix for θi contains the components of a 

resultant vector in the x or y-directions.  A column can only be full of zeros when two 

constraints that both relate to θi are placed at the same point.  There is no resultant vector 

between the constraints in this case.  Thus, the assembly has become under-constrained.  

However, this is a trivial case because it is not likely to occur often. 

 

5.4.2.3 LINEAR DEPENDENCE 

Linear dependence will also cause the determinant of the B matrix to go to zero.  

If the B matrix does have linear dependence, the vector loop equations must be inspected 

to determine if they all summed to zero.  If the vector loops did sum to zero, there is a 

constraint problem in the design.  If the vector loops did not sum to zero, the design did 

not assemble.  Each case is now explained in further detail. 
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If each of the vector loop equations sum to zero, the linear dependence signals a 

constraint problem in the design.  The constraint problem, as seen through the B matrix, 

depends on whether the system is linearly dependent due to the columns or the rows. 

 

The system is under-constrained in rotation if the columns are linearly dependent.  

The linear dependence in this case will likely occur between a column representing the 

partial derivatives of a length (ui) variable with respect to each vector loop equation and a 

column representing the partial derivatives of an angular (θi) variable with respect to each 

vector loop equation (linear dependence between two length columns is a trivial case as it 

will not occur if there is more than one vector loop or if there is any resultant rotation of 

the part).  

 

For example, the B matrix listed below (and used earlier) shows linear 

dependence in the columns.   
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In this case, the columns show that this assembly will have under-constraint in rotation 

because the physical joint that provides the constraint associated with u1, which once 

eliminated rotation in its nominal position, has moved in such a manner that it provides 

no constraint against rotation.   
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A physical example that would result in the B matrix given above is found in Fig. 

5.5.  The revolute joint provides the translational constraints and the cylinder slider 

provides the rotational constraint in Fig. 5.5a.  However, the slider joint has moved in 

Fig. 5.5b, and there is no longer constraint against rotation.  Linear dependence between 

columns signals under-constraint in rotation. 

 

 

(a) 

 

(b) 

Figure 5.5 – Example showing when the B matrix would have linear dependence in 
the columns (a) EC design (b) Under-constrained in rotation according to the B 

matrix 
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 If rows are linearly dependent in the B matrix, the system is over-constrained in 

the direction relating to the dependent rows.  The linear dependence signals that two 

constraints are competing to constrain the same direction, as shown by the vector loop 

equations.  For example, Fig. 5.6a shows an exactly constrained design that becomes 

over-constrained (Fig. 5.6b) in the y-direction when the two constraints along the base 

are located at the same point.  The B matrix shows this over-constraint by the linear 

dependence in the second and fourth rows.  Linear dependence between rows in the B 

matrix signals over-constraint. 
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Figure 5.6 – Example showing when the B matrix would have linear dependence in 
the rows (a) EC design (b) Over-constrained in the y-direction 
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If any one of the vector loop equations do not sum to zero, the linear dependence 

signals that the design did not assemble.  An important piece of predictive information 

can be gained from the B matrix when this happens.   

 

An interesting physical interpretation from terms in the B matrix can be used to 

determine why a design will not assemble.  Recall that the partial derivatives associated 

with the θi variables represent the component of a resultant vector in a specified direction.  

As illustrated in Section 5.4.1, the partial derivative of hx with respect to θi will be the y-

distance between the tip and tail of the string of vectors associated with that variable.  

Each end of this string of vectors will be at either a DRF or a constraint.  If the tip is at 

one constraint and the tail is at another constraint (as was discussed in Fig. 5.2), the term 

in the B matrix for the partial derivative of hx with respect to θi will be equivalent to the 

y-distance between the constraints.  Likewise, the partial derivative for θi relating to hy 

will be the x-distance between the constraints.  It should be noted that while this 

information was independently discovered by the author, it has been more fully described 

in Gao et. al [1998]. 

 

This physical interpretation can now be applied to discover why a design did not 

assemble (as shown when at least one vector loop equation does not sum to zero).  When 

solving the vector loop equations with an optimization routine or an equation solver such 

as Excel’s Solver®, the last iteration before the routine terminates will show the minimum 

distance required between the constraints (or between the constraint and DRF, as the case 
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may be) for the design to assemble.  For example, the B matrix shown below relates to 

Fig. 5.7, which shows a variation of the  slotted block example from Fig. 5.1.   

 

u1 theta

-0 0 hx determinant= -0

1 4 hy

B =

 

 

2.5 3.5

3.0

4.0

 

Figure 5.7 – Example assembly to show how to use the B matrix to predict why a 
design did not assemble 

 

 In order for this design to assemble, the two constraints must be 4 units apart in 

the x-direction (as shown by the term in the B matrix for the partial derivative of hy with 

respect to θ); however, they are only 3.5 units apart.  For the design to assemble, the 

constraints would have to be moved apart another 0.5 units, or the dysfunctional part 

would have to be re-manufactured to fit the dimensional needs found in the analysis. 
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5.4.2.4 USING THE [B] MATRIX AS A MEASURE OF 
GOODNESS 

 Using the determinant of B proves useful for EC design.  When the determinant 

for the B matrix goes to zero, the assembly has become over-constrained, under-

constrained, or it does not assemble.  The reason the assembly does not perform as an EC 

design can be inferred from the cause of the singularity in the B matrix. 

 

One of the criteria for goodness is that the design is not approaching an over 

and/or under-constrained state.  A quick inspection of the determinant of the B matrix is 

one measurement of goodness because information from the B matrix can detect stability 

of the assembly.  When the matrix is singular, the determinant is zero.  As the assembly 

approaches a state of over and/or under-constraint, the determinant gets smaller.  Very 

small values for the determinant show that the design is approaching an undesired state.   

 

The next task is to define “small values of the determinant.”  Obviously the 

determinant depends upon the values found in the B matrix.  Recall that all partial 

derivatives with respect to length variables have values between zero and one.  However, 

the angular variables have partial derivative values that could be of any magnitude, 

depending on the dimensions of parts and locations of joints in the assembly.  Therefore, 

the determinant could have many orders of magnitude, or it could have very few.  A 

“small value”, therefore, ranges in orders of magnitude according to the dimensions of 

the assembly. 
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 A general guideline can be followed to determine what a small value is for a 

given design.  If the highest dimension involved in any vector loop is a value between 

one and ten, the designer can begin to be wary when the determinant is below an absolute 

value of one.  If the highest dimension involved in any vector loop is between 0.1 and 1, 

the absolute value of the determinant should not go below 0.1.  If the highest dimension 

in the assembly is on the order of 10 (such as 21), the determinant should not go below 

10.  The same general pattern can be applied to any given order of magnitude.  This 

guideline shows where the assembly is beginning to approach an unstable state.  It has 

not yet reached the over and/or under-constrained state, but the determinant warns that 

the assembly is approaching that status.  The constraints should be altered to avoid a 

determinant that approaches zero, if possible. 

 

With a square and non-singular B matrix, the assembly is exactly constrained.  In 

that case, the sensitivities can also be used to quantify the goodness of similar designs.   

 

5.4.3 USING ASSEMBLY SENSITIVITIES TO QUANTIFY GOODNESS 

Now the discussion will return to the DLM procedure to find the assembly 

sensitivities.  Once the A and B matrices have been found, the equation can be solved to 

find the sensitivities of the dependent variables with respect to the independent variables.   

{ } [ ]{ }XU δδ AB-1−=   (3) 

The matrix B-1A is the matrix of assembly sensitivities.  They show what effect small 

changes of the independent variables will have on all the dependent variables in the 

assembly. 



 139 

The effects of change are very important in analyzing an EC design because one 

of the benefits to EC design is that variation in parts or dimensions has little effect on the 

overall function of the assembly.  Thus, another quantitative measurement of goodness 

for an EC design can be found using the assembly sensitivities.   

 

The sensitivities show how the dependent variables will change with any change 

from the independent variables.  For example, a sensitivity of one shows that changing 

the independent variable by some amount will change the dependent variable by the same 

amount.  A sensitivity of two will force the dependent variables to change twice as much 

as the independent variables were changed.   

 

The sensitivity matrix can be evaluated to ensure variation will not have a great 

effect on the assembly.  The sensitivities should stay low in magnitude, as it would not be 

good to have the changes in dependent variables magnified when the independent 

variables are changed.  Any sensitivity above two should be avoided, although doubling 

the changes in dependent variables compared to independent variables is still high.   

 

If there is a high sensitivity somewhere in the matrix, the designer should avoid 

any variation related to that variable, or the design may not assemble.  An alternative 

solution would be to change the locations of the constraints to lower the sensitivities.  

Note that when the determinant of the B matrix is zero, the sensitivities on the critical 

variables (the variables that cannot change because of any over-constraint) will go to 

infinity. 
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The sensitivities can also be compared between configurations for the same 

assembly to determine which designs may show a better measure for goodness.  

Comparing the assembly sensitivities among various configurations will give the designer 

a clearer idea for which designs will absorb variation better. 

 

In addition to minimizing the effects of variation on an assembly, another criteria 

defined earlier for goodness includes a good tradeoff between the locations of the 

constraints for good reaction forces, and the size of the nesting force window.  The 

assembly sensitivities can provide a quantitative way to show the effects of changing 

constraint locations.  The sensitivities will change as the constraint locations change.  

Better sensitivities will lead to more robust designs.  While the DLM as presented in this 

thesis does not bring the actual nesting force window into the analysis, the assembly 

sensitivities for various configurations of an assembly can be compared based on the 

constraint placements.  The configurations that yield the best goodness values can be 

analyzed using the equations of equilibrium to find if the nesting force window is 

acceptable.  This comparison is easily done in a spreadsheet or similar tool. 

 

Using sensitivities is not new to engineering design.  For example, Wittwer 

[2002] uses sensitivities from both the DLM and the force equations for micro-compliant 

mechanisms.  However, using the sensitivities to derive a measure of goodness for EC 

design is unique. 
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5.4.4 USING THE GOODNESS VALUES FOUND IN THE DLM 

With all the information from this chapter in mind, a method can now be 

presented using the DLM to find a measure of goodness.  The steps themselves are no 

different than performing the DLM on an assembly; however, the information within the 

DLM at various stages can now be used to form a mathematical or quantitative measure 

of goodness. 

 

1. Find the A and B matrices as outlined by the DLM. 

2. Examine the B matrix. 

3. Find the assembly sensitivities, [B-1A]. 

4. Evaluate or compare the assembly sensitivities between configurations. 

 

STEP 1:  FIND THE [A] AND [B] MATRICES 
 

Recall from the discussion in Chapter 2 that the DLM begins by creating vector 

loops and formulating vector loop equations.  The three vector loop equations (hx, hy, hθ) 

allow for up to three unknown variables per loop.   

 

It should be noted that in many instances the hθ equation either falls out 

completely or it solves in terms of a user-defined value, allowing a substitution to 

eliminate one angular variable.  In such circumstances, only two unknown dimensions 

can be found through the vector loop equations.  
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Regardless, solving the vector loop equations (which ordinarily requires a non-

linear equation solver) finds the values for the unknown dimensions.  While the DLM is 

more interested in small changes, it is necessary to find the unknown variables, as the 

values must be used to numerically evaluate the partial derivatives. 

 

The next step in the method is to linearize the equations by taking partial 

derivatives of the vector loop equations.  The A and B matrices are formulated after 

taking the partial derivatives of each equation with respect to each dependent and 

independent variable. 

 

STEP 2:  INSPECT THE [B] MATRIX 
 

At this stage, the B matrix must be inspected to ensure that it is both square and 

non-singular.  It must meet these stipulations in order to get useful information out of the 

assembly sensitivities.  Section 5.4.2 can be referenced to determine how the assembly 

will behave for a non-singular matrix. 

 

If a design assembles, the value of the determinant for the B matrix is assigned to 

the assembly as a measure of goodness.  The further away from zero the absolute value 

for the determinant is, the better the design.  Values approaching zero (as defined in 

Section 5.4.2.4) should be avoided, if possible. 
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If a design does not assemble, the information in the B matrix can be used to 

make the appropriate changes.  Then, the determinant can be evaluated once more to 

establish a specific measurement for goodness. 

 

Thus, when inspecting the B matrix for an EC design, not only will the 

determinant be used as a measure of goodness, but the B matrix will also be used to 

predict what changes must happen in an assembly to fix a design that did not assemble.  

These two benefits alone provide a very powerful argument for using the DLM to analyze 

EC designs. 

 

 STEP 3:  FIND THE ASSEMBLY SENSITIVITIES 
  

The B-1A matrix contains the assembly sensitivities.  These sensitivities show 

what effect changing one independent variable will have on each of the dependent 

variables.   

 

STEP 4:  EVALUATE OR COMPARE ASSEMBLY 
SENSITIVITIES BETWEEN CONFIGURATIONS 

 
Recall from an earlier discussion that part of the definition for goodness of an EC 

design is that variation in the parts has little to no effect on the function of the assembly.  

Assembly sensitivities show what effect small changes will have on the assembly.  They 

can also show which constraints and variables have the greatest influence on the 

assembly.  Assembly sensitivities above two should be avoided, if possible.     
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When comparing the assembly sensitivities between configurations of a design, 

the assemblies with lower sensitivities are better.  The lower sensitivities show an ability 

of the design to absorb variation that may enter from part to part.  Thus, using the 

assembly sensitivities also provides a quantitative measure for goodness of EC design. 

 

5.4.5 A RETURN TO THE SLOTTED BLOCK EXAMPLE 

The simple slotted block example shown earlier in Fig. 5.1 can be used to 

illustrate the information presented in this chapter.  Figure 5.8 shows the slotted block 

with the vector loop used in the DLM.  The vector loop equations are expressed after the 

figure, and the A and B matrices are computed. 
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y3 y4

r r

u1

x1 = 2.5 units
x2 = 4.0 units
x3 = 2.0 units
x4 = 6.5 units
y1 = 3.0 units
y2 = 2.0 units
y3 = 2.0 units
y4 = 3.0 units
r = 0.5 units
angle of slot = 0

 

Figure 5.8 – DLM for the slotted block example 
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x1 x2 x3 x4 y1 y2 y3 y4 r phi

1 1 -1 -1 0 -0 0 -0 -0 -0.5 hx

0 -0 0 0 1 -1 1 -1 0 2 hy

A =

 

u1 theta

1 0 hx determinant= 4

-0 4 hy

B =

 

 

The determinant of the B matrix is four, which is greater than zero.  There appear 

to be no signs that the assembly is on the verge of becoming over-constrained.  The 

assembly is exactly constrained at 0o. 

 

The overall sensitivities are very low (as shown below), no more than a one to one 

ratio of change between the independent and dependent variables.  Variation in the 

dimensions can be absorbed.  This set-up for the assembly will be quite robust, and it will 

stay exactly constrained. 

 

x1 x2 x3 x4 y1 y2 y3 y4 r phi

-1 -1 1 1 0 0 0 -0 0 0.5 u1

-0 0 -0 0 -0 0.25 -0.3 0.3 0 -1 theta

Sensitivities =     
-(B-1A)  
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Now, the slot will be rotated to 45o (Fig. 5.9), with the rest of the assembly 

remaining at the same nominal dimensions as previously used.  The same vector loop 

equations apply, only the φ has changed from 0o to 45o. 

 

x1

x2
x3

x4

y1
y2

y3

y4

r r

u1

 

Figure 5.9 – Slotted block with the slot at 45o 

 

u1 theta

0.7 0 hx 2.8

0.7 4 hy

B = determinant=

 

x1 x2 x3 x4 y1 y2 y3 y4 r phi

-1.4 -1.4 1.4 1.41 0 0 0 -0 1 2.5 u1

0.2 0.25 -0.3 -0.2 -0 0.25 -0.3 0.3 -0.1 -1 theta

Sensitivities =     
-(B-1A)  

 

Again, for the given dimensions and configuration, the assembly stays exactly 

constrained.  The determinant is still greater than zero, although it is closer to zero than 

the slot at 0o.  The sensitivities are also higher than when the slot is at 0o.  The effect of 

change on the design will be greater in this set-up than in Fig 5.8, but the design will still 

assemble.   
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Figure 5.10 now shows the block at 89o.  Screw theory indicates that this 

assembly is exactly constrained, but it gives no indication or warning of how close the 

assembly is to becoming over and under-constrained. 

 

x1

x2
x3

x4

y1
y2

y3

y4

r r

u1

 

Figure 5.10 – Slotted block with the slot at 89o 

 

u1 theta

0.017 0 hx determinant= 0.07

1 4 hy

B =

 

x1 x2 x3 x4 y1 y2 y3 y4 r phi

-57.3 -57.3 57.299 57.299 9E-11 0 0 -0 57.29 115.08 u1

14.32 14.322 -14.32 -14.322 -0.25 0.25 -0.3 0.25 -14.075 -28.65 theta

Sensitivities =     
-(B-1A)  

 

The determinant of this B matrix is 0.07, which is less than one.  The simple 

indicator of the determinant shows that while this system is indeed exactly constrained, it 

is dangerously close to becoming over and/or under-constrained.  If there is much 

variation in the right peg, the block will not properly assemble unless there is some 

deformation involved. 
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The sensitivities are also very high.  In some instances, the dependent variables 

would have to change 57 times as much as the independent variables changed.  The 

sensitivities quickly indicate that the design cannot absorb variation from most of the 

variables.   

 

The sensitivities can be compared between configurations of this design.  Based 

on the effects of variation, the 0o or 45o slotted block assemblies would be chosen over 

the 89o assembly because the goodness shown by the assembly sensitivities of the other 

two designs are better.  All three designs are exactly constrained, but the 89o design is on 

the verge of not being exactly constrained. 

 

Figure 5.11 shows the same assembly.  However, this time the slot is at 90o. 

 

x1

x2
x3

x4

y1
y2

y3

y4

r r

u1

 

Figure 5.11 – Slotted block with slot at 90o 
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u1 theta

0 0 hx -0

1 4 hy

B = determinant=

 

x1 x2 x3 x4 y1 y2 y3 y4 r phi

5E+15 5E+15 -5E+15 -5E+15 -7831 -0.7 -1 7830 -5E+15 -1E+16 u1

-1E+15 -1E+15 1E+15 1E+15 1957 0.43 0 -1957 1E+15 2E+15 theta

Sensitivities =     
-(B-1A)  

 

The determinant of the B matrix is zero.  Inspecting the matrix can show the 

reason why: the x-equation in the B matrix has gone to zero, and over-constraint in the x-

direction has resulted.  Also, there is linear dependence between u1 and θ, which shows 

under-constraint in rotation. 

 

The sensitivities have nearly all exploded.  This assembly cannot absorb any 

changes in the variables, except for y2 or y3, and still assemble.   

 

The results from screw theory concur with these findings.  Also, a visual 

inspection indeed shows that the constraint lines of action do line up in the x-direction. 

 

5.5 THE [B] MATRIX FROM THE DLM AND THE [C] MATRIX FROM THE 
EQUATIONS OF EQUILIBRIUM 

 Recall that screw theory begins in twist space.  Reciprocal operations are 

performed to take the twists into wrench space (the force domain), and then the 

operations are applied again to bring the analysis back into twist space (the motion 

domain) to find possible motion in the assembly.  Likewise, to obtain results from the 

constraint analysis, the reciprocal operations are applied to the unionized twists in order 

to enter into the wrench space.  From this information, the constraint status is found.  In 
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short, the motion and force domains are reciprocal to each other through the “reciprocal 

operation” defined for screw theory. 

 

 Section 4.4.2 Step 2 showed that the C matrix in the force analysis goes singular 

when an assembly, which was exactly constrained given constraints at some distance 

apart, became over and under-constrained when two of the constraints became co-linear.  

In the force analysis, the moment equation (first row) went to zero, thus showing that the 

assembly became under-constrained in rotation. 

 

 The DLM can also be applied to this example, shown in Fig. 5.12.  The vector 

loop equations and B matrix follow the figure. 

 

x1

y1

u1

u2
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u3

x3

y3

y2

x2

 

Figure 5.12 – Exactly constrained block with three constraints 
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u1 u2 u3 theta

-1 0 0 -2.5 hx1

0 1 0 -7.64 hy1 determinant= 0

-1 0 1 -6.67 hx2

0 0 -0 0 hy2

B=

 

 

Notice the last row of the B matrix.  It shows that the assembly is over-

constrained in the y-direction for the second vector loop (the dashed vector loop).   That 

loop shows that the over-constraint happens between constraints 1 and 3.  Upon visual 

inspection and in agreement with the C matrix from the equations of equilibrium, at the 

point when the two constraints line up, it is indeed the case that the assembly has become 

over-constrained in the y-direction and under-constrained in rotation.   

 

The B matrix from the DLM and the C matrix from the equations of equilibrium 

simply show two sides to the same analysis.  They appear to be reciprocal to each other.  
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Appendix G gives a table showing the apparent relationship for Fig. 5.12.  Thus, through 

the equations of equilibrium and the DLM, the status of the assembly (exactly 

constrained, over-constrained, or under-constrained) can be found.   

 

5.6 CONCLUSIONS 

This chapter showed how to use the DLM to find two measures of goodness for 

an EC design.  The determinant of the B matrix can help the designer understand when an 

EC design is approaching an unstable condition.  The rows and columns in the B matrix 

can also be used for constraint analysis.  The assembly sensitivities can be used to 

quantify the effects of variation on an assembly.  These values for goodness can help a 

designer make a decision on appropriate configurations for an assembly. 

 

However, as will be shown in Chapter 6, the DLM also provides additional 

understanding for EC design, especially as it relates to variation in positioning of the 

constraints.  Chapter 6 will use the DLM to show any effects of variation, and it will 

illustrate the robustness of an EC design vs. an over-constrained design.   
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CHAPTER 6 USING EXACTLY CONSTRAINED DESIGN AS A ROBUST 
DESIGN METHOD 

 
 
 
6.1 INTRODUCTION 

Each of the previous chapters discussed one tool that strengthens the quantitative 

foundation for exactly constrained (EC) design.  Chapter 3 validated the heuristic rules of 

EC design using the equations of equilibrium as a foundation.  Chapter 4 developed a 

generalized method to use the equations of equilibrium to inspect and/or predict the 

effects of different configurations for an EC assembly.  Chapter 5 introduced the direct 

linearization method (DLM) as a means to determine a measurement of goodness for 

varying arrangements of the same design, while also providing warning signals when the 

assembly is approaching an under or over-constrained status. 

 

Each chapter thus demonstrates a quantitative evaluation for EC design, and each 

method adds insight for when certain configurations approach or have become over 

and/or under-constrained.  Avoiding the configurations that could lead to over or under-

constrained assemblies preserves the advantages described in Chapters 1 and 2 for EC 

design. 

 

The ability of an EC design to assemble under a wide variety of conditions is one 

advantage that has been referenced over and over again in this thesis.  However, the mere 
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suggestion that such an advantage exists does not substantiate the claim.  Chapter 6 now 

quantitatively explores the robust nature of EC design in greater detail.   

 

This chapter begins with a brief description of the method developed to show 

robustness.  That explanation is followed by examples that show the robust nature of EC 

design vs. similarly over-constrained (OC) designs. 

 

6.2 MONTE CARLO SIMULATION TO SHOW THE ROBUST NATURE OF EC 
DESIGN 

As with all other methods presented previously in this thesis, the robust nature of 

EC design must be shown through a quantitative means.  This section will show how a 

Monte Carlo simulation provides a quantitative method to effectively illustrate the robust 

nature of EC design. 

 

First, it must be understood that robust designs will assemble under a wide variety 

of conditions, although there may still be error.  They do this by absorbing the variation 

allowed by the dimensional tolerances.  As variation inevitably arises in real world 

assembling processes, it must be included in any analysis.   

 

A Monte Carlo simulation will be used to show the effects of variation on 

assemblies.  Each run of the Monte Carlo simulation will vary the position of specific 

constraints to determine the effects of that variation.  Following the variation, two 

questions will be answered. 
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1. Will the design assemble? 

2. If it does assemble, what is the overall error? 

 

6.2.1 WILL THE DESIGN ASSEMBLE? 

The vector loop equations will be used in the Monte Carlo simulation to 

determine whether the design assembles.  Recall that vector loop equations must sum to 

zero; and if they do, it can be stated that the vector loop equations “close.”  (Physically, if 

something assembles, it means that all parts make contact with each other.)  If any 

equation does not close, the design fails to assemble. 

 

The simulation determines if the loops close by using a Newton-Raphson (NR) 

routine.  If the NR routine converges, the design assembles.  The NR is considered to 

have converged if the residuals for the loops fall below a value of 0.000001 in less than 

15 iterations (Examples of the actual code can be found in Appendix E).  Otherwise, the 

NR routine fails, and the design does not assemble. 

 

A design will be considered robust if it consistently assembles, even after 

variation is introduced.  Designs that assemble even when subjected to variation are more 

robust than those designs that do not assemble when variation is present. 

 

6.2.2 WHAT IS THE OVERALL ERROR? 

As variation enters into the components of an assembly, the possibility of error 

associated with the position arises.  It is assumed that in some cases, the assembled 
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position of the design is important.  Therefore, the error found in the Monte Carlo 

simulation will reflect the error in the position of the assembly. 

 

When all of the parts in an assembly are at their nominal positions, the error in the 

assembly is zero.  As positions or dimensions change, error may increase in the overall 

assembly.  Therefore, if the Monte Carlo finds that the design assembles, the possible 

error in the assembly is found. 

 

A root-sum-squared method is used to find the error.  For example, consider Fig. 

6.1 below.  The error in this figure is found by subtracting the resulting position of the 

left bottom corner of the assembly (B) from the nominal position of the left corner (A).  

Likewise, the resulting position of the right bottom corner (D) will be subtracted from the 

nominal position of the right corner (C).  Each term is squared, and all terms are then 

added together.  The square root is taken to find the overall error for each assembly.  

Appendix E includes the error calculations in the C program for each example presented 

in this chapter. 
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A
D

C
B  

( ) ( ) ( ) ( )2222
DCDCBABA yyxxyyxxerror −+−+−+−=  

Figure 6.1 – Example calculation for the error of an assembly 

 

6.3 EXAMPLES 

The Monte Carlo simulation will be used to simulate the effects of variation on 

assemblies.  It will show how robust an EC design can be compared to a similar over-

constrained design.  During the course of each simulation, two main details are recorded:  

the number of runs that assemble and the overall average error for the assembly.   

 

Several examples will now be presented to show the effects of variability on EC 

and OC designs.  The first example will show the effects of variation on the block 

assembly used in Chapters 3, 4, and 5.  The slotted block example, from Chapters 2 and 

5, follows thereafter. 

 

6.3.1 EC BLOCK WITH THREE CONSTRAINTS 

 Figure 6.2 shows the familiar block assembly used in previous chapters.  For this 

example, the Monte Carlo simulation varies the positions of all three constraints in the x 

and y-directions.  The block is allowed to rotate in order to restore contact with the three 
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constraints.  The nominal dimensions for each constraint are shown alongside the 

graphic. 

 

C1

C2

C3

height = 6.667 units
width = 10.0 units

x1 = 2.0 units y1 = 0.0 units
x2 = 0.0 units y2 = 3.35 units
x3 = 8.0 units y3 = 6.667 units

The standard deviation for all dimensions
being changed in the Monte Carlo

simulation is 0.2

 

Figure 6.2 – Block assembly with three constraints 

 

Figure 6.3 shows an example for one run of the Monte Carlo simulation.  All the 

dimensional changes are noted in the figure.  Note that the block has rotated in order to 

maintain contact with the constraints. 

 

C3

C2

C1

x1 = 2.40 units y1 = -0.08 units
x2 = -0.05 units y2 = 3.10 units
x3 = 7.50 units y3 = 7.00 units

x1 = 0.40 units y1 = -0.08 units

x2 = -0.05 units y2 = -0.25 units
x3 = -0.50 units y3 = 0.23 units

  

Figure 6.3 – Block assembly with constraints at varying positions from the nominal 
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Taking into account the variation in Fig. 6.3, the block still assembles with an 

error of 0.64 units.  The overall angle of the block is now 4.41o.  Even with the 

introduction of variability, the design assembles, albeit with some error. 

 

 After simulating 100,000 designs based on the information in Fig. 6.2, the results 

show that the EC block assembles 100% of the time with an average error of 0.46 units.  

The C code and Excel® spreadsheet with the DLM and error calculations used to find all 

the results can be found in Appendix E. 

 

 Recall from Chapter 5 that as the constraints are moved around, the goodness of 

the design changes.  The goodness of an EC design can get better or worse depending on 

how the constraints are placed.  One facet involved in the definition of goodness was that 

the error should be kept to a minimum.  Table 6.1 shows the % assembled and error 

results of several configurations (different starting points) for this assembly.  It also 

shows the goodness values.  Recall that designs with higher absolute values of goodness 

were better EC designs. 
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Table 6.1 – Block assembly with different starting points for the constraints 

 

    
 Fig 6.2  

Height 6.67 units 6.67 units 6.67 units 6.67 units 
length 10 units 10 units 10 units 10 units 
x1, y1 2.0, 0.0 units 1.0, 0.0 units 8.0, 0.0 9.0, 0.0 
x2, y2 0.0, 3.35 units 0.0, 3.35 units 0.0, 2.5 0.0, 2.5 
x3, y3 8.0, 6.67 units 9.0, 6.67 units 2.0, 6.67 5.0, 6.67 

Standard 
deviation for 
all variables 

0.2 0.2 0.2 0.2 

     
% assembled 100 100 100 100 

Average 
error 

0.46 units 0.41 units 0.46 units 0.61 units 

Goodness  
(B matrix 

determinant) 
-6 -8 6 4 

 
 

From Table 6.1, the same trends for goodness exist as had been found in Chapter 

5.  The further apart the constraints are from each other, the better the error.  As the 

constraints get closer together, the error increases.  However, as expected, all 

configurations assembled for these EC designs. 

 

6.3.2 NON-EC BLOCK WITH THREE CONSTRAINTS 

Now, attention will turn to when the assembly from Fig. 6.2 is no longer exactly 

constrained.  This happens when constraints 1 and 3 line up.  Several previous chapters 

explained why Fig. 6.4 does not qualify as an EC assembly.  From a force perspective, 

there is no constraint in place that can overcome the resultant moment that would occur 

when the nesting force is applied, and constraints 1 and 3 are competing to constrain the 
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y-direction.  That leaves the block with play and looseness if everything is not perfectly 

assembled.  From a DLM perspective, the vector loops may not close if any of the 

independent variables in the y-direction change. 

 

C1

C2

C3

height = 6.667 units
width = 10.0 units

x1 = 8.0 units y1 = 0.0 units
x2 = 0.0 units y2 = 3.35 units
x3 = 8.0 units y3 = 6.667 units

The standard deviation for all dimensions
being changed in the Monte Carlo

simulation is 0.2

 

Figure 6.4 – Over/Under-constrained block assembly with three constraints 

 

100,000 runs of the Monte Carlo simulation show the effects of variation on this 

non-EC design.  It reveals that only 50% of the runs assembled, and they had an average 

error of 3.02 units!  The error is significantly higher due to the negative effects of 

variation—this block must rotate significantly for even small variations in the y-direction 

on constraints 1 and 3 just to maintain contact with all the parts.  Over-constraining the 

design in this manner significantly reduced the ability of the block to assemble, and it 

significantly increased the error.  It is clearly not as robust as the EC design. 

 

6.3.3 OC BLOCK WITH FOUR CONSTRAINTS 

Now, another constraint will be added along the bottom of the block (Fig. 6.5).  

Note from discussions in earlier chapters that this assembly is over-constrained in several 
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ways:  there are four constraints, the two constraints to the right of the block (constraints 

3 and 4) are co-linear, and constraints 2, 3, and 4 intersect at the same point. 

 

2

1 4

3

 

Figure 6.5 – Block assembly with four constraints 

 

The fourth constraint adds new complexity to the analysis of this example.  Two 

conditions must be tested to determine if the block assembles:  the vector loop equations 

must close, and the fourth constraint must not interfere with the block.   

 

To learn if the vector loops close requires a closer look at the behavior of this 

assembly.  When variability enters into the assembly, only three of the four constraints 

will stay in contact with the block.  There are three possible arrangements (Fig. 6.6) for 

the assembly if the constraints are not in the nominal position shown in Fig. 6.5.  It is 

uncertain which of the three options the assembly will assume.  Thus, each case must be 

checked in each simulation of the Monte Carlo.  If any one of the three cases assembles 

(the vector loops close), then the design is considered to have passed the first assembly 

test. 
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Figure 6.6 – Three possible assembly cases for the over-constrained block 

 

However, after it is determined if the vector loops close, the simulation must 

check to ensure the fourth constraint does not interfere with the assembly.  It must stay 

clear of the block.  If it is out of the way of the block, the design assembles.  Otherwise, 

the assembly fails. 

 

The error primarily comes from the play in the assembly due to the over-

constraint present.  For each run of the Monte Carlo simulation that does assemble, the 

program finds two values for the assembly error: average error and maximum error.  To 

find the average error, the program averages the error of all the cases that assembled.  

The maximum error is found by comparing the errors of each case that assembled and 

keeping the maximum value. 

 

The reported average error is the overall average of the individual average errors 

found above.  The reported average maximum error is the average of all the maximum 

errors found above.  The maximum error is found because the worst case assembly is just 

as likely as any other case to assemble.  To provide a fair measure of the error, both the 

average and maximum errors are reported. 
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Including variation, the block in Fig. 6.5 will only assemble 50% of the time.  The 

average error is 0.67 units, and the average maximum error is 1.23 units.  It is interesting 

to note that when the design assembles to case 1 or case 3, the average error stands at 

0.31 units.  However, when the design assembles to case 2, the average error is 

significantly greater at 3.12 units.  These results concur with earlier examples in Sections 

6.3.1 and 6.3.2. 

 

Recall that Fig. 6.5 had three different reasons that the block was over-

constrained.  If constraint 3 is moved over to the center of the block (Fig. 6.7), that 

eliminates two of the reasons for the over-constraint in this assembly.  Now, the block is 

over-constrained only because there are four constraints.   

 

1

2

3

4
 

Figure 6.7 – Alternate configuration for the over-constrained block 

 

The design will still only assemble 50% of the time.  However, the error is 

considerably more reasonable.  The average error is 0.54 units, and the average maximum 

error is 0.74 units.  Each individual case has an average error of 0.60, 0.60, and 0.41 

units, respectively.  Eliminating two forms of over-constraint in this block still led to 50% 
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assembly (as has been the case for all over-constrained examples to this point), but the 

error present in this example is closer to that obtained by the EC example. 

 

The results of Fig. 6.5 and 6.7 suggest that there are also varying degrees of 

goodness for over-constrained designs as well.  The goodness for an over-constrained 

design is beyond the scope of this thesis; however, varied configurations show that as 

long as there is the fourth constraint, the EC block will always be more robust than any 

OC block.   Table 6.2 shows the results for various nominal configurations of the 

assembly with four constraints.   

 

Table 6.2 – Several over-constrained examples 

 2

1 4

3

 1

2

3

4  1

2

3

4  1

2

3

4  
 Fig. 6.5 Fig. 6.7  

Height 6.67 units 6.67 units 6.67 units 6.67 units 
length 10 units 10 units 10 units 10 units 
x1, y1 1.0, 0.0 1.0, 0.0 1.0, 0.0 2.0, 0.0 
x2, y2 0.0, 3.35 0.0, 3.35 0.0, 3.35 0.0, 2.5 
x3, y3 9.0, 6.67 5.0, 6.67 9.0, 6.67 4.0, 6.67 
x4, y4 9.0, 0.0 9.0, 0.0 5.0, 0.0 5.5, 0.0 

Standard  
deviation 

for all 
variables 

0.2 0.2 0.2 0.2 

% 
assembled 

50 50 99 51 

Average 
error 

0.67 0.54 0.59 0.83 

Average 
maximum 

error 
1.23 0.74 0.66 1.16 

 



 166 

The two new examples in the far right columns of Table 6.2 move the vertical 

constraints closer together.  As constraints 1 and 4 move closer together (as in the fourth 

column of Table 6.2), the results become very comparable to an EC design.  Recall that if 

any one of the three cases in Fig. 6.6 assembles, the design assembles.  With the fourth 

constraint placed to the inside of the third constraint, the block has a greater range for 

rotation, and the extra constraint interferes less (it still interferes in some cases, but it 

never interferes in all cases in any run of the simulation).  Hence, the results are similar to 

that of an EC design.  It can be noted that when constraint 3 is at (8.0, 6.67) instead of 

(9.0, 6.67) for this example, the % assembly goes down to 90%, and the average and 

maximum errors increase to 0.68 and 0.75 units, respectively.    

 

The example in the fifth column of the table shows that as constraint 3 is also 

moved closer to constraints 1 and 4, the percentage of successful assemblies plummets 

again, and the error escalates.  Thus, although some OC designs exhibit good robustness, 

the placement of the constraints is very important.  OC designs cannot absorb variation as 

well as EC designs, and they generally have more error.  

 

6.3.4 SUMMARY OF THE BLOCK ASSEMBLIES WITH THREE OR 
FOUR CONSTRAINTS 

In summary, the exactly constrained assemblies in the previous examples have 

lower error with higher overall assembly rates than similar designs that are over-

constrained.  This observation, based on the results from the Monte Carlo simulation, 

provides key insight into the strength of EC design.   
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To re-emphasize, there is a very powerful benefit to EC design that is found from 

the Monte Carlo simulation.  In the world of manufacturing, it is generally observed that 

assemblies with broader tolerances (and thus greater possibility for variation among 

assemblies) will lead to higher assembly rates, although the error also increases.  Here it 

is shown that with an EC design, there need not be a negative tradeoff.  Indeed, compared 

to the over-constrained designs, EC designs have greater assembly rates with lower 

overall error! 

 

6.3.5 SLOTTED BLOCK ASSEMBLY 

Figure 6.8 shows the slotted block assembly which was first introduced in 

Chapter 2.  The nominal dimensions are listed in the figure. 

 

x

y

x

y

2.5 4.0

3.0

 

Figure 6.8 – Slotted block example 

 

The angle of the slot is a user defined input which can vary from 0o to 90o.  The variation 

for this example is limited to the x-location of the right peg. 
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Due to the variation in the right peg, the top plate may have to rotate in order to 

allow the design to assemble.  However, just because the top plate can rotate does not 

guarantee that the design will assemble.  For example, Fig. 6.9 shows possible 

configurations for the slotted block when the slot has an angle of 75o and the right peg 

rests at various positions.  The parts would assemble in Fig. 6.9a, but they would not 

assemble in 6.9b. 

 

 

(a)     (b) 

Figure 6.9 – Slotted block assembly with the slot at 75o (a) the right peg at 7.0 units 
(b) the right peg at 6.0 units 

 

A Monte Carlo simulation will produce assembly results for the slotted block 

example at various slot angles.  The right peg will be varied in the x-direction for each 

run of the simulation.  Again, if the vector loops close after the variation has been 

introduced, the block assembles.  If the block assembles, the program calculates the 

average error for all successful assemblies per slot angle.  The error is again defined as 

the RSS displacement of the bottom two corners from their nominal positions (as defined 

in section 6.2.2). 
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6.3.5.1 SLOT ANGLE:  0o  

With a 0o slot angle, previous chapters showed this block assembly to be exactly 

constrained.  After 100,000 runs of the Monte Carlo simulation, the block assembled 

100% of the time with no error.  The slot absorbed the variation in the right peg, and all 

possible configurations assembled. 

 

6.3.5.2 SLOT ANGLE:  90o  

Chapter 5 showed the block assembly in Fig. 6.10 to be over-constrained using 

both the screw theory approach to constraint analysis and the B matrix in the DLM.  

After 100,000 runs of the Monte Carlo simulation, the total number of configurations that 

assembled totaled 48%, which is drastically lower than the 100% assembly rate for the 

same block with the slot manufactured at 0o. 

 

 

Figure 6.10 – Assembly with the slot angle at 90o 

 

Not only is the slotted block assembly less robust at 90o, it shows significant 

increases in error.  The average error of this assembly is 3.27 units as compared to 0.00 

units of error when the slot is at 0o.   
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6.3.5.3 SLOT ANGLE:  VARIED  

Recall from Chapter 5 that screw theory considered all slotted block assemblies 

exactly constrained up to and through a slot angle of 89.9o.  However, the goodness factor 

developed in Chapter 5 also showed that as the angle of the slot increases, the designs 

tend to be more sensitive to change, as evidenced by higher sensitivities.  Thus, the 

goodness level decreases as the slot angle increases. 

 

Table 6.3 and Fig. 6.11 combine to show the results of a 100,000 run Monte Carlo 

simulation for each listed angle.  The goodness factor listed is found from the 

determinant of the B matrix in the DLM. 

 

Table 6.3 – Table of Monte Carlo results for various slot angles 

Slot angle % assembled Error Goodness 
0 100 0 4 
10 100 0.086 3.94 
20 100 0.179 3.76 
30 100 0.284 3.46 
40 100 0.417 3.06 
45 100 0.501 2.83 
50 99.8 0.603 2.57 
55 99.2 0.724 2.29 
60 96.3 0.848 2 
65 89.4 0.973 1.69 
70 78.9 1.14 1.37 
75 67.5 1.44 1.04 
80 58.0 1.90 0.69 
85 51.9 2.60 0.35 
89 48.7 3.27 0.07 
90 48.2 3.27 0 
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Figure 6.11 – Chart of results for slotted block assembly showing % assembled and 
error 

 
 

Figure 6.11 shows that 100% of the configurations assembled up to and through a 

slot angle of 45o.  However, the error steadily increased for the same slot angles.  The 

results for this range of slot angles correspond to the results for the block with three 

constraints in section 6.3.1.  All configurations assemble, although those shown to have a 

lower goodness value have greater error. 

 

Beyond 45o for the slot angle, both the error and the number of failures increase.  

While under screw theory these designs are called exactly constrained, it would perhaps 

be more correct to use Kamm’s [1993] description for these designs:  semi-MinCD or 

semi-exactly constrained.  This description gives the designer a more realistic idea that 

while the design is not over-constrained, it really does not hold all of the benefits 

associated with an EC design. 
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6.4 CONCLUSIONS 

By using a Monte Carlo simulation, EC designs are found to be more robust than 

over-constrained designs.  Not only do EC designs have a much greater percentage of 

successful assemblies, they also have lower error.  These results concur with the 

constraint analysis from Chapters 3 and 4, and they strengthen the goodness findings of 

Chapter 5. 
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CHAPTER 7 CONTRIBUTIONS, CONCLUSIONS, AND RECOMMENDATIONS 
 
 
 

The purpose of this thesis was to establish a quantitative foundation for exactly 

constrained design.  This chapter will explain the contributions and conclusions made in 

order to establish that foundation.  Finally, recommendations will be made for further 

research that may be performed in this field of study. 

 

7.1 CONTRIBUTIONS OF THIS THESIS 

Exactly constrained (EC) design is a powerful and robust design method for 

mechanical assemblies.  While many have defined it through heuristics or experience, 

this thesis begins to establish a quantitative foundation to both understand and use EC 

design in mechanical assemblies. 

 

EC designs can be defined in quantitative terms by noting that they are statically 

determinate; therefore, the rules established by researchers and practitioners through 

years of experience are easily validated using the equations of equilibrium.  Chapter 3 

shows this contribution. 

 

In addition to validating existing rules, this thesis also presents a quantitative 

method to analyze EC designs based on the location of the constraints.  The equations of 

equilibrium can be used to determine if a design is exactly constrained.  When poor 
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placement of the constraints leads to an over and/or under-constrained assembly, the C 

matrix can be used to see what over and/or under-constraint is present.  The equations can 

also be used to predict which locations must be avoided so the design can stay exactly 

constrained.  This method is presented in Chapter 4. 

 

Another contribution of this thesis shows how the equations of equilibrium can be 

used to find the nesting force window.  Through a quantitative method, the acceptable 

and unacceptable regions for the nesting force can be found in a simple and concise way.  

Finding the window is also presented in Chapter 4. 

 

This work includes the development of a quantitative process to find the 

“goodness” of EC designs.  As all designs are not created equal, this method could help a 

designer quantitatively compare similar designs to make an informed decision on which 

configuration would be best.  Using the DLM, assembly sensitivities can be compared 

between designs, or the determinant of the B matrix can be inspected to make decisions 

on designs that would best suit the needs of the designer.  Also, if a design has become 

unstable, the B matrix can be inspected to determine why. 

 

By using a Monte Carlo simulation, the robust nature of EC design was clearly 

demonstrated over similar designs that were over-constrained.  The EC designs 

consistently had 100% assembly rates with relatively low error.  The OC designs had 

assembly rates of approximately 50%, with greater error. 
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7.2 CONCLUSIONS OF THIS THESIS 

Exactly constrained design can effectively be described and analyzed using 

quantitative means.  Both the equations of equilibrium and the DLM successfully provide 

ways to do so. 

 

The equations of equilibrium can be used to validate, inspect or predict the 

behavior of an assembly based on the constraints in an EC design.  The locations of the 

constraints can be monitored through the reaction forces.  High reaction forces 

(especially reaction forces leading to infinity) must be avoided.  Also, the nesting force 

can be appropriately placed after using the equations of equilibrium to find the window. 

 

The C matrix (from the matrix form of the equations of equilibrium) can give a 

general overview for constraint analysis.  It is important that it not be singular. 

 

Using information from the DLM provides a method whereby a quantitative 

measure of goodness can be assigned to various EC designs.  The determinant of the B 

matrix can indicate how close a design may be to approaching an over and/or under-

constrained design.  The determinant must not approach zero (a singular matrix), or the 

assembly will lose the benefits of being exactly constrained (inspecting the B matrix 

when it does go singular can be used for constraint analysis).  The assembly sensitivities 

also provide a measurement that can be compared between designs to show which design 

in question may provide the best possible assembly under consideration.  Lower 

sensitivities generally lead to “better” EC designs. 
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In addition to showing a measure of goodness for EC design, the DLM provides 

the means to show how robust an EC design can be.  By implementing the DLM into a 

Monte Carlo simulation, EC designs are found to be more robust than similar OC 

designs.  

 

Throughout the thesis, edge slider, cylinder slider, and revolute joints are used to 

constrain the assemblies.  With a basic understanding of how degrees of freedom work, 

any type of joint that will allow the assembly to properly function can be used to 

constrain motion.  The analysis method used to analyze the design, whether it be the 

equations of equilibrium or the direct linearization method (DLM), can find the necessary 

information, regardless of the type of joint used. 

 

7.3 RECOMMENDATIONS FOR FUTURE WORK 

One area that could possibly be developed further is Section 5.5.  As mentioned 

there, the C matrix from the equations of equilibrium and the B matrix from the DLM 

appear to tell two sides to the same story.  Just as screw theory found a link through the 

reciprocal operation between the twist space and the wrench space, there may be a similar 

link by way of matrix operations between the B and C matrices.  

 

For example, it could be stated that variation is analogous to velocity [Faerber 

1999].  Therefore, through mechanical advantage, the force and velocity are reciprocal. 

 

 In addition to these considerations, the force analysis can be further extended to 

include sensitivity.  The matrix equation employed in this thesis is very basic. 
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Cr = b 

The vector b could actually be separated to make the equation more descriptive.  

Cr = Df 

C is still a matrix of coefficients for the reaction forces in r, and D contains the 

coefficients for the nesting forces in f.  If this equation is linearized (as was done for the 

vector loop equations in the DLM), the equation begins to resemble the assembly 

sensitivity matrix in the DLM. 

 

{ } [ ]{ }fDCr δδ 1−=  

{ } [ ]{ }XABU δδ 1−=  

 

 The matrix [C-1D] now also provides a matrix of assembly sensitivities.  The 

method presented in Section 5.4.4 on using the goodness values could now be extended 

to include two additional steps. 

 

5. Formulate force equilibrium equations and linearize them to find C and D. 

6. Examine the C determinant and the [C-1D] sensitivities. 

 

The information from this thesis could be further implemented or linked into 

CAD systems to evaluate designs for over or under-constraint. If necessary, the 

automated process could fix the designs to achieve an exactly constrained assembly, and 

it would further optimize the configuration (through “goodness” values).   
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This thesis only treats 2D assemblies.  Further research should extend this 

information into 3D. 

 

The definition for a quantitative measure of goodness was begun in this thesis.  

Work should continue to further examine this idea for EC design.  In addition, the results 

for over-constrained designs suggested that there may also be a value for goodness for 

OC designs as well.  Research could be extended to further define these considerations. 

 

Most of the examples in this thesis used symmetrical configurations.  It may be 

interesting to investigate non-symmetrical configurations of the constraints and nesting 

force(s) to learn more about their error or assembly rates. 

 

 Non-normal nesting forces should be further examined.  It has been observed 

throughout the research process of this thesis that the nesting force window will change 

according to the number, position, and angle of the nesting force(s).  It should be further 

explored.  In addition, nesting moments should also be explored. 

 

Further exploration is needed to investigate the tradeoff between the locations of 

constraints and the nesting force window.  In particular, Pearce [2003] developed a 

method to analyze the placement of the nesting force using the DLM.  By generalizing 

that method to find the nesting force window, it could be used in conjunction with the 

current method presented in this thesis to find a value for goodness that includes the 
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nesting force window.  That investigation may show a better measure for goodness 

relating to the tradeoff found in Chapter 4. 

 

 The effects of clearance need to be investigated further.  As long as a nesting 

force is present to ensure that the constraint stays in contact with the main assembly, 

clearance may not have any effect on the analysis.  However, if the nesting force does not 

provide the seating necessary, clearance may become an issue.  The amount of clearance 

needed in an over-constrained system is unclear.   

 

 A few other considerations could also be investigated as they relate to EC design.  

The effects of elastic deformation, such as press fit bearings, in an EC design could be 

investigated further.  It is important to note that an EC assembly does not have to be 

comprised of parts that are exactly constrained.  For example, ball bearings could be used 

as a component of an EC design. 

 

Finally, all mechanical assemblies under consideration in this thesis had no 

motion.  Exactly constrained designs do not have to be immobile; therefore, future work 

should include extending the quantitative foundation to mechanisms that allow motion as 

well. 
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APPENDIX A CONSTRAINT ANALYSIS USING SCREW THEORY 

  

This appendix will show the details involved to use screw theory as a constraint 

analysis method.  The topic will be presented in outline form.  All steps will be done on 

the following example. 

 

x

y

x

y

x

y

2.5 4.0

3.0

 

 

A.1 FIND THE TRANSFORMATION MATRIX 

The transformation matrix simply relates each individual joint in its local 

coordinate frame to the global coordinate frame.  There is one transformation matrix per 

joint.  The transformation matrix has the same form for each joint. 

 









=

1
  F

0

dA
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A is a 3x3 rotation matrix—based on direction cosines 

d is a 3x1 displacement vector 

0 is a 1x3 row of zeros 

 

 The transformation matrix will be found for both joints in the example.  As the 

local axis is the same as the global axis, A is the identity matrix.  When the slot is at 0o, 

the A matrix is the identity matrix. 

 
















=

100

010

001

  A  

 

If the slot were at an angle of 90o to its current position, A would have to properly define 

rotation between the two axes.  The proper matrix for such a case is shown below. 

 















 −
=

100

001

010

  A  

 

 The d vector is simply the displacement from the global coordinate zero.  In this 

example, the left peg is 2.5 units away in the x-direction and 3.0 units in the y-direction.  

The right peg is 6.5 units in the x-direction and 3.0 units in the y-direction.  Thus, the 

transformation matrix can be written as below. 
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

















=

1000

0100

3010

2.5001

Fleft  



















=

1000

0100

3010

5.6001

  Fright  

 

A.2 FIND THE TWISTMATRIX FOR EACH FEATURE 

The information from the transformation matrix can be used to find the necessary 

twists for each joint.  There is one twistmatrix for each joint, and there are the same 

number of rows as there are degrees of freedom allowed by a joint.  For example, the 

right peg’s twist matrix will have two rows because it will allow both rotation and 

translation. 

 

Translational motion is described in the twistmatrix as shown below. 

 

[ ]v0=T  

 

0 is a 1x3 vector of zeros 

v is a 1x3 vector where v = (Ak)T 

A is defined in the transformation matrix 

k is a 3x1 vector, representing the local axis along which the joint can translate 

 

 Rotational motion is described in the twistmatrix as shown below. 

 

[ ]vω=T  
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w is a 1x3 vector, where  w = (Aw )T  

A is defined in the transformation matrix 

 w is a 3x1 vector, which defines the allowed joint rotation, such as  (0 0 1) 

v is a 1x3 vector, where v = r x w 

r is the 1x3 vector dT, as defined in the transformation matrix 

w is a 1x3 vector defined above 

 

 The twistmatrix for the right peg will be shown here.  It has two degrees of 

freedom:  one rotation and one translation.  Thus, it will have two rows.  The elements for 

rotation will be found first.  Then, the elements will be found for the translation. 
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 Finally, the twistmatrix for the right peg is shown below. 
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






 −
=

001000

05.63100
rightTwist  

 

A.3 DETERMINE IF THE ASSEMBLY IS UNDER-CONSTRAINED 

Now that the twistmatrices have been found, the constraint analysis can begin.  

Finding whether an assembly is under-constrained begins by applying what is called a 

reciprocal operation to each twist.  After this stage, the matrices are unionized and the 

system is row reduced.  Finally, the resulting matrix is sent back through the reciprocal 

operation to find if and where the assembly is under-constrained. 

 

STEP 1:  RECIPROCAL OPERATION APPLIED TO EACH TWIST 

The reciprocal operation entails taking the null space of each twistmatrix, which 

is easily done in Matlab®.  After taking the null space, the matrix is transposed.  Finally, a 

flip function is applied, such that columns 1 and 4 are swapped, 2 and 5 are swapped, and 

3 and 6 are swapped.  Each matrix is now a wrench. 

 

STEP 2:  UNIONIZE THE MATRICES 

After the reciprocal operation is applied to each twist matrix, the wrench matrices 

are combined through a union.  This operation simply means that all matrices are stacked 

together into one matrix. 

 

STEP 3:  ROW REDUCED ECHELON FORM 

The row reduced echelon form of the unionized wrench matrix is found.   
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STEP 4:  RECIPROCAL OPERATION APPLIED TO THE WRENCH 

Finally, the reciprocal operation can be performed on the unionized reduced 

wrench matrix.  The results of the reciprocal operation will show whether there is any 

under-constraint in the assembly.  If the resulting twistmatrix is anything other than 

empty, there is motion. 

 

If there is under-constraint, the point of motion can also be found through a “point 

algorithm” as illustrated in Adams [1998].  As this composition only relates to 2D 

models, only the point algorithm for rotation about the z-axis will be given. 
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MATLAB® AUTOMATION OF THE PROCESS 

The whole process can be easily implemented into Matlab®, as also shown in 

Adams and Whitney [2001].  The twistmatrices are found by hand, and they are entered 

as T1, T2, etc. into the command window.  An m-file called “run.m” finds the resultant 

twistmatrix. 

 



 187 

m-file – run.m 

W1=recip(T1); 
W2=recip(T2); 
WU=[W1;W2]; 
WU=rref(WU); 
Twist=recip(WU) 
 
m-file – recip.m 

function R = recip(T) 
p=(null(T))'; 
R=flip(p); 
 
end 
 
m-file – flip.m 

function W=flip(p) 
 
[i,j] = size(p); 
if j==6 
    for l=1:i 
        for k=1:3 
            W(l,k)=p(l,k+3); 
            W(l,k+3)=p(l,k); 
        end 
    end 
     
end 
W; 
 
 
 

 The example shown in the beginning of this appendix results in an empty matrix; 

therefore, there is no under-constraint in the assembly. 
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A.4 DETERMINE IF THE ASSEMBLY IS OVER-CONSTRAINED 

To learn whether the assembly is over-constrained, the twistmatrices are first 

unionized.  Then, the row reduced echelon form of the unionized twistmatrix is found, 

and that step is followed by the reciprocal operation.  This leads to a wrench matrix. 

 

STEP 1:  UNIONIZE THE TWISTMATRICES 

To find if there is over-constraint in an assembly requires the twistmatrices to be 

unionized before they are sent through the reciprocal operation. 

 

STEP 2:  ROW REDUCED ECHELON FORM 

The row reduced echelon form of the resulting unionized matrix is found. 

 

STEP 3:  RECIPROCAL OPERATION APPLIED TO THE TWIST 

The reciprocal operation, as described in section A.3.1, leads to a resultant wrench 

matrix which can show whether an assembly is over-constrained.  The first three columns 

show if the body is over-constrained in the x, y or z translational directions.  The last 

three columns show whether the body is over-constrained in the x, y, or z rotational 

directions. 

 

If an assembly is over-constrained, the point algorithm mentioned in section A.3.4 

can again be applied to find where the over-constraint happened. 
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MATLAB® AUTOMATION OF THE PROCESS 

As before, the process can be automated in Matlab®.  The same m-files can be 

linked to a run file to find the over-constraint.  To maximize efficiency, it is best to put 

both the motion (under-constraint) and force (over-constraint) analysis in the same run 

file.  Only the additional information to run the over-constrained analysis is shown 

below. 

 

m-file – run.m 

TU=[T1;T2]; 
T=rref(TU); 
Wrench=recip(T) 

 
 
 
 For the example, the resulting wrench matrix is shown below.  The explanation 

follows the matrix. 

 



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








=

010000

001000

000100

Wrench  

 

 This matrix shows that the assembly is over-constrained in z-translation, x-

rotation, and y-rotation.  However, as the assembly is only 2D, these can be ignored.  All 

possible degrees of freedom are constrained.  This assembly is exactly constrained.   
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A.5 DETAILED EXAMPLES FROM CHAPTER 5 

This section will show the development of the twist matrices and the results after 

running the slotted block example through the procedure described above.  The slot will 

change in each example.  Please note that Fleft  and Twistleft will always be the same in 

each example. 
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[ ]05.23100Twist left −=  
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SLOT AT 450 
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Twist = empty matrix  
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SLOT AT 700 
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SLOT AT 89.90 

x

y

x

y x

y

2.5 4.0

3.0

 









=

v0

vω
rightTwist  

















 −

=

1000

0100

3000175.0999.0

5.60999.000175.0

  Fright  

[ ]100

1

0

0

100

000175.0999.0

0999.000175.0
T

=














































 −
=ω  

[ ]05.635.63
100

035.6
−=−== jiv rot  

[ ]000=0  [ ]0999.000175.0

0

0

1

100

000175.0999.0

0999.000175.0
T

=














































 −
=transv  








 −
=

0999.000175.0000

05.63100
rightTwist  

Twist = empty matrix  
















=

010000

001000

000100

Wrench  



 194 

SLOT AT 90o 
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APPENDIX B EXCEL® ANALYSIS FOR EXAMPLES USING THE 
EQUATIONS OF EQUILIBRIUM 

 
 

B.1 NO TWO CONSTRAINTS SHOULD BE CO-LINEAR ANALYSIS (FIG. 3.3) 

Fn= 1 x3 R3

x1= 2 0 -0.27471098

y1= 0 1 -0.54942197

x2= 0 1.5 -1.09884394

y2= 2.223 1.6 -1.37355492

x3= variable 1.7 -1.83140656

y3= 0.6667 1.8 -2.74710984

xn= 1 1.9 -5.49421969

yn= 4 1.95 -10.9884394

x12= 2 1.96 -13.7355492

y12= 2.223 1.97 -18.3140656

0Fn= 45 1.98 -27.4710984

1.99 -54.9421969

2 #DIV/0!

2.01 54.9421969

2.02 27.4710984

2.03 18.3140656

2.04 13.7355492

2.05 10.9884394

2.1 5.49421969

2.2 2.74710984

2.3 1.83140656

2.4 1.37355492

2.5 1.09884394

3 0.54942197

4 0.27471098

5 0.18314066

6 0.13735549

7 0.10988439

8 0.09157033

9 0.07848885

10 0.06867775

R3 as C3 moves along the top of the block
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x3 R3

0 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A16-x_12)
=A16+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A17-x_12)
=A19-0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A18-x_12)
=A20-0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A19-x_12)
=A21-0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A20-x_12)
=A22-0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A21-x_12)
=A28-0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A22-x_12)
=A24-0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A23-x_12)
=A25-0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A24-x_12)
=A26-0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A25-x_12)
=A27-0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A26-x_12)
=A28-0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A27-x_12)
=A17+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A28-x_12)
=A28+0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A29-x_12)
=A29+0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A30-x_12)
=A30+0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A31-x_12)
=A31+0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A32-x_12)
=A32+0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A33-x_12)
=A28+0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A34-x_12)
=A34+0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A35-x_12)
=A35+0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A36-x_12)
=A36+0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A37-x_12)
=A37+0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A38-x_12)
=A28+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A39-x_12)
=A39+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A40-x_12)
=A40+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A41-x_12)
=A41+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A42-x_12)
=A42+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A43-x_12)
=A43+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A44-x_12)
=A44+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A45-x_12)
=A45+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A46-x_12)  
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B.2 NO THREE CONSTRAINTS SHOULD INTERSECT AT A POINT ANALYSIS 
(FIG. 3.10) 

x3 y3 R3
3 6 0.610843918

3.1 5.8 0.652913594
3.2 5.6 0.701206679
3.3 5.4 0.757214429
3.4 5.2 0.822945903
3.5 5 0.901174073
3.6 4.8 0.995837053
3.7 4.6 1.11272187
3.8 4.4 1.26069384
3.9 4.2 1.45405727
4 4 1.717482259

4.1 3.8 2.097471742
4.2 3.6 2.693375673
4.3 3.4 3.762253908
4.4 3.2 6.237721845
4.5 3 18.23760431

4.51 2.98 22.58180203
4.52 2.96 29.64269183
4.53 2.94 43.12796752
4.54 2.92 79.12335979
4.55 2.9 478.4288389
4.551 2.898 965.8632625 Fn= 1
4.5511 2.8978 1075.430636 x12= 3
4.5512 2.8976 1213.037404 y12= 2
4.5519 2.8962 11628.6299 x3= variable
4.552 2.896 -51312.25259 y3= variable
4.553 2.894 -930.8211091 xn= 5.5
4.554 2.892 -469.6705435 yn= 1
4.555 2.89 -314.0719485 thetaC3= 30
4.556 2.888 -235.9149584 thetaFn= 30
4.557 2.886 -188.9056705
4.558 2.884 -157.5180424
4.559 2.882 -135.0747008 x12 is the x-coordinate of the instant center (IC12)
4.56 2.88 -118.2292666 y12 is the y-coordinate of the instant center (IC12)

4.57 2.86 -52.61368957
4.58 2.84 -33.83547674
4.59 2.82 -24.93573094
4.6 2.8 -19.74278579
4.7 2.6 -6.40473071
4.8 2.4 -3.822370384
4.9 2.2 -2.724046401
5 2 -2.116025404

5.1 1.8 -1.729902399
5.2 1.6 -1.462949764
5.3 1.4 -1.267373075
5.4 1.2 -1.117921959
5.5 1 -1
5.6 0.8 -0.904581835
5.7 0.6 -0.825786776
5.8 0.4 -0.759618943
5.9 0.2 -0.703268162
6 0 -0.654700538

R3 as C3 moves along the right side of the triangle

-10
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-6

-4
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4
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R
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x3
3
=A12+0.1
=A13+0.1
=A14+0.1
=A15+0.1
=A16+0.1
=A17+0.1
=A18+0.1
=A19+0.1
=A20+0.1
=A21+0.1
=A22+0.1
=A23+0.1
=A24+0.1
=A25+0.1
=A26+0.1
=A27+0.01
=A28+0.01
=A29+0.01
=A30+0.01
=A31+0.01
=A32+0.001
=A33+0.0001
=A34+0.0001
=A35+0.0007
=A33+0.001
=A37+0.001
=A38+0.001
=A39+0.001
=A40+0.001
=A41+0.001
=A42+0.001
=A43+0.001
=A32+0.01
=A45+0.01
=A46+0.01
=A47+0.01
=A27+0.1
=A49+0.1
=A50+0.1
=A51+0.1
=A52+0.1
=A53+0.1
=A54+0.1
=A55+0.1
=A56+0.1
=A57+0.1
=A58+0.1
=A59+0.1
=A60+0.1
=A61+0.1
=A62+0.1      

y3
=-2*A12+12
=-2*A13+12
=-2*A14+12
=-2*A15+12
=-2*A16+12
=-2*A17+12
=-2*A18+12
=-2*A19+12
=-2*A20+12
=-2*A21+12
=-2*A22+12
=-2*A23+12
=-2*A24+12
=-2*A25+12
=-2*A26+12
=-2*A27+12
=-2*A28+12
=-2*A29+12
=-2*A30+12
=-2*A31+12
=-2*A32+12
=-2*A33+12
=-2*A34+12
=-2*A35+12
=-2*A36+12
=-2*A37+12
=-2*A38+12
=-2*A39+12
=-2*A40+12
=-2*A41+12
=-2*A42+12
=-2*A43+12
=-2*A44+12
=-2*A45+12
=-2*A46+12
=-2*A47+12
=-2*A48+12
=-2*A49+12
=-2*A50+12
=-2*A51+12
=-2*A52+12
=-2*A53+12
=-2*A54+12
=-2*A55+12
=-2*A56+12
=-2*A57+12
=-2*A58+12
=-2*A59+12
=-2*A60+12
=-2*A61+12
=-2*A62+12
=-2*A63+12     
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R3

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A12-x_12)+COS(thetaC3*PI()/180)*(B12-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A13-x_12)+COS(thetaC3*PI()/180)*(B13-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A14-x_12)+COS(thetaC3*PI()/180)*(B14-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A15-x_12)+COS(thetaC3*PI()/180)*(B15-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A16-x_12)+COS(thetaC3*PI()/180)*(B16-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A17-x_12)+COS(thetaC3*PI()/180)*(B17-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A18-x_12)+COS(thetaC3*PI()/180)*(B18-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A19-x_12)+COS(thetaC3*PI()/180)*(B19-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A20-x_12)+COS(thetaC3*PI()/180)*(B20-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A21-x_12)+COS(thetaC3*PI()/180)*(B21-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A22-x_12)+COS(thetaC3*PI()/180)*(B22-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A23-x_12)+COS(thetaC3*PI()/180)*(B23-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A24-x_12)+COS(thetaC3*PI()/180)*(B24-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A25-x_12)+COS(thetaC3*PI()/180)*(B25-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A26-x_12)+COS(thetaC3*PI()/180)*(B26-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A27-x_12)+COS(thetaC3*PI()/180)*(B27-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A28-x_12)+COS(thetaC3*PI()/180)*(B28-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A29-x_12)+COS(thetaC3*PI()/180)*(B29-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A30-x_12)+COS(thetaC3*PI()/180)*(B30-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A31-x_12)+COS(thetaC3*PI()/180)*(B31-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A32-x_12)+COS(thetaC3*PI()/180)*(B32-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A33-x_12)+COS(thetaC3*PI()/180)*(B33-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A34-x_12)+COS(thetaC3*PI()/180)*(B34-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A35-x_12)+COS(thetaC3*PI()/180)*(B35-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A36-x_12)+COS(thetaC3*PI()/180)*(B36-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A37-x_12)+COS(thetaC3*PI()/180)*(B37-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A38-x_12)+COS(thetaC3*PI()/180)*(B38-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A39-x_12)+COS(thetaC3*PI()/180)*(B39-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A40-x_12)+COS(thetaC3*PI()/180)*(B40-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A41-x_12)+COS(thetaC3*PI()/180)*(B41-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A42-x_12)+COS(thetaC3*PI()/180)*(B42-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A43-x_12)+COS(thetaC3*PI()/180)*(B43-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A44-x_12)+COS(thetaC3*PI()/180)*(B44-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A45-x_12)+COS(thetaC3*PI()/180)*(B45-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A46-x_12)+COS(thetaC3*PI()/180)*(B46-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A47-x_12)+COS(thetaC3*PI()/180)*(B47-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A48-x_12)+COS(thetaC3*PI()/180)*(B48-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A49-x_12)+COS(thetaC3*PI()/180)*(B49-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A50-x_12)+COS(thetaC3*PI()/180)*(B50-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A51-x_12)+COS(thetaC3*PI()/180)*(B51-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A52-x_12)+COS(thetaC3*PI()/180)*(B52-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A53-x_12)+COS(thetaC3*PI()/180)*(B53-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A54-x_12)+COS(thetaC3*PI()/180)*(B54-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A55-x_12)+COS(thetaC3*PI()/180)*(B55-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A56-x_12)+COS(thetaC3*PI()/180)*(B56-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A57-x_12)+COS(thetaC3*PI()/180)*(B57-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A58-x_12)+COS(thetaC3*PI()/180)*(B58-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A59-x_12)+COS(thetaC3*PI()/180)*(B59-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A60-x_12)+COS(thetaC3*PI()/180)*(B60-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A61-x_12)+COS(thetaC3*PI()/180)*(B61-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A62-x_12)+COS(thetaC3*PI()/180)*(B62-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A63-x_12)+COS(thetaC3*PI()/180)*(B63-y_12))  
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B.3 NESTING FORCE WINDOW USING THE EQUATIONS OF EQUILIBRIUM 
(SECTION 3.4.2) 

Fn = 1
y12 = 2
x12 = 3
y3 = 4.875
x3 = 3.5625

Theta = 30  
 
 
 

RIGHT SIDE

xn yn R3 R2 R1 R3 R2 R1
3 6 -1.568479538 -0.568479538 -0.5684795 FAILED FAILED FAILED

3.1 5.8 -1.467416509 -0.467416509 -0.4674165 FAILED FAILED FAILED
3.2 5.6 -1.36635348 -0.36635348 -0.3663535 FAILED FAILED FAILED
3.3 5.4 -1.265290451 -0.265290451 -0.2652905 FAILED FAILED FAILED
3.4 5.2 -1.164227422 -0.164227422 -0.1642274 FAILED FAILED FAILED
3.5 5 -1.063164393 -0.063164393 -0.0631644 FAILED FAILED FAILED
3.6 4.8 -0.962101364 0.037898636 0.03789864 FAILED ok ok
3.7 4.6 -0.861038335 0.138961665 0.13896166 FAILED ok ok
3.8 4.4 -0.759975306 0.240024694 0.24002469 FAILED ok ok
3.9 4.2 -0.658912277 0.341087723 0.34108772 FAILED ok ok
4 4 -0.557849248 0.442150752 0.44215075 FAILED ok ok

4.1 3.8 -0.456786219 0.543213781 0.54321378 FAILED ok ok
4.2 3.6 -0.35572319 0.64427681 0.64427681 FAILED ok ok
4.3 3.4 -0.254660161 0.745339839 0.74533984 FAILED ok ok
4.4 3.2 -0.153597132 0.846402868 0.84640287 FAILED ok ok
4.5 3 -0.052534103 0.947465897 0.9474659 FAILED ok ok
4.51 2.98 -0.0424278 0.9575722 0.9575722 FAILED ok ok
4.52 2.96 -0.032321497 0.967678503 0.9676785 FAILED ok ok
4.53 2.94 -0.022215194 0.977784806 0.97778481 FAILED ok ok
4.54 2.92 -0.012108892 0.987891108 0.98789111 FAILED ok ok
4.55 2.9 -0.002002589 0.997997411 0.99799741 FAILED ok ok
4.551 2.898 -0.000991958 0.999008042 0.99900804 FAILED ok ok
4.552 2.896 1.86719E-05 1.000018672 1.00001867 ok ok ok
4.553 2.894 0.001029302 1.001029302 1.0010293 ok ok ok
4.554 2.892 0.002039932 1.002039932 1.00203993 ok ok ok
4.555 2.89 0.003050563 1.003050563 1.00305056 ok ok ok
4.56 2.88 0.008103714 1.008103714 1.00810371 ok ok ok
4.6 2.8 0.048528926 1.048528926 1.04852893 ok ok ok
4.7 2.6 0.149591955 1.149591955 1.14959195 ok ok ok
4.8 2.4 0.250654984 1.250654984 1.25065498 ok ok ok
4.9 2.2 0.351718013 1.351718013 1.35171801 ok ok ok
5 2 0.452781042 1.452781042 1.45278104 ok ok ok

5.1 1.8 0.553844071 1.553844071 1.55384407 ok ok ok
5.2 1.6 0.6549071 1.6549071 1.6549071 ok ok ok
5.3 1.4 0.755970129 1.755970129 1.75597013 ok ok ok
5.4 1.2 0.857033158 1.857033158 1.85703316 ok ok ok
5.5 1 0.958096187 1.958096187 1.95809619 ok ok ok
5.6 0.8 1.059159216 2.059159216 2.05915922 ok ok ok
5.7 0.6 1.160222245 2.160222245 2.16022224 ok ok ok
5.8 0.4 1.261285274 2.261285274 2.26128527 ok ok ok
5.9 0.2 1.362348303 2.362348303 2.3623483 ok ok ok
6 0 1.463411332 2.463411332 2.46341133 ok ok ok  
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LEFT SIDE

xn yn R3 R2 R1 R3 R2 R1
0 0 -1.463411332 -2.463411332 -1.4634113 FAILED FAILED FAILED

0.1 0.2 -1.362348303 -2.362348303 -1.3623483 FAILED FAILED FAILED
0.2 0.4 -1.261285274 -2.261285274 -1.2612853 FAILED FAILED FAILED
0.3 0.6 -1.160222245 -2.160222245 -1.1602222 FAILED FAILED FAILED
0.4 0.8 -1.059159216 -2.059159216 -1.0591592 FAILED FAILED FAILED
0.5 1 -0.958096187 -1.958096187 -0.9580962 FAILED FAILED FAILED
0.6 1.2 -0.857033158 -1.857033158 -0.8570332 FAILED FAILED FAILED
0.7 1.4 -0.755970129 -1.755970129 -0.7559701 FAILED FAILED FAILED
0.8 1.6 -0.6549071 -1.6549071 -0.6549071 FAILED FAILED FAILED
0.9 1.8 -0.553844071 -1.553844071 -0.5538441 FAILED FAILED FAILED
1 2 -0.452781042 -1.452781042 -0.452781 FAILED FAILED FAILED

1.1 2.2 -0.351718013 -1.351718013 -0.351718 FAILED FAILED FAILED
1.2 2.4 -0.250654984 -1.250654984 -0.250655 FAILED FAILED FAILED
1.3 2.6 -0.149591955 -1.149591955 -0.149592 FAILED FAILED FAILED
1.4 2.8 -0.048528926 -1.048528926 -0.0485289 FAILED FAILED FAILED
1.5 3 0.052534103 -0.947465897 0.0525341 ok FAILED ok
1.6 3.2 0.153597132 -0.846402868 0.15359713 ok FAILED ok
1.7 3.4 0.254660161 -0.745339839 0.25466016 ok FAILED ok
1.8 3.6 0.35572319 -0.64427681 0.35572319 ok FAILED ok
1.9 3.8 0.456786219 -0.543213781 0.45678622 ok FAILED ok
2 4 0.557849248 -0.442150752 0.55784925 ok FAILED ok

2.1 4.2 0.658912277 -0.341087723 0.65891228 ok FAILED ok
2.2 4.4 0.759975306 -0.240024694 0.75997531 ok FAILED ok
2.3 4.6 0.861038335 -0.138961665 0.86103834 ok FAILED ok
2.4 4.8 0.962101364 -0.037898636 0.96210136 ok FAILED ok
2.41 4.82 0.972207667 -0.027792333 0.97220767 ok FAILED ok
2.42 4.84 0.98231397 -0.01768603 0.98231397 ok FAILED ok
2.43 4.86 0.992420273 -0.007579727 0.99242027 ok FAILED ok
2.431 4.862 0.993430903 -0.006569097 0.9934309 ok FAILED ok
2.432 4.864 0.994441533 -0.005558467 0.99444153 ok FAILED ok
2.433 4.866 0.995452164 -0.004547836 0.99545216 ok FAILED ok
2.434 4.868 0.996462794 -0.003537206 0.99646279 ok FAILED ok
2.435 4.87 0.997473424 -0.002526576 0.99747342 ok FAILED ok
2.436 4.872 0.998484055 -0.001515945 0.99848405 ok FAILED ok
2.437 4.874 0.999494685 -0.000505315 0.99949468 ok FAILED ok
2.4371 4.8742 0.999595748 -0.000404252 0.99959575 ok FAILED ok
2.4372 4.8744 0.999696811 -0.000303189 0.99969681 ok FAILED ok
2.4373 4.8746 0.999797874 -0.000202126 0.99979787 ok FAILED ok
2.4374 4.8748 0.999898937 -0.000101063 0.99989894 ok FAILED ok
2.4375 4.875 1 6.40988E-16 1 ok ok ok
2.4376 4.8752 1.000101063 0.000101063 1.00010106 ok ok ok
2.4377 4.8754 1.000202126 0.000202126 1.00020213 ok ok ok
2.4378 4.8756 1.000303189 0.000303189 1.00030319 ok ok ok
2.4379 4.8758 1.000404252 0.000404252 1.00040425 ok ok ok
2.438 4.876 1.000505315 0.000505315 1.00050532 ok ok ok
2.44 4.88 1.002526576 0.002526576 1.00252658 ok ok ok
2.45 4.9 1.012632879 0.012632879 1.01263288 ok ok ok
2.5 5 1.063164393 0.063164393 1.06316439 ok ok ok
2.6 5.2 1.164227422 0.164227422 1.16422742 ok ok ok
2.7 5.4 1.265290451 0.265290451 1.26529045 ok ok ok
2.8 5.6 1.36635348 0.36635348 1.36635348 ok ok ok
2.9 5.8 1.467416509 0.467416509 1.46741651 ok ok ok
3 6 1.568479538 0.568479538 1.56847954 ok ok ok  

 
 

 
 

 



 204 

BASE SIDE

xn yn R3 R2 R1 R3 R2 R1
6 0 -1.358343125 -1.358343125 -2.358343125 FAILED FAILED FAILED

5.9 0 -1.313065021 -1.313065021 -2.313065021 FAILED FAILED FAILED
5.8 0 -1.267786917 -1.267786917 -2.267786917 FAILED FAILED FAILED
5.7 0 -1.222508813 -1.222508813 -2.222508813 FAILED FAILED FAILED
5.6 0 -1.177230709 -1.177230709 -2.177230709 FAILED FAILED FAILED
5.5 0 -1.131952604 -1.131952604 -2.131952604 FAILED FAILED FAILED
5.4 0 -1.0866745 -1.0866745 -2.0866745 FAILED FAILED FAILED
5.3 0 -1.041396396 -1.041396396 -2.041396396 FAILED FAILED FAILED
5.2 0 -0.996118292 -0.996118292 -1.996118292 FAILED FAILED FAILED
5.1 0 -0.950840188 -0.950840188 -1.950840188 FAILED FAILED FAILED
5 0 -0.905562084 -0.905562084 -1.905562084 FAILED FAILED FAILED

4.9 0 -0.860283979 -0.860283979 -1.860283979 FAILED FAILED FAILED
4.8 0 -0.815005875 -0.815005875 -1.815005875 FAILED FAILED FAILED
4.7 0 -0.769727771 -0.769727771 -1.769727771 FAILED FAILED FAILED
4.6 0 -0.724449667 -0.724449667 -1.724449667 FAILED FAILED FAILED
4.5 0 -0.679171563 -0.679171563 -1.679171563 FAILED FAILED FAILED
4.4 0 -0.633893458 -0.633893458 -1.633893458 FAILED FAILED FAILED
4.3 0 -0.588615354 -0.588615354 -1.588615354 FAILED FAILED FAILED
4.2 0 -0.54333725 -0.54333725 -1.54333725 FAILED FAILED FAILED
4.1 0 -0.498059146 -0.498059146 -1.498059146 FAILED FAILED FAILED
4 0 -0.452781042 -0.452781042 -1.452781042 FAILED FAILED FAILED

3.9 0 -0.407502938 -0.407502938 -1.407502938 FAILED FAILED FAILED
3.8 0 -0.362224833 -0.362224833 -1.362224833 FAILED FAILED FAILED
3.7 0 -0.316946729 -0.316946729 -1.316946729 FAILED FAILED FAILED
3.6 0 -0.271668625 -0.271668625 -1.271668625 FAILED FAILED FAILED
3.5 0 -0.226390521 -0.226390521 -1.226390521 FAILED FAILED FAILED
3.4 0 -0.181112417 -0.181112417 -1.181112417 FAILED FAILED FAILED
3.3 0 -0.135834313 -0.135834313 -1.135834313 FAILED FAILED FAILED
3.2 0 -0.090556208 -0.090556208 -1.090556208 FAILED FAILED FAILED
3.1 0 -0.045278104 -0.045278104 -1.045278104 FAILED FAILED FAILED
3 0 -4.0215E-16 -4.0215E-16 -1 FAILED FAILED FAILED

2.9 0 0.045278104 0.045278104 -0.954721896 ok ok FAILED
2.8 0 0.090556208 0.090556208 -0.909443792 ok ok FAILED
2.7 0 0.135834313 0.135834313 -0.864165687 ok ok FAILED
2.6 0 0.181112417 0.181112417 -0.818887583 ok ok FAILED
2.5 0 0.226390521 0.226390521 -0.773609479 ok ok FAILED
2.4 0 0.271668625 0.271668625 -0.728331375 ok ok FAILED
2.3 0 0.316946729 0.316946729 -0.683053271 ok ok FAILED
2.2 0 0.362224833 0.362224833 -0.637775167 ok ok FAILED
2.1 0 0.407502938 0.407502938 -0.592497062 ok ok FAILED
2 0 0.452781042 0.452781042 -0.547218958 ok ok FAILED

1.9 0 0.498059146 0.498059146 -0.501940854 ok ok FAILED
1.8 0 0.54333725 0.54333725 -0.45666275 ok ok FAILED
1.7 0 0.588615354 0.588615354 -0.411384646 ok ok FAILED
1.6 0 0.633893458 0.633893458 -0.366106542 ok ok FAILED
1.5 0 0.679171563 0.679171563 -0.320828437 ok ok FAILED
1.4 0 0.724449667 0.724449667 -0.275550333 ok ok FAILED
1.3 0 0.769727771 0.769727771 -0.230272229 ok ok FAILED
1.2 0 0.815005875 0.815005875 -0.184994125 ok ok FAILED
1.1 0 0.860283979 0.860283979 -0.139716021 ok ok FAILED
1 0 0.905562084 0.905562084 -0.094437916 ok ok FAILED

0.9 0 0.950840188 0.950840188 -0.049159812 ok ok FAILED
0.8 0 0.996118292 0.996118292 -0.003881708 ok ok FAILED

0.799 0 0.996571073 0.996571073 -0.003428927 ok ok FAILED
0.798 0 0.997023854 0.997023854 -0.002976146 ok ok FAILED
0.797 0 0.997476635 0.997476635 -0.002523365 ok ok FAILED
0.796 0 0.997929416 0.997929416 -0.002070584 ok ok FAILED
0.795 0 0.998382197 0.998382197 -0.001617803 ok ok FAILED
0.794 0 0.998834978 0.998834978 -0.001165022 ok ok FAILED
0.793 0 0.999287759 0.999287759 -0.000712241 ok ok FAILED
0.792 0 0.99974054 0.99974054 -0.00025946 ok ok FAILED

0.7919 0 0.999785818 0.999785818 -0.000214182 ok ok FAILED
0.7918 0 0.999831096 0.999831096 -0.000168904 ok ok FAILED
0.7917 0 0.999876375 0.999876375 -0.000123625 ok ok FAILED
0.7916 0 0.999921653 0.999921653 -7.83474E-05 ok ok FAILED
0.7915 0 0.999966931 0.999966931 -3.30693E-05 ok ok FAILED
0.7914 0 1.000012209 1.000012209 1.22088E-05 ok ok ok
0.7913 0 1.000057487 1.000057487 5.74869E-05 ok ok ok
0.7912 0 1.000102765 1.000102765 0.000102765 ok ok ok
0.7911 0 1.000148043 1.000148043 0.000148043 ok ok ok
0.791 0 1.000193321 1.000193321 0.000193321 ok ok ok
0.79 0 1.000646102 1.000646102 0.000646102 ok ok ok
0.7 0 1.041396396 1.041396396 0.041396396 ok ok ok
0.6 0 1.0866745 1.0866745 0.0866745 ok ok ok
0.5 0 1.131952604 1.131952604 0.131952604 ok ok ok
0.4 0 1.177230709 1.177230709 0.177230709 ok ok ok
0.3 0 1.222508813 1.222508813 0.222508813 ok ok ok
0.2 0 1.267786917 1.267786917 0.267786917 ok ok ok
0.1 0 1.313065021 1.313065021 0.313065021 ok ok ok
0 0 1.358343125 1.358343125 0.358343125 ok ok ok  
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Example code from Excel®.  This spreadsheet is actually set up columns A-E, 

where column A is xn, B is yn, C is R3, D is R2, and E is R1.  It is simply shown here in 

this manner as an illustration of the formulas. 

 
LEFT SIDE

xn yn R3
0 =A6*2 =(fn*COS(theta*PI()/180)*(y.12-B6)+fn*SIN(theta*PI()/180)*(x.12-A6))/(SIN(theta*PI()/180)*(x_3-x.12)-COS(theta*P

R2
=(fn*COS(theta*PI()/180)-R3*COS(theta*PI()/180))/-COS(theta*PI()/180)

R1
=fn*SIN(theta*PI()/180)+D6*SIN(theta*PI()/180)+C6*SIN(theta*PI()/180)

R3
=A6+0.1 =A13*2 =(fn*COS(theta*PI()/180)*(y.12-B13)+fn*SIN(theta*PI()/180)*(x.12-A13))/(SIN(theta*PI()/180)*(x_3-x.12)-COS(theta

R2
=(fn*COS(theta*PI()/180)-C13*COS(theta*PI()/180))/-COS(theta*PI()/180)

R1
=fn*SIN(theta*PI()/180)+D13*SIN(theta*PI()/180)+C13*SIN(theta*PI()/180)

RIGHT SIDE
xn yn R3

3 6 =(fn*COS(theta*PI()/180)*(B22-y.12)-fn*SIN(theta*PI()/180)*(A22-x.12))/(SIN(theta*PI()/180)*(x_3-x.12)-COS(theta
R2

=(fn*COS(theta*PI()/180)+C22*COS(theta*PI()/180))/COS(theta*PI()/180)
R1

=fn*SIN(theta*PI()/180)+D22*SIN(theta*PI()/180)+C22*SIN(theta*PI()/180)

R3
=A105+0.1 =-2*A30+=(fn*COS(theta*PI()/180)*(B30-y.12)-fn*SIN(theta*PI()/180)*(A30-x.12))/(SIN(theta*PI()/180)*(x_3-x.12)-COS(theta

R2
=(fn*COS(theta*PI()/180)+C30*COS(theta*PI()/180))/COS(theta*PI()/180)

R1
=fn*SIN(theta*PI()/180)+D30*SIN(theta*PI()/180)+C30*SIN(theta*PI()/180)

BASE SIDE
xn yn R3

6 0 =(fn*(A39-x.12))/(SIN(theta*PI()/180)*(x_3-x.12)-COS(theta*PI()/180)*(y_3-y.12))
R2

=C39
R1

=(D39*SIN(theta*PI()/180)+C39*SIN(theta*PI()/180)-fn)

R3
=A39-0.1 0 =(fn*(A47-x.12))/(SIN(theta*PI()/180)*(x_3-x.12)-COS(theta*PI()/180)*(y_3-y.12))

R2
=C47

R1
=(D47*SIN(theta*PI()/180)+C47*SIN(theta*PI()/180)-fn)  
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APPENDIX C COMPARING THE GRAPHICAL NESTING FORCE 
WINDOW TO THE QUANTITATIVE NESTING FORCE 
WINDOW 

 
 
Object:  To determine if the equations of equilibrium and the graphical method to find the 

nesting force window agree 

 

C.1 BRIEF DESCRIPTION AND BASELINE RESULTS 

First method—equations of equilibrium (Section C.2):   

 

• Use the equations of equilibrium to find the reaction forces at each constraint, 

given a certain nesting force position. 

• Find the transition points, which happen at the point when the reaction forces are 

all positive and then one or more reaction forces become negative. 

 

Second method—graphical approach (Section C.3): 

 

• Follow Blanding’s rules for finding the nesting force window. 

• Find the equation of a line for all sides of the assembly. 

• Find the equation of a line for the constraint lines of action and the perpendicular 

intersections of the transition points. 

• Find the intersections of the necessary lines to find the transition points. 
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Transition points according to the first method (equations of equilibrium): 
 
Along the left side 

xn yn R3 R2 R1 
2.4376 4.8752 1.000101063 0.000101063 1.000101 

Along the right side 
xn yn R3 R2 R1 

4.553 2.894 0.001029302 1.001029302 1.001029 
Along the base 

xn yn R3 R2 R1 
0.7914 0 1.000102765 1.000102765 0.000001 

 
 
 
Transition points according to the second method (graphical approach): 
 
Along the left side 

xn yn 
2.40 4.80 

Along the right side 
xn yn 

4.60 2.80 
Along the base 

xn yn 
0.75 0 

 
They are essentially the same.  The graphical method is limited by round-off error. 

 

C.2 FIRST METHOD:  EQUATIONS OF EQUILIBRIUM 

 

 
 

 
Given the following information, the reaction forces at each constraint can be found: 
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Fn = 1 
θ  = 30o 
x12 = 3 
y12 = 2 
x3 = 3.5625 
y3 = 4.875 
 
 
Find R3: 
 
+   ΣM12=0 counterclockwise positive 
 
Along the left side of the triangle: 
 

)(*)cos()(*sin(

sinFcos(*F

123123

nn
3 yyxx

xxyy
R nn

−−−)
)−(∗)(∗  +)−(∗)

= 1212

θθ
θθ

 

 
Along the right side of the triangle: 
 

)(*)cos()(*sin(

sinFcos(*F

123123

12n12n
3 yyxx

xxyy
R nn

−−−)
)−(∗)(∗  −)−(∗)

=
θθ

θθ
 

 
Along the bottom of the triangle: 
 

)(*)cos()(*sin(

cos(*F

123123

12n
3 yyxx

xx
R n

−−−)
)−(∗)

=
θθ

θ
 

 
 
Find R2: 
 
+    ΣFx=0 
 
Along the left side of the triangle: 
 

)cos(

coscos(*F 3n
2 θ

θθ
−

)(∗ −)
=

R
R  

 
Along the right side of the triangle: 
 

)cos(

coscos(*F 3n
2 θ

θθ )(∗ +)
=

R
R  
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Along the bottom of the triangle: 
 

32 RR =  

 
 

Find R1: 
 
+   ΣFy=0 
 
Along the left side of the triangle: 
 

)sin(*sinsin(*F 32n1 θθθ RRR +)(∗ +)=  

 
Along the right side of the triangle: 
 

)sin(*sinsin(*F 32n1 θθθ RRR +)(∗ +)=  

 
Along the bottom of the triangle: 
 

n321 F)sin(*sin −+)(∗ = θθ RRR  

 
 

 
Overall results (in numbers): 
 

xn yn R3 R2 R1 
0 0 -1.463411332 -2.463411332 -1.463411 Left side of the triangle 

0.1 0.2 -1.362348303 -2.362348303 -1.362348 
0.2 0.4 -1.261285274 -2.261285274 -1.261285 
0.3 0.6 -1.160222245 -2.160222245 -1.160222 
0.4 0.8 -1.059159216 -2.059159216 -1.059159 
0.5 1 -0.958096187 -1.958096187 -0.958096 
0.6 1.2 -0.857033158 -1.857033158 -0.857033 
0.7 1.4 -0.755970129 -1.755970129 -0.75597 
0.8 1.6 -0.6549071 -1.6549071 -0.654907 
0.9 1.8 -0.553844071 -1.553844071 -0.553844 
1 2 -0.452781042 -1.452781042 -0.452781 

1.1 2.2 -0.351718013 -1.351718013 -0.351718 
1.2 2.4 -0.250654984 -1.250654984 -0.250655 
1.3 2.6 -0.149591955 -1.149591955 -0.149592 
1.4 2.8 -0.048528926 -1.048528926 -0.048529 
1.5 3 0.052534103 -0.947465897 0.0525341 
1.6 3.2 0.153597132 -0.846402868 0.1535971 
1.7 3.4 0.254660161 -0.745339839 0.2546602 
1.8 3.6 0.35572319 -0.64427681 0.3557232 
1.9 3.8 0.456786219 -0.543213781 0.4567862 
2 4 0.557849248 -0.442150752 0.5578492 

2.1 4.2 0.658912277 -0.341087723 0.6589123 
2.2 4.4 0.759975306 -0.240024694 0.7599753 
2.3 4.6 0.861038335 -0.138961665 0.8610383 
2.4 4.8 0.962101364 -0.037898636 0.9621014 
2.41 4.82 0.972207667 -0.027792333 0.9722077 
2.42 4.84 0.98231397 -0.01768603 0.982314 
2.43 4.86 0.992420273 -0.007579727 0.9924203 
2.437 4.874 0.999494685 -0.000505315 0.9994947 
2.4371 4.8742 0.999595748 -0.000404252 0.9995957 
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2.4374 4.8748 0.999898937 -0.000101063 0.9998989 
2.4375 4.875 1 6.40988E-16 1 

2.4376 4.8752 1.000101063 0.000101063 1.0001011 Approximate transition  point 
2.4377 4.8754 1.000202126 0.000202126 1.0002021 
2.4378 4.8756 1.000303189 0.000303189 1.0003032 
2.4379 4.8758 1.000404252 0.000404252 1.0004043 
2.438 4.876 1.000505315 0.000505315 1.0005053 
2.44 4.88 1.002526576 0.002526576 1.0025266 
2.45 4.9 1.012632879 0.012632879 1.0126329 
2.5 5 1.063164393 0.063164393 1.0631644 
2.6 5.2 1.164227422 0.164227422 1.1642274 
2.7 5.4 1.265290451 0.265290451 1.2652905 
2.8 5.6 1.36635348 0.36635348 1.3663535 
2.9 5.8 1.467416509 0.467416509 1.4674165 
3 6 1.568479538 0.568479538 1.5684795 

3 6 -1.568479538 -0.568479538 -0.56848 Right side of the triangle 
3.1 5.8 -1.467416509 -0.467416509 -0.467417 
3.2 5.6 -1.36635348 -0.36635348 -0.366353 
3.3 5.4 -1.265290451 -0.265290451 -0.26529 
3.4 5.2 -1.164227422 -0.164227422 -0.164227 
3.5 5 -1.063164393 -0.063164393 -0.063164 
3.6 4.8 -0.962101364 0.037898636 0.0378986 
3.7 4.6 -0.861038335 0.138961665 0.1389617 
3.8 4.4 -0.759975306 0.240024694 0.2400247 
3.9 4.2 -0.658912277 0.341087723 0.3410877 
4 4 -0.557849248 0.442150752 0.4421508 

4.1 3.8 -0.456786219 0.543213781 0.5432138 
4.2 3.6 -0.35572319 0.64427681 0.6442768 
4.3 3.4 -0.254660161 0.745339839 0.7453398 
4.4 3.2 -0.153597132 0.846402868 0.8464029 
4.5 3 -0.052534103 0.947465897 0.9474659 
4.51 2.98 -0.0424278 0.9575722 0.9575722 
4.52 2.96 -0.032321497 0.967678503 0.9676785 
4.53 2.94 -0.022215194 0.977784806 0.9777848 
4.54 2.92 -0.012108892 0.987891108 0.9878911 
4.55 2.9 -0.002002589 0.997997411 0.9979974 
4.551 2.898 -0.000991958 0.999008042 0.999008 
4.552 2.896 1.86719E-05 1.000018672 1.0000187 

4.553 2.894 0.001029302 1.001029302 1.0010293 Approximate transition point 
4.554 2.892 0.002039932 1.002039932 1.0020399 
4.555 2.89 0.003050563 1.003050563 1.0030506 
4.56 2.88 0.008103714 1.008103714 1.0081037 
4.6 2.8 0.048528926 1.048528926 1.0485289 
4.7 2.6 0.149591955 1.149591955 1.149592 
4.8 2.4 0.250654984 1.250654984 1.250655 
4.9 2.2 0.351718013 1.351718013 1.351718 
5 2 0.452781042 1.452781042 1.452781 

5.1 1.8 0.553844071 1.553844071 1.5538441 
5.2 1.6 0.6549071 1.6549071 1.6549071 
5.3 1.4 0.755970129 1.755970129 1.7559701 
5.4 1.2 0.857033158 1.857033158 1.8570332 
5.5 1 0.958096187 1.958096187 1.9580962 
5.6 0.8 1.059159216 2.059159216 2.0591592 
5.7 0.6 1.160222245 2.160222245 2.1602222 
5.8 0.4 1.261285274 2.261285274 2.2612853 
5.9 0.2 1.362348303 2.362348303 2.3623483 
6 0 1.463411332 2.463411332 2.4634113 

6 0 -1.358343125 -1.358343125 -2.358343 Base of the triangle 
5.9 0 -1.313065021 -1.313065021 -2.313065 
5.8 0 -1.267786917 -1.267786917 -2.267787 
5.7 0 -1.222508813 -1.222508813 -2.222509 
5.6 0 -1.177230709 -1.177230709 -2.177231 
5.5 0 -1.131952604 -1.131952604 -2.131953 
5.4 0 -1.0866745 -1.0866745 -2.086675 
5.3 0 -1.041396396 -1.041396396 -2.041396 
5.2 0 -0.996118292 -0.996118292 -1.996118 
5.1 0 -0.950840188 -0.950840188 -1.95084 
5 0 -0.905562084 -0.905562084 -1.905562 

4.9 0 -0.860283979 -0.860283979 -1.860284 
4.8 0 -0.815005875 -0.815005875 -1.815006 
4.7 0 -0.769727771 -0.769727771 -1.769728 
4.6 0 -0.724449667 -0.724449667 -1.72445 



 212 

4.5 0 -0.679171563 -0.679171563 -1.679172 
4.4 0 -0.633893458 -0.633893458 -1.633893 
4.3 0 -0.588615354 -0.588615354 -1.588615 
4.2 0 -0.54333725 -0.54333725 -1.543337 
4.1 0 -0.498059146 -0.498059146 -1.498059 
4 0 -0.452781042 -0.452781042 -1.452781 

3.9 0 -0.407502938 -0.407502938 -1.407503 
3.8 0 -0.362224833 -0.362224833 -1.362225 
3.7 0 -0.316946729 -0.316946729 -1.316947 
3.6 0 -0.271668625 -0.271668625 -1.271669 
3.5 0 -0.226390521 -0.226390521 -1.226391 
3.4 0 -0.181112417 -0.181112417 -1.181112 
3.3 0 -0.135834313 -0.135834313 -1.135834 
3.2 0 -0.090556208 -0.090556208 -1.090556 
3.1 0 -0.045278104 -0.045278104 -1.045278 
3 0 -4.0215E-16 -4.0215E-16 -1 

2.9 0 0.045278104 0.045278104 -0.954722 
2.8 0 0.090556208 0.090556208 -0.909444 
2.7 0 0.135834313 0.135834313 -0.864166 
2.6 0 0.181112417 0.181112417 -0.818888 
2.5 0 0.226390521 0.226390521 -0.773609 
2.4 0 0.271668625 0.271668625 -0.728331 
2.3 0 0.316946729 0.316946729 -0.683053 
2.2 0 0.362224833 0.362224833 -0.637775 
2.1 0 0.407502938 0.407502938 -0.592497 
2 0 0.452781042 0.452781042 -0.547219 

1.9 0 0.498059146 0.498059146 -0.501941 
1.8 0 0.54333725 0.54333725 -0.456663 
1.7 0 0.588615354 0.588615354 -0.411385 
1.6 0 0.633893458 0.633893458 -0.366107 
1.5 0 0.679171563 0.679171563 -0.320828 
1.4 0 0.724449667 0.724449667 -0.27555 
1.3 0 0.769727771 0.769727771 -0.230272 
1.2 0 0.815005875 0.815005875 -0.184994 
1.1 0 0.860283979 0.860283979 -0.139716 
1 0 0.905562084 0.905562084 -0.094438 

0.9 0 0.950840188 0.950840188 -0.04916 
0.8 0 0.996118292 0.996118292 -0.003882 

0.799 0 0.996571073 0.996571073 -0.003429 
0.798 0 0.997023854 0.997023854 -0.002976 
0.796 0 0.997929416 0.997929416 -0.002071 
0.7915 0 0.999966931 0.999966931 -3.31E-05 
0.7914 0 1.000012209 1.000012209 1.221E-05 
0.7913 0 1.000057487 1.000057487 5.749E-05 

0.7912 0 1.000102765 1.000102765 0.0001028 Approximate transition point 
0.7911 0 1.000148043 1.000148043 0.000148 
0.791 0 1.000193321 1.000193321 0.0001933 
0.79 0 1.000646102 1.000646102 0.0006461 
0.7 0 1.041396396 1.041396396 0.0413964 
0.6 0 1.0866745 1.0866745 0.0866745 
0.5 0 1.131952604 1.131952604 0.1319526 
0.4 0 1.177230709 1.177230709 0.1772307 
0.3 0 1.222508813 1.222508813 0.2225088 
0.2 0 1.267786917 1.267786917 0.2677869 
0.1 0 1.313065021 1.313065021 0.313065 
0 0 1.358343125 1.358343125 0.3583431 
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C.3 SECOND METHOD:  EQUATION OF A LINE TO FIND 
INTERSECTION/TRANSITION POINTS 

 
 

 
 
 

For the given triangle, the equation of a line is found for each side. 
 

 
Left side: 

xy 2=  
 

Right side: 
 

122 +−= xy  
 

Along the bottom: 
 

0=y  
 
 

Next, the intersection points where the transition points lie must be found.  This 

can be done by constructing a line perpendicular to each side of the triangle that runs 

through the necessary instant center (dashed lines). 
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Perpendicular (dashed) line for the transition point on the left side of the triangle: 
 

6
2

1 +−= xy  

 
 

To find the transition point, set the two equations equal: 
 

6
2

1
*2 +−= xx  

8.4

4.2

=
=

y

x
 

 
 

Perpendicular (dashed) line for the transition point on the right side of the triangle: 
 

5.0
2

1 += xy  

 
 

To find the transition point, set the two equations equal: 
 

5.0
2

1
12*2 +=+− xx  

8.2

6.4

=
=

y

x
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To find the transition point along the bottom of the assembly, take the equation of 

a line for the lines of action on constraints 2 and 3, and set them equal to each other (solid 

lines). 

 

Equation of a line for the line of action extending from the top right constraint: 

5.2
3

2 += xy  

 
 

Equation of a line for the line of action extending from the left side constraint: 
 

333.3
9

4 +−= xy  

 
 

To find the intersection point, set the two equations equal: 
 

333.3
9

4
5.2

3

2 +−=+ xx  

 

3

75.0

=
=

y

x
 

 
 

The transition point is found by simply projecting the x-value onto the x-axis: 
 

0

75.0

=
=

y

x
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APPENDIX D DETAILED ANALYSIS USING THE EQUATIONS OF 
EQUILIBRIUM FOR FIGURE 4.19 

 
 

This appendix first shows the set-up in Excel® for the equations of equilibrium.  

Afterwards, each of the examples in Fig. 4.19 will be solved. 

 

D.1 FORMULAS USED IN EXCEL® FOR FIG. 4.19 
 

  

r= 
Vertical force only  

0 0 =-COS(phi*PI()/180)*(x_3-x_12)-SIN(phi*PI()/180)*(y_3-y_12) R1 
=-SIN(phi*PI()/180) =COS(phi*PI()/180) =SIN(phi*PI()/180) R2 
=COS(phi*PI()/180) =SIN(phi*PI()/180) =-COS(phi*PI()/180) R3 

=MINVERSE(M72:O74) =MINVERSE(M72:O74) =MINVERSE(M72:O74) 
=MINVERSE(M72:O74) =MINVERSE(M72:O74) =MINVERSE(M72:O74) 
=MINVERSE(M72:O74) =MINVERSE(M72:O74) =MINVERSE(M72:O74) 

Add the horizontal force  

0 0 =-COS(phi*PI()/180)*(x_3-x_12)-SIN(phi*PI()/180)*(y_3-y_12) R1 
=-SIN(phi*PI()/180) =COS(phi*PI()/180) =SIN(phi*PI()/180) R2 
=COS(phi*PI()/180) =SIN(phi*PI()/180) =-COS(phi*PI()/180) R3 

=MINVERSE(M82:O84) =MINVERSE(M82:O84) =MINVERSE(M82:O84) 
=MINVERSE(M82:O84) =MINVERSE(M82:O84) =MINVERSE(M82:O84) 
=MINVERSE(M82:O84) =MINVERSE(M82:O84) =MINVERSE(M82:O84) 

C 
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b

=-Fn_1*COS(phi*PI()/180)*(xn_1-x_12)+Fn_1*SIN(phi*PI()/180)*(y_12-yn_1)

=Fn_1*SIN(phi*PI()/180)

=-Fn_1*COS(phi*PI()/180)

=MMULT(M76:O78,S72:S74)

=MMULT(M76:O78,S72:S74)

=MMULT(M76:O78,S72:S74)

=-Fn_1*COS(phi*PI()/180)*(xn_1-x_12)+Fn_1*SIN(phi*PI()/180)*(y_12-yn_1)-Fn_2*COS(phi*PI()/180)*(yn_2-y_12)+Fn_2*SIN(phi*PI()/180)*(xn_2-x_12)

=Fn_1*SIN(phi*PI()/180)+Fn_2*COS(phi*PI()/180)

=-Fn_1*COS(phi*PI()/180)+Fn_2*SIN(phi*PI()/180)

=MMULT(M86:O88,S82:S84)

=MMULT(M86:O88,S82:S84)

=MMULT(M86:O88,S82:S84)  

 

D.2 THE RESULTS FOR FIG. 4.19 

C1

C2

C3

Fn2

Fn1

R1 = 0.4
R2 = 1.0
R3 = 1.4

 

Force Analysis

Vertical force only (Nesting force is along the base of the block)
x_1= 1 0 0 -5 -6
y_1= 0 7.733E-17 1 -7.73E-17 -7.7E-17

1 -7.73E-17 -1 -1
x_2= 0
y_2= 2.5 -0.2 7.73E-17 1 0.2

0 1 -7.73E-17 0
x_3= 6 -0.2 0 0 1.2
y_3= 6.6667

Fn_1= 1 Add on the horizontal force (Vertical nesting force along the base, horizontal along the right)
Fn_2= 1 0 0 -5 -7
xn_1= 7 7.733E-17 1 -7.73E-17 1
yn_1= -4.64E-16 1 -7.73E-17 -1 -1
xn_2= 10
yn_2= 3.5 -0.2 7.73E-17 1 0.4 R1
x_12= 1 0 1 -7.73E-17 1 R2
y_12= 2.5 -0.2 0 0 1.4 R3

Transition points:
xn1_top = 1

xn1_base= 6

yn2_right= 2.5  
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C1

C2

C3

Fn2

Fn1

R1 = 0.25
R2 = 1.0
R3 = 1.25

 

Force Analysis

Vertical force only (Nesting force is along the base of the block)
x_1= 6 0 0 4 6
y_1= 0 7.733E-17 1 -7.73E-17 -7.7E-17

1 -7.73E-17 -1 -1
x_2= 0
y_2= 2.5 0.25 7.73E-17 1 0.5

0 1 -7.73E-17 0
x_3= 2 0.25 0 0 1.5
y_3= 6.6667

Fn_1= 1 Add on the horizontal force (Vertical nesting force along the base, horizontal along the right)
Fn_2= 1 0 0 4 5
xn_1= 0 7.733E-17 1 -7.73E-17 1
yn_1= 7.73E-17 1 -7.73E-17 -1 -1
xn_2= 15
yn_2= 3.5 0.25 7.73E-17 1 0.25 R1
x_12= 6 0 1 -7.73E-17 1 R2
y_12= 2.5 0.25 0 0 1.25 R3

Transition points:
xn1_top = 6

xn1_base= 2

yn2_right= 2.5  

C1

C2

C3

No nesting force allowed anywhere
else or the block will have play

R1 = -infinity
R2 = 1.0
R3 = -infinity

Fn2

 

Force Analysis

Vertical force only (Nesting force is along the base of the block)
x_1= 5 0 0 3.22E-16 5
y_1= 0 7.733E-17 1 -7.73E-17 -7.7E-17

1 -7.73E-17 -1 -1
x_2= 0
y_2= 2.5 3.104E+15 7.73E-17 1 1.55E+16

0 1 -7.73E-17 0
x_3= 5 3.104E+15 0 0 1.55E+16
y_3= 6.6667

Fn_1= 1 Add on the horizontal force (Vertical nesting force along the base, horizontal along the right)
Fn_2= 1 0 0 3.22E-16 5
xn_1= 0 7.733E-17 1 -7.73E-17 1
yn_1= 7.73E-17 1 -7.73E-17 -1 -1
xn_2= 14
yn_2= 2.5 3.104E+15 7.73E-17 1 1.55E+16 R1
x_12= 5 0 1 -7.73E-17 1 R2
y_12= 2.5 3.104E+15 0 0 1.55E+16 R3

Transition points:
xn1_top = ---

xn1_base= ---

yn2_right= 2.5  
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C1

C2

C3

Fn2

Fn1

R1 = 0.33
R2 = 1.0
R3 = 1.33

 

Force Analysis

Vertical force only (Nesting force is along the base of the block)
x_1= 2 0 0 -6 -7.5
y_1= 0 7.733E-17 1 -7.73E-17 -7.7E-17

1 -7.73E-17 -1 -1
x_2= 0
y_2= 4.5 -0.166667 7.73E-17 1 0.25

0 1 -7.73E-17 0
x_3= 8 -0.166667 0 0 1.25
y_3= 6.6667

Fn_1= 1 Add on the horizontal force (Vertical nesting force along the base, horizontal along the right)
Fn_2= 1 0 0 -6 -8
xn_1= 9.5 7.733E-17 1 -7.73E-17 1
yn_1= -6.57E-16 1 -7.73E-17 -1 -1
xn_2= 11
yn_2= 5 -0.166667 7.73E-17 1 0.333333 R1
x_12= 2 0 1 -7.73E-17 1 R2
y_12= 4.5 -0.166667 0 0 1.333333 R3

Transition points:
xn1_top = 2

xn1_base= 8

yn2_right= 4.5  

C1

C2

C3

Fn2

Fn1

R1 = 0.1
R2 = 1.0
R3 = 1.1

 

Force Analysis

Vertical force only (Nesting force is along the base of the block)
x_1= 0 0 0 -10 -10
y_1= 0 7.733E-17 1 -7.73E-17 -7.7E-17

1 -7.73E-17 -1 -1
x_2= 0
y_2= 2.5 -0.1 7.73E-17 1 0

0 1 -7.73E-17 0
x_3= 10 -0.1 0 0 1
y_3= 6.6667

Fn_1= 1 Add on the horizontal force (Vertical nesting force along the base, horizontal along the right)
Fn_2= 1 0 0 -10 -11
xn_1= 10 7.733E-17 1 -7.73E-17 1
yn_1= -6.96E-16 1 -7.73E-17 -1 -1
xn_2= 9
yn_2= 3.5 -0.1 7.73E-17 1 0.1 R1
x_12= 7.73E-17 0 1 -7.73E-17 1 R2
y_12= 2.5 -0.1 0 0 1.1 R3

Transition points:
xn1_top = 0

xn1_base= 10

yn2_right= 2.5
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APPENDIX E DETAILS FOR THE MONTE CARLO SIMULATION 
EXAMPLES IN CHAPTER 6 

 

This appendix contains the detailed analysis and programs used to find the results 

for the Monte Carlo simulations performed in Chapter 6.  Each section contains the C 

program developed for the example and the Excel® spreadsheet (if one exists) used to 

verify the results.  Further description for the development of the slotted block example is 

also presented. 

 

E.1 ALL BLOCKS WITH THREE CONSTRAINTS (SECTIONS 6.3.1 AND 6.3.2) 

The C program shown below allows for all three constraints to be varied in both 

directions.  The starting points are changed for each set-up presented.   

#include <math.h> 
#include <stdio.h> 
#include "LUD.h" 
 
#define EPS 0.000001 
#define PERTURB 0.000001 
#define PI 3.14159265 
 
void func(double d[], double f[]); 
double resid(double f[], int nVar); 
double rad(double deg); 
double nr(double angle); 
 
double x1, z1, x2, y2, x3, y3; 
double xp, yp, h, w; 
int nfail; 
 
float ran1(int *idum); 
float gasdev(int *idum); 
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/*--------------------------------------------- 
                MONTE CARLO 
-----------------------------------------------*/ 
main () 
{ 
   double error1, error; 
   int iSeed, i, nloop; 
 
 
   iSeed = -5; 
   nfail = 0; 
   error = 0.; 
   printf ("Enter number of loops\n");  
   scanf ("%d", &nloop); 
    
   for (i=1; i<=nloop; i++) 
   { 
    /* generate random deviates from the starting points */ 
     
     x1 = gasdev(&iSeed) * 0.2 + 2.0; 
     z1 = gasdev(&iSeed) * 0.2 + 0.0; 
     x2 = gasdev(&iSeed) * 0.2 + 0.0; 
     y2 = gasdev(&iSeed) * 0.2 + 3.35; 
     x3 = gasdev(&iSeed) * 0.2 + 8.0; 
     y3 = gasdev(&iSeed) * 0.2 + 6.667; 
      
     printf ("x1,y1:%lf %lf\nx2,y2:%lf %lf\nx3,y3:%lf %lf\n", x1, 
z1, x2, y2, x3, y3); 
 
     error1 = nr(0.); 
     error += fabs(error1); 
   } 
   
  /* output scalar AF values */ 
   
   printf ("nfail = %d\n", nfail); 
   printf ("error average = %lf\n", error/(nloop-nfail)); 
    
} 
 
/*----------------------------------------------- 
                 NR routine 
-------------------------------------------------*/ 
 
double nr(double angle) 
{ 
   int i, j, nRow, nCol, nB, nVar, count, pvt[MAX_ROWS]; 
   double a[MAX_ROWS][MAX_COLS], b[MAX_ROWS], det; 
   double d[MAX_ROWS], f1[MAX_ROWS], f[MAX_ROWS], totalResid; 
   double error, xd1, xd2, yd1, yd2; 
    
      /* initialize x */ 
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   nVar = 4; 
   d[0] = angle; 
   d[1] = y2; 
   d[2] = x1; 
   d[3] = x3; 
    
   /* call functions */  
   func(d,f); 
    
   /* compute residuals */ 
   totalResid = resid(f,nVar); 
    
   /* enter main loop */ 
   count = 0; 
    
   while (fabs(totalResid) > EPS) 
   { 
      count++; 
       
      /* Evaluate the Jacobian */ 
      for (i=0; i<nVar; i++) 
      { 
         /* perturb x */ 
  d[i] = d[i] + PERTURB; 
  func(d, f1); 
   
  for (j = 0; j<nVar; j++) 
  { 
     a[j][i] = (f1[j]-f[j]) / PERTURB; 
  } 
  d[i] = d[i] - PERTURB; 
      } 
       
      /* printf ("matrix a:\n"); 
      for (i=0; i<nVar; i++) 
      { 
         for (j=0; j<nVar; j++) 
  { 
     printf("%lf ", a[i][j]); 
  } 
  printf("\n"); 
      } 
      printf("\n");  */ 
 
      /* Make sure the functions are current */ 
      func(d, f); 
       
      /* load b vector */ 
      for (i=0; i<nVar; i++) 
      { 
         b[i] = -f[i]; 
      } 
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      /*printf ("vector b:\n");  
      for (i=0; i<nVar; i++) 
      { 
         printf("%lf ", b[i]); 
      } 
      printf("\n"); */ 
       
      /* call LU DECOMPOSITION routine */ 
      det = LUDecomp(a, nVar, pvt); 
      LUSolve(a, nVar, b, pvt); 
       
      /* printf ("matrix a:\n"); 
      for (i=0; i<nVar; i++) 
      { 
         for (j=0; j<nVar; j++) 
  { 
     printf("%lf ", a[i][j]); 
  } 
  printf("\n"); 
      } */ 
       
      /* compute new value for x */ 
      for (i=0; i<nVar; i++) 
      { 
         d[i] = d[i] + b[i]; 
      } 
       
      /*printf ("new d:\n"); 
      for (i=0; i<nVar; i++) 
      { 
         printf("%lf ", d[i]); 
      } 
      printf("\n"); */ 
       
       
      /* evaluate the function's residuals */ 
      func(d, f); 
      totalResid = resid(f, nVar); 
      if (count > 15) 
      { 
         nfail +=1; 
  printf("Failure in NR\n"); 
  break; 
      } 
   } 
    
   /*------------------------------------------------ 
                      EVALUATE ERROR 
   --------------------------------------------------*/ 
    if (count <= 15) 
     { 
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        xd1=x2 + sin(rad(d[0]))*d[1]; 
        yd1=y2 - cos(rad(d[0]))*d[1]; 
        xd2=xd1 + w*cos(rad(d[0])); 
        yd2=yd1 + w*sin(rad(d[0])); 
      
        error = pow((xp-xd1),2.)+pow((yp-yd1),2.)+pow(((xp+w)-
xd2),2.)+pow((yp-yd2),2.); 
        error=sqrt(error); 
        printf("u1: %lf\nu2: %lf\nu3: %lf\nphi: %lf\n", 
d[2],d[1],d[3],d[0]); 
        /*printf("xd1, yd1, xd2, yd2, angle:  %lf %lf %lf %lf 
%lf\n",xd1, yd1, xd2, yd2, d[0]); 
        printf("Count: %d, Error:  %lf\n", count, error);*/ 
        return(error); 
     }      
    
} 
 
/*---------------------------------------------------- 
                     DLM Equations 
-----------------------------------------------------*/ 
void func(double d[], double f[]) 
{ 
   h=6.667; 
   w=10.0; 
   xp=0.; 
   yp=0.; 
    
   f[0] = x1*cos(rad(0.)) + z1*cos(rad(90.)) + 
d[2]*cos(rad(180.+d[0])) + d[1]*cos(rad(90.+d[0])) + 
x2*cos(rad(180.)) + y2*cos(rad(270.)); 
   f[1] = x1*sin(rad(0.)) + z1*sin(rad(90.)) + 
d[2]*sin(rad(180.+d[0])) + d[1]*sin(rad(90.+d[0])) + 
x2*sin(rad(180.)) + y2*sin(rad(270.)); 
   f[2] = x1*cos(rad(0.)) + z1*cos(rad(90.)) + 
d[2]*cos(rad(180.+d[0])) + h*cos(rad(90.+d[0])) + 
d[3]*cos(rad(d[0])) + x3*cos(rad(180.)) + y3*cos(rad(270.)); 
   f[3] = x1*sin(rad(0.)) + z1*sin(rad(90.)) + 
d[2]*sin(rad(180.+d[0])) + h*sin(rad(90.+d[0])) + 
d[3]*sin(rad(d[0])) + x3*sin(rad(180.)) + y3*sin(rad(270.)); 
} 
 
/*------------------------------------------------------ 
                      RESIDUALS 
-------------------------------------------------------*/ 
double resid(double f[], int nVar) 
{ 
   int i; 
   double tot; 
 
   tot = 0; 
   for (i=0; i<nVar; i++) 
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   { 
      tot = tot + f[i]*f[i]; 
   } 
   return (sqrt(tot)); 
} 
 
 
 
/*-------------------------------------------------------- 
        RADIANS/DEGREES CONVERSION 
---------------------------------------------------------*/ 
 
double rad(double deg) 
{ 
   return(deg*PI/180.); 
} 
 
/*--------------------------------------------------------- 
               GASDEV routine (for monte carlo) 
----------------------------------------------------------*/ 
float gasdev(int *idum) 
{ 
   static int iset=0; 
   static float gset; 
   float fac, r, v1, v2; 
   float ran1(); 
 
   if (iset == 0) 
   { 
      do 
      { 
         v1 = 2.0 * ran1(idum) - 1.0; 
         v2 = 2.0 * ran1(idum) - 1.0; 
         r = v1 * v1 + v2 * v2; 
      } 
      while(r >= 1.0 || r == 0); 
      fac = sqrt(-2.0*log(r)/r); 
      gset = v1 * fac; 
      iset = 1; 
      return v2 * fac; 
   } 
   else 
   { 
      iset = 0; 
      return gset; 
   } 
} 
 
/*----------------------------------------------------- 
                         RAN1 routine 
------------------------------------------------------*/ 
#define M1 259200 
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#define IA1 7141 
#define IC1 54773 
#define RM1 (1.0/M1) 
#define M2 134456 
#define IA2 8121 
#define IC2 28411 
#define RM2 (1.0/M2) 
#define M3 24300 
#define IA3 4561 
#define IC3 51349 
 
float ran1(int *idum) 
{ 
   static long ix1, ix2, ix3; 
   static double r[98]; 
   double temp; 
   static int iff=0; 
   int j; 
 
   if (*idum < 0 || iff == 0) 
   { 
      iff = 1; 
      ix1 = (IC1-(*idum)) % M1; 
      ix1 = (IA1*ix1+IC1) % M1; 
      ix2 = ix1 % M2; 
      ix1 = (IA1*ix1+IC1) % M1; 
      ix3 = ix1 % M3; 
      for (j=1; j<=97; j++) 
      { 
         ix1 = (IA1*ix1+IC1) % M1; 
         ix2 = (IA2*ix2+IC2) % M2; 
         r[j] = (ix1+ix2+RM2)* RM1; 
   
      } 
      *idum=1; 
   } 
   ix1 = (IA1*ix1+IC1) %M1; 
   ix2 = (IA2*ix2+IC2) %M2; 
   ix3 = (IA3*ix3+IC3) %M3; 
   j = 1+((97*ix3)/M3); 
   if (j>97 || j<1) printf("RAN1: This cannot happen\n"); 
   r[j] = (ix1+ix2*RM2)*RM1; 
   temp = r[j]; 
    
   /*printf("the ran1: %d %d\n", ix1, ix2);*/ 
    
   return temp; 
} 
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The formulas used in the spreadsheet. 

 

 

 

 

length= 10 
height= 6.6667 
x_base= 0 
y_base= 0 
x_1= 2.4 
y_1= -0.08 
x_2= -0.05 
y_2= 3.1 
x_3= 7.5 
y_3= 7 

VECTOR LOOPS 
k_1= =x_1+x_base 
k_2= =y_1+y_base 
k_3= =x_2+x_base 
k_4= =y_2+y_base 
k_5= =height 
k_6= =(x_3+x_base) 
k_7= =y_3+y_base 
u_1= 2.19811669790986 
u_2= 3.35904495092889 
u_3= 7.82763809053195 
phi= 4.41187319831158 
hx1= =k_1*COS(0*PI()/180)+k_2*COS(90*PI()/180)+u_1*COS((180+phi)*PI()/180)+u_2*COS((90+phi)*PI()/180)+k_3*COS(180*PI()/180)+k_4*COS(270*PI()/180) 
hy1= =k_1*SIN(0*PI()/180)+k_2*SIN(90*PI()/180)+u_1*SIN((180+phi)*PI()/180)+u_2*SIN((90+phi)*PI()/180)+k_3*SIN(180*PI()/180)+k_4*SIN(270*PI()/180) 
htheta1= =0+90+90+phi-90+90-phi+90+90 
hx2= =k_1*COS(0*PI()/180)+k_2*COS(90*PI()/180)+u_1*COS((180+phi)*PI()/180)+k_5*COS((90+phi)*PI()/180)+u_3*COS(phi*PI()/180)+k_6*COS(180*PI()/180)+k_7*COS(270*PI()/180) 
hy2= =k_1*SIN(0*PI()/180)+k_2*SIN(90*PI()/180)+u_1*SIN((180+phi)*PI()/180)+k_5*SIN((90+phi)*PI()/180)+u_3*SIN(phi*PI()/180)+k_6*SIN(180*PI()/180)+k_7*SIN(270*PI()/180) 
htheta2= =0+90+90+phi-90-90+180+90-phi+90 

Error 
xd1= =x_2 + SIN(phi*PI()/180)*u_2 
yd1= =y_2 - COS(phi*PI()/180)*u_2 
xd2= =xd_1 + length*COS(phi*PI()/180) 
yd2= =yd_1 +length*SIN(phi*PI()/180) 
error = =(x_base-xd_1)^2+(y_base-yd_1)^2+((x_base+length)-xd_2)^2+(y_base-yd_2)^2 
sqrt error= =SQRT(error) 
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Example results from the spreadsheet above. 

 

length= 10
height= 6.6667

x_base= 0
y_base= 0

x_1= 2.4
y_1= -0.08

x_2= -0.05
y_2= 3.1

x_3= 7.5
y_3= 7

VECTOR LOOPS
k_1= 2.4
k_2= -0.08
k_3= -0.05
k_4= 3.1
k_5= 6.6667
k_6= 7.5
k_7= 7
u_1= 2.198116698
u_2= 3.359044951
u_3= 7.827638091
phi= 4.411873198

hx1= 8.44935E-13
hy1= -7.66942E-13
htheta1= 360

hx2= 5.00534E-13
hy2= -1.08002E-12
htheta2= 360

Error
xd1= 0.20839669
yd1= -0.249091538
xd2= 10.17876502
yd2= 0.520164883

error = 0.408004211
sqrt error= 0.638752073  
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E.2 BLOCK WITH FOUR CONSTRAINTS (SECTION 6.3.3) 

The C program shown below allows for all four constraints to be varied in both 

directions.  The starting points are changed for each set-up presented. 

 
#include <math.h> 
#include <stdio.h> 
#include "LUD.h" 
 
#define EPS 0.000001 
#define PERTURB 0.000001 
#define PI 3.14159265 
 
void func1(double d[], double f[]); 
void func2(double d[], double f[]); 
void func3(double d[], double f[]); 
double resid1(double f[], int nVar); 
double resid2(double f[], int nVar); 
double resid3(double f[], int nVar); 
double rad(double deg); 
double nr1(double angle); 
double nr2(double angle); 
double nr3(double angle); 
 
double x1, z1, x2, y2, x3, y3, x4, 
y4; 
double xp, yp, h, w; 
int nfail1, nfail2, nfail3; 
int constraintfail1, constraintfail2, 
constraintfail3; 
int nochance1,nochance2, nochance3; 
int fail1, fail2, fail3, never, one, 
two, three, assembled; 
 
float ran1(int *idum); 
float gasdev(int *idum); 
 
/*-----------------------------------

MONTE CARLO 
-----------------------------------*/ 
main () 
{ 
   double errorcase1, errorcase2, 
errorcase3, error1, error2, error3; 
   double maxerror, totmaxerror, 
error, erroroverall; 
   double averrorone, averrortwo, 
averrorthree, averagetwo, 
averagethree; 
   int iSeed, i, nloop, icnt, ierror; 
 
   iSeed = -5; 
   nfail1 = 0; 
   nfail2 = 0; 
   nfail3 = 0; 
   constraintfail1 = 0; 
   constraintfail2 = 0; 
   constraintfail3 = 0; 
   nochance1 = 0; 

   nochance2 = 0; 
   nochance3 = 0; 
   error1 = 0.; 
   error2 = 0.; 
   error3 = 0.; 
   never = 0; 
   one = 0; 
   two = 0; 
   three = 0; 
   averrorone = 0.; 
   averrortwo = 0.; 
   averrorthree = 0.; 
   
   printf ("Enter number of 
loops\n");  
   scanf ("%d", &nloop); 
    
   for (i=1; i<=nloop; i++) 
   { 
    /* generate random deviates */ 
     
     x1 = gasdev(&iSeed) * 0.2 + 2.0; 
     z1 = gasdev(&iSeed) * 0.2 + 
0.00; 
     x2 = gasdev(&iSeed) * 0.2 + 
0.00; 
     y2 = gasdev(&iSeed) * 0.2 + 2.5; 
     x3 = gasdev(&iSeed) * 0.2 + 4.0; 
     y3 = gasdev(&iSeed) * 0.2 + 
6.667; 
     x4 = gasdev(&iSeed) * 0.2 + 5.5; 
     y4 = gasdev(&iSeed) * 0.2 + 
0.00; 
      
     error1 = nr1(0.); 
     error2 = nr2(0.); 
     error3 = nr3(0.); 
      
      if ((fail1 == 1) && (fail2 == 
1) && (fail3 == 1)) 
     { 
        never += 1; 
     } 
      
     if (((fail1 == 1) && (fail2 == 
1) && (fail3 == 0)) || ((fail2 == 1) 
&& (fail3 == 1) && (fail1 == 0)) || 
((fail1 == 1) && (fail3 == 1) && 
(fail2 == 0))) 
     { 
        one += 1; 
 averrorone += 
(error1+error2+error3); 
     } 
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     if (((fail1 == 1) && (fail2 == 
0) && (fail3 == 0)) || ((fail2 == 1) 
&& (fail3 == 0) && (fail1 == 0)) || 
((fail1 == 0) && (fail3 == 1) && 
(fail2 == 0))) 
     { 
        two += 1; 
 averagetwo = 
(error1+error2+error3)/2; 
 averrortwo += averagetwo; 
     } 
      
     if (((fail1 == 0) && (fail2 == 
0) && (fail3 == 0)) || ((fail2 == 0) 
&& (fail3 == 0) && (fail1 == 0)) || 
((fail1 == 0) && (fail3 == 0) && 
(fail2 == 0))) 
     { 
        three += 1; 
 averagethree = 
(error1+error2+error3)/3; 
 averrorthree += averagethree; 
     } 
       
     maxerror = 0.; 
     erroroverall = 0.; 
     icnt = 0; 
      
     if ((fail1 == 0) || (fail2 == 0) 
|| (fail3 == 0)) 
     { 
         assembled += 1; 
          
  if(fail1 == 0)  
  {  
     if( fabs(error1) > 
maxerror) maxerror = fabs(error1); 
     erroroverall += 
fabs(error1); 
     icnt += 1; 
  } 
   
  if (fail2 == 0) 
  { 
     if( fabs(error2) > 
maxerror) maxerror = fabs(error2); 
     erroroverall += 
fabs(error2); 
     icnt += 1; 
  } 
   
         if (fail3 == 0) 
  { 
     if(fabs(error3) > 
maxerror) maxerror = fabs(error3); 
     erroroverall += 
fabs(error3); 
     icnt += 1; 
  } 
   
  if (erroroverall != 0.) 
  { 

     ierror += 1; 
     error += 
(erroroverall/icnt); 
     totmaxerror += (maxerror); 
  } 
      } 
    
     errorcase1 += fabs(error1); 
     errorcase2 += fabs(error2); 
     errorcase3 += fabs(error3); 
   } 
   
  /* output scalar AF values */ 
   
   /*printf ("nfail1 =          
%d\n", nfail1); 
   printf ("constraintfail1 = %d\n", 
constraintfail1); 
   printf ("nochance1 =       %d\n", 
nochance1); 
   printf ("nfail2 =          %d\n", 
nfail2); 
   printf ("constraintfail2 = %d\n", 
constraintfail2); 
   printf ("nochance2 =       %d\n", 
nochance2); 
   printf ("nfail3 =          %d\n", 
nfail3); 
   printf ("constraintfail3 = %d\n", 
constraintfail3); 
   printf ("nochance3 =       %d\n", 
nochance3);*/ 
   printf ("error average1 =  %lf\n", 
errorcase1/(nloop-
(constraintfail1+nfail1-nochance1))); 
   printf ("error average2 =  %lf\n", 
errorcase2/(nloop-
(constraintfail2+nfail2-nochance2))); 
   printf ("error average3 =  %lf\n", 
errorcase3/(nloop-
(constraintfail3+nfail3-nochance3))); 
   printf ("never assembles = %d\n", 
never); 
   printf ("one assembles =   %d\n", 
one); 
   printf ("error for one =   %lf\n", 
averrorone/(one)); 
   printf ("two assemble =    %d\n", 
two); 
   printf ("error for two =   %lf\n", 
averrortwo/(two)); 
   printf ("three assemble =  %d\n", 
three); 
   printf ("error for three = %lf\n", 
averrorthree/(three)); 
   printf ("Total assembled = %d\n", 
assembled); 
   printf ("average error =   %lf\n", 
error/(ierror)); 
   printf ("Max ave error =   %lf\n", 
totmaxerror/(ierror)); 
    
} 
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/*-----------------------------------

NR routine-Case 1 
-----------------------------------*/ 
double nr1(double angle) 
{ 
   int i, j, nRow, nCol, nB, nVar, 
count1, pvt[MAX_ROWS]; 
   double a[MAX_ROWS][MAX_COLS], 
b[MAX_ROWS], det; 
   double d[MAX_ROWS], f1[MAX_ROWS], 
f[MAX_ROWS], totalResid1; 
   double error1, xd1, xd2, yd1, yd2, 
yc4; 
    
    
   /* initialize x */ 
   nVar = 4; 
   d[0] = angle; 
   d[1] = y2; 
   d[2] = x1; 
   d[3] = x3; 
    
   /* call functions */  
   func1(d,f); 
    
   /* compute residuals */ 
   totalResid1 = resid1(f,nVar); 
    
   /* enter main loop */ 
   count1 = 0; 
   fail1 = 0; 
    
   while (fabs(totalResid1) > EPS) 
   { 
      count1++; 
      /*printf ("Residuals %lf\n", 
totalResid);*/ 
       
      /* Evaluate the Jacobian */ 
      for (i=0; i<nVar; i++) 
      { 
         /* perturb x */ 
  d[i] = d[i] + PERTURB; 
  func1(d, f1); 
   
  for (j = 0; j<nVar; j++) 
  { 
     a[j][i] = (f1[j]-f[j]) / 
PERTURB; 
  } 
  d[i] = d[i] - PERTURB; 
      } 
       
      /* Make sure the functions are 
current */ 
      func1(d, f); 
       
      /* load b vector */ 
      for (i=0; i<nVar; i++) 
      { 
         b[i] = -f[i]; 
      } 

       
      /* print out vector b */ 
      /*printf ("vector b:\n");  
      for (i=0; i<nVar; i++) 
      { 
         printf("%lf ", b[i]); 
      } 
      printf("\n"); */ 
       
      /* call LU DECOMPOSITION 
routine */ 
      det = LUDecomp(a, nVar, pvt); 
      LUSolve(a, nVar, b, pvt); 
       
      /* print out matrix a */ 
      /* printf ("matrix a:\n"); 
      for (i=0; i<nVar; i++) 
      { 
         for (j=0; j<nVar; j++) 
  { 
     printf("%lf ", a[i][j]); 
  } 
  printf("\n"); 
      } */ 
       
      /* print out vector b */ 
      /*printf ("delta x:\n"); 
      for (i=0; i<nVar; i++) 
      { 
         printf("%lf ", b[i]); 
      } 
      printf("\n"); */ 
      
      /* compute new value for x */ 
      for (i=0; i<nVar; i++) 
      { 
         d[i] = d[i] + b[i]; 
      } 
       
 
      /* print new d */ 
      /*printf ("new d:\n"); 
      for (i=0; i<nVar; i++) 
      { 
         printf("%lf ", d[i]); 
      } 
      printf("\n"); */ 
       
      /* evaluate the function's 
residuals */ 
      func1(d, f); 
      totalResid1 = resid1(f, nVar); 
      if (count1 > 15) 
      { 
  nfail1 +=1; 
  /*printf("Failure in 
NR1\n");*/ 
  break; 
      } 
   } 
    
/*--------------------------------

CHECK THE 4TH CONSTRAINT 
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   -------------------------*/ 
      xd1=x2 + sin(rad(d[0]))*d[1]; 
      yd1=y2 - cos(rad(d[0]))*d[1]; 
      xd2=xd1 + w*cos(rad(d[0])); 
      yd2=yd1 + w*sin(rad(d[0])); 
    
      yc4=((yd2-yd1)/(xd2-
xd1))*x4+((xd1-
x2)*tan(rad(d[0]))+yd1); 
       
      if ((count1 > 15) && (y4 > 
yc4)) 
      { 
    nochance1 +=1;   
      } 
       
      if((count1 > 15) || (y4 > yc4)) 
      { 
         fail1 = 1; 
      } 
             
      if (y4 > yc4) 
      { 
          constraintfail1 +=1; 
   /*printf("Constraint4 
crashed\n");*/ 
   error1=0.0; 
   return(error1); 
      } 
       
/*--------------------------------

EVALUATE ERROR 
   -------------------------------*/ 
       
       if ((y4 < yc4) && (count1 <= 
15))  
       {    
           error1 = pow((xp-
xd1),2.)+pow((yp-
yd1),2.)+pow(((xp+w)-
xd2),2.)+pow((yp-yd2),2.); 
           error1 = sqrt(error1); 
           /*printf("u1: %lf\nu2: 
%lf\nu3: %lf\nphi: %lf\n", 
d[2],d[1],d[3],d[0]);*/ 
           /*printf("xd1, yd1, xd2, 
yd2, angle:  %lf %lf %lf %lf 
%lf\n",xd1, yd1, xd2, yd2, d[0]); 
           /*printf("Count: %d, 
Error:  %lf\n", count, error);*/ 
           return(error1); 
          
       }     
       
} 
 
 
/*--------------------------------DLM 

Equations 
--------------------------------*/ 
void func1(double d[], double f[]) 
{ 
   h=6.667; 

   w=10.0; 
   xp=0.0; 
   yp=0.0; 
    
   f[0] = x1*cos(rad(0.)) + 
z1*cos(rad(90.)) + 
d[2]*cos(rad(180.+d[0])) + 
d[1]*cos(rad(90.+d[0])) + 
x2*cos(rad(180.)) + 
y2*cos(rad(270.)); 
   f[1] = x1*sin(rad(0.)) + 
z1*sin(rad(90.)) + 
d[2]*sin(rad(180.+d[0])) + 
d[1]*sin(rad(90.+d[0])) + 
x2*sin(rad(180.)) + 
y2*sin(rad(270.)); 
   f[2] = x1*cos(rad(0.)) + 
z1*cos(rad(90.)) + 
d[2]*cos(rad(180.+d[0])) + 
h*cos(rad(90.+d[0])) + 
d[3]*cos(rad(d[0])) + 
x3*cos(rad(180.)) + 
y3*cos(rad(270.)); 
   f[3] = x1*sin(rad(0.)) + 
z1*sin(rad(90.)) + 
d[2]*sin(rad(180.+d[0])) + 
h*sin(rad(90.+d[0])) + 
d[3]*sin(rad(d[0])) + 
x3*sin(rad(180.)) + 
y3*sin(rad(270.)); 
} 
 
/*--------------------------------

RESIDUALS 
--------------------------------*/ 
double resid1(double f[], int nVar) 
{ 
   int i; 
   double tot; 
 
   tot = 0; 
   for (i=0; i<nVar; i++) 
   { 
      tot = tot + f[i]*f[i]; 
   } 
   return (sqrt(tot)); 
} 
 
/*-----------------------------------

NR routine-Case 2 
-----------------------------------*/ 
double nr2(double angle) 
{ 
   int i, j, nRow, nCol, nB, nVar, 
count2, pvt[MAX_ROWS]; 
   double a[MAX_ROWS][MAX_COLS], 
b[MAX_ROWS], det; 
   double d[MAX_ROWS], f1[MAX_ROWS], 
f[MAX_ROWS], totalResid2; 
   double error2, xd1, xd2, yd1, yd2, 
yc1; 
      
   /* initialize x */ 
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   nVar = 4; 
   d[0] = angle; 
   d[1] = y2; 
   d[2] = x4; 
   d[3] = x3; 
    
   /* call functions */  
   func2(d,f); 
    
   /* compute residuals */ 
   totalResid2 = resid2(f,nVar); 
    
   /* enter main loop */ 
   count2 = 0; 
   fail2 = 0; 
    
   while (fabs(totalResid2) > EPS) 
   { 
      count2++; 
      /*printf ("Residuals %lf\n", 
totalResid);*/ 
       
      /* Evaluate the Jacobian */ 
      for (i=0; i<nVar; i++) 
      { 
         /* perturb x */ 
  d[i] = d[i] + PERTURB; 
  func2(d, f1); 
   
  for (j = 0; j<nVar; j++) 
  { 
     a[j][i] = (f1[j]-f[j]) / 
PERTURB; 
  } 
  d[i] = d[i] - PERTURB; 
      } 
       
      /* printf ("matrix a:\n"); 
      for (i=0; i<nVar; i++) 
      { 
         for (j=0; j<nVar; j++) 
  { 
     printf("%lf ", a[i][j]); 
  } 
  printf("\n"); 
      } 
      printf("\n");  */ 
       
      /* Make sure the functions are 
current */ 
      func2(d, f); 
       
      /* load b vector */ 
      for (i=0; i<nVar; i++) 
      { 
         b[i] = -f[i]; 
      } 
       
      /* print out vector b */ 
      /*printf ("vector b:\n");  
      for (i=0; i<nVar; i++) 
      { 
         printf("%lf ", b[i]); 

      } 
      printf("\n"); */ 
       
      /* call LU DECOMPOSITION 
routine */ 
      det = LUDecomp(a, nVar, pvt); 
      LUSolve(a, nVar, b, pvt); 
       
      /* print out matrix a */ 
      /* printf ("matrix a:\n"); 
      for (i=0; i<nVar; i++) 
      { 
         for (j=0; j<nVar; j++) 
  { 
     printf("%lf ", a[i][j]); 
  } 
  printf("\n"); 
      } */ 
       
      /*printf ("delta x:\n"); 
      for (i=0; i<nVar; i++) 
      { 
         printf("%lf ", b[i]); 
      } 
      printf("\n"); */ 
      
      /* compute new value for x */ 
      for (i=0; i<nVar; i++) 
      { 
         d[i] = d[i] + b[i]; 
      } 
       
 
      /* print new d */ 
      /*printf ("new d:\n"); 
      for (i=0; i<nVar; i++) 
      { 
         printf("%lf ", d[i]); 
      } 
      printf("\n"); */ 
       
       
      /* evaluate the function's 
residuals */ 
      func2(d, f); 
      totalResid2 = resid2(f, nVar); 
      if (count2 > 15) 
      { 
  nfail2 +=1; 
  /*printf("Failure in 
NR2\n");*/ 
  break; 
      } 
   } 
    
       
/*--------------------------------

CHECK THE 4TH CONSTRAINT 
  ---------------------------------*/ 
      xd1=x2 + sin(rad(d[0]))*d[1]; 
      yd1=y2 - cos(rad(d[0]))*d[1]; 
      xd2=xd1 + w*cos(rad(d[0])); 
      yd2=yd1 + w*sin(rad(d[0])); 
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      yc1=((yd2-yd1)/(xd2-
xd1))*x1+((xd1-
x2)*tan(rad(d[0]))+yd1); 
       
      if ((count2 > 15) && (z1 > 
yc1)) 
      { 
           nochance2 +=1;   
      } 
       
       
      if ((count2 > 15) || (z1 > 
yc1)) 
      { 
         fail2 = 1; 
      } 
       
      if (z1 > yc1) 
      { 
          constraintfail2 +=1; 
   /*printf("Constraint1 
crashed\n");*/ 
   error2=0.0; 
   return(error2); 
      }   
    
/*--------------------------------

EVALUATE ERROR 
   --------------------------------*/ 
       
      if ((z1 < yc1) && (count2 <= 
15)) 
      { 
         error2 = pow((xp-
xd1),2.)+pow((yp-
yd1),2.)+pow(((xp+w)-
xd2),2.)+pow((yp-yd2),2.); 
         error2 = sqrt(error2); 
         /*printf("u1: %lf\nu2: 
%lf\nu3: %lf\nphi: %lf\n", 
  d[2],d[1],d[3],d[0]);*/ 
         /*printf("xd1, yd1, xd2, 
yd2, angle:  %lf %lf %lf %lf 
%lf\n",xd1, yd1, xd2, yd2, d[0]); 
         printf("Count: %d, Error:  
%lf\n", count, error);*/ 
         return(error2); 
      }  
       
} 
 
/*--------------------------------DLM 

Equations 
--------------------------------*/ 
void func2(double d[], double f[]) 
{ 
   h= 6.667; 
   w= 10.0; 
   xp=0.; 
   yp=0.; 
    

   f[0] = x4*cos(rad(0.)) + 
y4*cos(rad(90.)) + 
d[2]*cos(rad(180.+d[0])) + 
d[1]*cos(rad(90.+d[0])) + 
x2*cos(rad(180.)) + 
y2*cos(rad(270.)); 
   f[1] = x4*sin(rad(0.)) + 
y4*sin(rad(90.)) + 
d[2]*sin(rad(180.+d[0])) + 
d[1]*sin(rad(90.+d[0])) + 
x2*sin(rad(180.)) + 
y2*sin(rad(270.)); 
   f[2] = x4*cos(rad(0.)) + 
y4*cos(rad(90.)) + 
d[2]*cos(rad(180.+d[0])) + 
h*cos(rad(90.+d[0])) + 
d[3]*cos(rad(d[0])) + 
x3*cos(rad(180.)) + 
y3*cos(rad(270.)); 
   f[3] = x4*sin(rad(0.)) + 
y4*sin(rad(90.)) + 
d[2]*sin(rad(180.+d[0])) + 
h*sin(rad(90.+d[0])) + 
d[3]*sin(rad(d[0])) + 
x3*sin(rad(180.)) + 
y3*sin(rad(270.)); 
} 
 
 
/*--------------------------------

RESIDUALS 
--------------------------------*/ 
double resid2(double f[], int nVar) 
{ 
   int i; 
   double tot; 
 
   tot = 0; 
   for (i=0; i<nVar; i++) 
   { 
      tot = tot + f[i]*f[i]; 
   } 
   return (sqrt(tot)); 
} 
 
/*-----------------------------------

NR routine-Case 3 
-----------------------------------*/ 
double nr3(double angle) 
{ 
   int i, j, nRow, nCol, nB, nVar, 
count3, pvt[MAX_ROWS]; 
   double a[MAX_ROWS][MAX_COLS], 
b[MAX_ROWS], det; 
   double d[MAX_ROWS], f1[MAX_ROWS], 
f[MAX_ROWS], totalResid3; 
   double error3, xd1, xd2, yd1, yd2, 
yc3; 
    
    
   /* initialize x */ 
   nVar = 4; 
   d[0] = angle; 
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   d[1] = y2; 
   d[2] = x1; 
   d[3] = x4; 
    
   /* call functions */  
   func3(d,f); 
    
   /* compute residuals */ 
   totalResid3 = resid3(f,nVar); 
    
   /* enter main loop */ 
   count3 = 0; 
   fail3 = 0; 
    
   while (fabs(totalResid3) > EPS) 
   { 
      count3++; 
      /*printf ("Residuals %lf\n", 
totalResid);*/ 
       
      /* Evaluate the Jacobian */ 
      for (i=0; i<nVar; i++) 
      { 
         /* perturb x */ 
  d[i] = d[i] + PERTURB; 
  func3(d, f1); 
   
  for (j = 0; j<nVar; j++) 
  { 
     a[j][i] = (f1[j]-f[j]) / 
PERTURB; 
  } 
  d[i] = d[i] - PERTURB; 
      } 
       
      /* printf ("matrix a:\n"); 
      for (i=0; i<nVar; i++) 
      { 
         for (j=0; j<nVar; j++) 
  { 
     printf("%lf ", a[i][j]); 
  } 
  printf("\n"); 
      } 
      printf("\n");  */ 
       
      /* Make sure the functions are 
current */ 
      func3(d, f); 
       
      /* load b vector */ 
      for (i=0; i<nVar; i++) 
      { 
         b[i] = -f[i]; 
      } 
       
      /*printf ("vector b:\n");  
      for (i=0; i<nVar; i++) 
      { 
         printf("%lf ", b[i]); 
      } 
      printf("\n"); */ 
       

      /* call LU DECOMPOSITION 
routine */ 
      det = LUDecomp(a, nVar, pvt); 
      LUSolve(a, nVar, b, pvt); 
       
      /* printf ("matrix a:\n"); 
      for (i=0; i<nVar; i++) 
      { 
         for (j=0; j<nVar; j++) 
  { 
     printf("%lf ", a[i][j]); 
  } 
  printf("\n"); 
      } */ 
       
      /*printf ("delta x:\n"); 
      for (i=0; i<nVar; i++) 
      { 
         printf("%lf ", b[i]); 
      } 
      printf("\n"); */ 
      
      /* compute new value for x */ 
      for (i=0; i<nVar; i++) 
      { 
         d[i] = d[i] + b[i]; 
      } 
       
      /* print new d */ 
      /*printf ("new d:\n"); 
      for (i=0; i<nVar; i++) 
      { 
         printf("%lf ", d[i]); 
      } 
      printf("\n"); */ 
       
       
      /* evaluate the function's 
residuals */ 
      func3(d, f); 
      totalResid3 = resid3(f, nVar); 
      if (count3 > 15) 
      { 
  nfail3 +=1; 
  printf("Failure in NR3\n"); 
  break; 
      } 
   } 
    
/*--------------------------------

CHECK THE 4TH CONSTRAINT 
  ---------------------------------*/ 
      xd1=x2 + sin(rad(d[0]))*d[1]; 
      yd1=y2 - cos(rad(d[0]))*d[1]; 
      xd2=xd1 + w*cos(rad(d[0])); 
      yd2=yd1 + w*sin(rad(d[0])); 
    
      yc3=((yd2-yd1)/(xd2-
xd1))*x3+(((xd1-x2)*tan(rad(d[0]))+ 
yd1)+ h); 
       
      /*printf("count3 = %d\n", 
count3); 
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      printf("y3 = %lf\n", y3); 
      printf("yc3 = %lf\n", yc3);*/ 
       
      if ((count3 > 15) && (y3 < 
yc3)) 
      { 
           nochance3 +=1;   
      } 
       
      /*printf("fail3beforeif = 
%d\n", fail3);*/ 
       
      if((count3 > 15) || (y3 < yc3)) 
      { 
         fail3 = 1; 
      } 
       
      /*printf("fail3afterif = %d\n", 
fail3);*/ 
       
      if (y3 < yc3) 
      { 
          constraintfail3 +=1; 
   /*printf("Constraint3 
crashed\n");*/ 
   error3 = 0.0; 
   return(error3); 
      }   
    

/*-------------------------------
EVALUATE ERROR 

  -------------------------------*/ 
       
      if ((y3 > yc3) && (count3 <= 
15)) 
      {  
         error3 = pow((xp-
xd1),2.)+pow((yp-
yd1),2.)+pow(((xp+w)-
xd2),2.)+pow((yp-yd2),2.); 
         error3 = sqrt(error3); 
         /*printf("u1: %lf\nu2: 
%lf\nu3: %lf\nphi: %lf\n", 
d[2],d[1],d[3],d[0]);*/ 
         /*printf("xd1, yd1, xd2, 
yd2, angle:  %lf %lf %lf %lf 
%lf\n",xd1, yd1, xd2, yd2, d[0]); 
         printf("Count: %d, Error:  
%lf\n", count, error);*/ 
         return(error3); 
      } 
 
} 
 
 
/*--------------------------------DLM 

Equations 
--------------------------------*/ 
void func3(double d[], double f[]) 
{ 
   h=6.667; 
   w=10.0; 
   xp=0.; 

   yp=0.; 
    
   f[0] = x1*cos(rad(0.)) + 
z1*cos(rad(90.)) + 
d[2]*cos(rad(180.+d[0])) + 
d[1]*cos(rad(90.+d[0])) + 
x2*cos(rad(180.)) + 
y2*cos(rad(270.)); 
   f[1] = x1*sin(rad(0.)) + 
z1*sin(rad(90.)) + 
d[2]*sin(rad(180.+d[0])) + 
d[1]*sin(rad(90.+d[0])) + 
x2*sin(rad(180.)) + 
y2*sin(rad(270.)); 
   f[2] = x4*cos(rad(0.)) + 
y4*cos(rad(90.)) + 
d[3]*cos(rad(180.+d[0])) + 
d[1]*cos(rad(90.+d[0])) + 
x2*cos(rad(180.)) + 
y2*cos(rad(270.)); 
   f[3] = x4*sin(rad(0.)) + 
y4*sin(rad(90.)) + 
d[3]*sin(rad(180.+d[0])) + 
d[1]*sin(rad(90.+d[0])) + 
x2*sin(rad(180.)) + 
y2*sin(rad(270.)); 
} 
 
/*-------------------------------- 

RESIDUALS 
--------------------------------*/ 
double resid3(double f[], int nVar) 
{ 
   int i; 
   double tot; 
 
   tot = 0; 
   for (i=0; i<nVar; i++) 
   { 
      tot = tot + f[i]*f[i]; 
   } 
   return (sqrt(tot)); 
} 
 
/*-----------------------------------

RADIANS/DEGREES CONVERSION 
-----------------------------------*/ 
double rad(double deg) 
{ 
   return(deg*PI/180.); 
} 
 
/*-----------------------------------

GASDEV routine (for monte carlo) 
-----------------------------------*/ 
float gasdev(int *idum) 
{ 
   static int iset=0; 
   static float gset; 
   float fac, r, v1, v2; 
   float ran1(); 
 
   if (iset == 0) 
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   { 
      do 
      { 
         v1 = 2.0 * ran1(idum) - 1.0; 
         v2 = 2.0 * ran1(idum) - 1.0; 
         r = v1 * v1 + v2 * v2; 
      } 
      while(r >= 1.0 || r == 0); 
      fac = sqrt(-2.0*log(r)/r); 
      gset = v1 * fac; 
      iset = 1; 
      return v2 * fac; 
   } 
   else 
   { 
      iset = 0; 
      return gset; 
   } 
} 
 
/*-----------------------------------

RAN1 routine 
-----------------------------------*/ 
#define M1 259200 
#define IA1 7141 
#define IC1 54773 
#define RM1 (1.0/M1) 
#define M2 134456 
#define IA2 8121 
#define IC2 28411 
#define RM2 (1.0/M2) 
#define M3 24300 
#define IA3 4561 
#define IC3 51349 
 
float ran1(int *idum) 
{ 
   static long ix1, ix2, ix3; 
   static double r[98]; 

   double temp; 
   static int iff=0; 
   int j; 
 
   if (*idum < 0 || iff == 0) 
   { 
      iff = 1; 
      ix1 = (IC1-(*idum)) % M1; 
      ix1 = (IA1*ix1+IC1) % M1; 
      ix2 = ix1 % M2; 
      ix1 = (IA1*ix1+IC1) % M1; 
      ix3 = ix1 % M3; 
      for (j=1; j<=97; j++) 
      { 
         ix1 = (IA1*ix1+IC1) % M1; 
         ix2 = (IA2*ix2+IC2) % M2; 
         r[j] = (ix1+ix2+RM2)* RM1; 
   
      } 
      *idum=1; 
   } 
   ix1 = (IA1*ix1+IC1) %M1; 
   ix2 = (IA2*ix2+IC2) %M2; 
   ix3 = (IA3*ix3+IC3) %M3; 
   j = 1+((97*ix3)/M3); 
   if (j>97 || j<1) printf("RAN1: 
This cannot happen\n"); 
   r[j] = (ix1+ix2*RM2)*RM1; 
   temp = r[j]; 
    
   /*printf("the ran1: %d %d\n", ix1, 
ix2);*/ 
    
   return temp; 
} 
 
 

 

 
 
 
E.3 SLOTTED BLOCK ASSEMBLY (SECTION 6.3.4) 

The C program shown below allows the right peg to be varied in the x-

direction.  The starting slot angle is input for each set-up presented in the thesis. 

 
#include <math.h> 
#include <stdio.h> 
#include "LUD.h" 
 
#define EPS 0.000001 
#define PERTURB 0.000001 
#define PI 3.14159265 
 
void func(double d[], double f[]); 
double resid(double f[], int nVar); 
double rad(double deg); 

double nr(double angle); 
 
double x1, y1, x2, y2, x3, y3, x4, 
y4, r, phi; 
double xp, yp, delx, dely, theta; 
int nfail; 
 
float ran1(int *idum); 
float gasdev(int *idum); 
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/*----------------------------------- 
MONTE CARLO 

-----------------------------------*/ 
main () 
{ 
   double error1, error, theta, d[1], 
y, x; 
   int iSeed, i, nloop; 
  
   FILE *data; 
    
   /*  Information for the slot: 
   distance from center of slot to 
bottom = 0.5 
   distance from center of slot to 
left sd= 2  */    
 
   y = 0.5; 
   x = 2.0; 
 
   printf ("Angle of the slot 
(CCW+):\n"); 
   scanf ("%lf", &phi); 
    
   /*  to help find x2 */ 
   delx = cos(rad(((180.- phi)/2)-
(atan(y/x)*180./PI)))*2*sin(rad(phi/2
)) * 
   (y/sin((atan(y/x)))); 
 
   /* to help find y3 */ 
   dely = sin(rad(((180.- phi)/2.)-
(atan(y/x)*180./PI)))*2.*sin(rad(phi/
2.)) * 
   (y/sin((atan(y/x)))); 
 
   /*printf ("delx: %lf\n dely: 
%lf\n", delx, dely);*/ 
 
   x1 = 2.5; 
   x2 = 4 + delx; 
   x3 = 2; 
   y1 = 3; 
   y2 = 2; 
   y3 = 2 - dely; 
   y4 = 3; 
   r = 0.5; 
       
   iSeed = -5; 
   nfail = 0; 
   error = 0.; 
    
   strcat("data", "1.txt"); 
   data = fopen("data", "w"); 
    
   printf ("Enter number of 
loops\n");  
   scanf ("%d", &nloop); 
    
   for (i=1; i<=nloop; i++) 
   { 
    /* generate random deviates */ 
     

     x4 = gasdev(&iSeed) * 0.3 + 
6.5; 
 
     printf ("x4:%lf\n", x4); 
      
     error1 = nr(0.); 
     error += fabs(error1); 
  } 
   
  /* output scalar AF values */ 
   
   printf ("nfail = %d\n", nfail); 
   fprintf (data,"nfail = %d\n", 
nfail); 
   printf ("error average = 
%lf\n", error/(nloop-nfail)); 
   fprintf (data,"error average = 
%lf\n", error/(nloop-nfail)); 
    
   fclose(data); 
    
} 
 
 
/*--------------------------------

NR routine 
----------------------------------
-*/ 
double nr(double angle) 
{ 
   int i, j, nRow, nCol, nB, nVar, 
count, pvt[MAX_ROWS]; 
   double a[MAX_ROWS][MAX_COLS], 
b[MAX_ROWS], det; 
   double d[MAX_ROWS], 
f1[MAX_ROWS], f[MAX_ROWS], 
totalResid; 
   double error, xd1, xd2, yd1, 
yd2, u1, base, x_left, x_right; 
   double y_left, y_right, theta, 
wanted_angle, angle1, angle2; 
   double dxold, dyold, xp, yp, 
length_side, length_bottom; 
    
   /* initialize d */ 
   nVar = 2; 
   d[0] = angle; 
   d[1] = 2.; 
    
   /* call functions */  
   func(d,f); 
    
   /* compute residuals */ 
   totalResid = resid(f,nVar); 
    
   /* enter main loop */ 
   count = 0; 
    
   while (fabs(totalResid) > EPS) 
   { 
      count++; 
      /*printf ("Residuals %lf\n", 
totalResid);*/ 
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      /* Evaluate the Jacobian */ 
      for (i=0; i<nVar; i++) 
      { 
         /* perturb x */ 
  d[i] = d[i] + PERTURB; 
  func(d, f1); 
   
  for (j = 0; j<nVar; j++) 
  { 
     a[j][i] = (f1[j]-f[j]) / 
PERTURB; 
  } 
  d[i] = d[i] - PERTURB; 
      } 
 
      /* printf ("matrix a:\n"); 
      for (i=0; i<nVar; i++) 
      { 
         for (j=0; j<nVar; j++) 
  { 
     printf("%lf ", a[i][j]); 
  } 
  printf("\n"); 
      } 
      printf("\n");  */ 
       
      /* Make sure the functions are 
current */ 
      func(d, f); 
       
      /* load b vector */ 
      for (i=0; i<nVar; i++) 
      { 
         b[i] = -f[i]; 
      } 
       
      /*printf ("vector b:\n");  
      for (i=0; i<nVar; i++) 
      { 
         printf("%lf ", b[i]); 
      } 
      printf("\n"); */ 
       
      /* call LU DECOMPOSITION 
routine */ 
      det = LUDecomp(a, nVar, pvt); 
      LUSolve(a, nVar, b, pvt); 
       
      /* print out matrix a */ 
      /* printf ("matrix a:\n"); 
      for (i=0; i<nVar; i++) 
      { 
         for (j=0; j<nVar; j++) 
  { 
     printf("%lf ", a[i][j]); 
  } 
  printf("\n"); 
      } */ 
       
      /* print out vector b */ 
      /*printf ("delta x:\n"); 
      for (i=0; i<nVar; i++) 

      { 
         printf("%lf ", b[i]); 
      } 
      printf("\n"); */ 
       
       
      /* compute new value for x 
*/ 
      for (i=0; i<nVar; i++) 
      { 
         d[i] = d[i] + b[i]; 
      } 
       
      /* print new d */ 
      /*printf ("new d:\n"); 
      for (i=0; i<nVar; i++) 
      { 
         printf("%lf ", d[i]); 
      } 
      printf("\n"); */ 
       
       
      /* evaluate the function's 
residuals */ 
      func(d, f); 
      totalResid = resid(f, nVar); 
      if (count > 15) 
      { 
         nfail +=1; 
  printf("Failure in NR\n"); 
  break; 
      } 
   } 
    
 
      while(d[0] > 360 || d[0] < -
180) 
      { 
         if(d[0] >= 0) 
         { 
            d[0] = 360 - d[0]; 
         } 
         if (d[0] < 0) 
         { 
            d[0] = 360 + d[0]; 
         } 
    
       }  
       
/*--------------------------------

EVALUATE ERROR 
   -------------------------------
-*/ 
       
      if (count <= 15) 
      { 
         dxold=2; 
         dyold=2.5; 
         base = 9.0; 
         xp = 0.5; 
         yp = 0.5; 
         theta = d[0]; 
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         length_side = 
sqrt(pow(dxold,2)+pow(dyold,2)); 
         length_bottom = 
tan(rad(theta))*length_side; 
         
angle1=atan(dyold/dxold)*180/PI; 
         angle2=(180-theta)/2; 
         wanted_angle = 180-
(theta+angle1+angle2); 
 
         x_left = xp + 
cos(rad(wanted_angle)) * 
length_bottom; 
         y_left = yp - 
sin(rad(wanted_angle)) * 
length_bottom; 
 
         x_right = x_left + base * 
cos(rad(theta)); 
         y_right = y_left + base * 
sin(rad(theta)); 
 
         error = pow((xp-
x_left),2)+pow((yp-
y_left),2)+pow((((xp+base)-
x_right)),2) 
                 +pow((yp-
y_right),2); 
         error = sqrt(error); 
 
         /*printf("x_left: %lf  
y_left: %lf\n  x_right: %lf  y_right: 
%lf\n  angle: 
         %lf\n", x_left, y_left, 
x_right, y_right, theta);*/ 
  
         printf("u1: %lf  angle: 
%lf\n", d[1], theta); 
 
       
         /*printf("Simulation number 
%d,  Error:  %lf\n", count, error);*/ 
       
         return(error);      
      } 
} 
 
 
/*--------------------------------DLM 

Equations 
--------------------------------*/ 
 
void func(double d[], double f[]) 
{ 
   f[0] = x1*cos(rad(0.)) + 
y1*cos(rad(90.))+r*cos(rad(270.+d[0])
) 
          + y2*cos(rad(270.+d[0])) + 
x3*cos(rad(180.+d[0]))  
          + x2*cos(rad(d[0])) + 
y3*cos(rad(90.+d[0]))  
          + d[1]*cos(rad(d[0]+phi)) + 
r*cos(rad(90.+d[0]+phi))  

          + y4*cos(rad(270.)) + 
x4*cos(rad(180.)); 
 
   f[1] = x1*sin(rad(0.)) + 
y1*sin(rad(90.))+r*sin(rad(270.+d[
0])) 
          + y2*sin(rad(270.+d[0])) 
+ x3*sin(rad(180.+d[0]))  
          + x2*sin(rad(d[0])) + 
y3*sin(rad(90.+d[0]))  
          + 
d[1]*sin(rad(d[0]+phi)) + 
r*sin(rad(90.+d[0]+phi))  
          + y4*sin(rad(270.)) + 
x4*sin(rad(180.)); 
} 
 
 
/*--------------------------------

RESIDUALS 
----------------------------------
-*/ 
 
double resid(double f[], int nVar) 
{ 
   int i; 
   double tot; 
 
   tot = 0; 
   for (i=0; i<nVar; i++) 
   { 
      tot = tot + f[i]*f[i]; 
   } 
   return (sqrt(tot)); 
} 
 
/*--------------------------------

RADIANS/DEGREES CONVERSION 
----------------------------------
-*/ 
 
double rad(double deg) 
{ 
   return(deg*PI/180.); 
} 
 
/*--------------------------------
GASDEV routine (for monte carlo) 

----------------------------------
-*/ 
 
float gasdev(int *idum) 
{ 
   static int iset=0; 
   static float gset; 
   float fac, r, v1, v2; 
   float ran1(); 
 
   if (iset == 0) 
   { 
      do 
      { 
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         v1 = 2.0 * ran1(idum) - 1.0; 
         v2 = 2.0 * ran1(idum) - 1.0; 
         r = v1 * v1 + v2 * v2; 
      } 
      while(r >= 1.0 || r == 0); 
      fac = sqrt(-2.0*log(r)/r); 
      gset = v1 * fac; 
      iset = 1; 
      return v2 * fac; 
   } 
   else 
   { 
      iset = 0; 
      return gset; 
   } 
} 
 
 
/*--------------------------------

RAN1 routine 
--------------------------------*/ 
 
#define M1 259200 
#define IA1 7141 
#define IC1 54773 
#define RM1 (1.0/M1) 
#define M2 134456 
#define IA2 8121 
#define IC2 28411 
#define RM2 (1.0/M2) 
#define M3 24300 
#define IA3 4561 
#define IC3 51349 
 
float ran1(int *idum) 
{ 
   static long ix1, ix2, ix3; 

   static double r[98]; 
   double temp; 
   static int iff=0; 
   int j; 
 
   if (*idum < 0 || iff == 0) 
   { 
      iff = 1; 
      ix1 = (IC1-(*idum)) % M1; 
      ix1 = (IA1*ix1+IC1) % M1; 
      ix2 = ix1 % M2; 
      ix1 = (IA1*ix1+IC1) % M1; 
      ix3 = ix1 % M3; 
      for (j=1; j<=97; j++) 
      { 
         ix1 = (IA1*ix1+IC1) % M1; 
         ix2 = (IA2*ix2+IC2) % M2; 
         r[j] = (ix1+ix2+RM2)* 
RM1; 
   
      } 
      *idum=1; 
   } 
   ix1 = (IA1*ix1+IC1) %M1; 
   ix2 = (IA2*ix2+IC2) %M2; 
   ix3 = (IA3*ix3+IC3) %M3; 
   j = 1+((97*ix3)/M3); 
   if (j>97 || j<1) printf("RAN1: 
This cannot happen\n"); 
   r[j] = (ix1+ix2*RM2)*RM1; 
   temp = r[j]; 
    
   /*printf("the ran1: %d %d\n", 
ix1, ix2);*/ 
    
   return temp; 
} 

 

 
 

The formulas used in the spreadsheet 
 

x_1= 2.5
x_2= =E23
x_3= 2
x_4= 6.5
y_1= 3
y_2= 2
y_3= =E24
y_4= 3
r_1= 0.5
phi= =E12

theta= -9.0174693536082E-11
u_1= 2  
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To find the x_2 and y_3 information

xold= 4
yold= 2

x1= 2
y1= 0.5
theta1= =ATAN(Y1/X1)*180/PI()

h= =Y1/SIN(theta1*PI()/180)

rotated slot= 45

half rot slot= =0.5*rotated slot
1/2 l= =SIN(half rotated slot*PI()/180)*h
l= =2*1/2*l

theta2= =(180-rotated slot)/2
thetanew= =theta2-theta1

del x= =COS(thetanew*PI()/180)*l
del y= =SIN(thetanew*PI()/180)*l

x_2= =xold+delx
y_3= =yold-dely

 

To find the x_left and y_left
dxold= 2
dyold= 2.5

length r-0= =SQRT(dxold^2+dyold^2)
length bot= =TAN(theta*PI()/180)*(lengthr-0)
angle 1= =ATAN(dyold/dxold)*180/PI()
angle 2= =(180-theta)/2

angle want= =180-(theta+angle1+angle2)

x_left= =0.5+COS(wanted_angle*PI()/180)*bottom_length
y_left= =0.5-SIN(wanted_angle*PI()/180)*bottom_length

To find x_right and y_right
base= 9

x_right =x_left+base*COS(theta*PI()/180)
y_right =y_left+base*SIN(theta*PI()/180)  
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hx = 
=x_1*COS(0*PI()/180)+y_1*COS(90*PI()/180)+r_1*COS(270*PI()/180+theta*PI()/180)+y
_2*COS(270*PI()/180+theta*PI()/180)+x_3*COS(180*PI()/180+theta*PI()/180)+x_2*COS
(theta*PI()/180)+y_3*COS(90*PI()/180+theta*PI()/180)+u_1*COS(theta*PI()/180+phi*PI(
)/180)+r_1*COS(theta*PI()/180+phi*PI()/180+90*PI()/180)+y_4*COS(270*PI()/180)+x_4*

COS(180*PI()/180) 
 
 

hy= 
=x_1*SIN(0*PI()/180)+y_1*SIN(90*PI()/180)+r_1*SIN(270*PI()/180+theta*PI()/180)+y_2*
SIN(270*PI()/180+theta*PI()/180)+x_3*SIN(180*PI()/180+theta*PI()/180)+x_2*SIN(theta*
PI()/180)+y_3*SIN(90*PI()/180+theta*PI()/180)+u_1*SIN(theta*PI()/180+phi*PI()/180)+r_
1*SIN(theta*PI()/180+phi*PI()/180+90*PI()/180)+y_4*SIN(270*PI()/180)+x_4*SIN(180*PI

()/180) 
 
 

htheta= =0+90+180+theta+0-90-180+90-phi+90+180-theta-phi-90-180 
 

phi = =(90-htheta)/2 
 
 

Error
overall= =(0.5-x_left)^2+(0.5-y_left)^2+((0.5+9)-x_right)^2+(0.5-y_right)^2
sqrt= =SQRT(overall)
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Example results from the spreadsheet above 
 

 
x_1= 2.5 To find the x_2 and y_3 information
x_2= 4.939339828
x_3= 2 xold= 4
x_4= 6.5 yold= 2
y_1= 3
y_2= 2 x1= 2
y_3= 0.732233047 y1= 0.5
y_4= 3 theta1= 14.03624347
r_1= 0.5
phi= 45 h= 2.061552813

theta= -9.01747E-11
u_1= 2 rotated slot= 45

half rot slot= 22.5
hx= 0 1/2 l= 0.788922106
hy= -6.29461E-12 l= 1.577844213

htheta= 0

phi= 45 theta2= 67.5
thetanew= 53.46375653

del x= 0.939339828
del y= 1.267766953

x_2= 4.939339828
y_3= 0.732233047  

Error To find the x_left and y_left
overall= 1.62243E-22 dxold= 2
sqrt= 1.27375E-11 dyold= 2.5

length r-0= 3.201562119
length bot= -5.03876E-12
angle 1= 51.34019175
angle 2= 90

angle want= 38.65980825

x_left= 0.5
y_left= 0.5

To find x_right and y_right
base= 9

x_right 9.5
y_right 0.5  
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Background to the slotted block problem 

In industry, it is common to use slots in order to accommodate variation in a 

design.  Some slots can be considered as passive smart assemblies because they absorb 

variation in dimensions.  However, it is possible that a slot can over-constrain the 

problem, and perhaps lead to detrimental results.  To show the effects of exact constraint 

vs. over-constraint on an assembly, the following design will be used.   

 

 

 

This assembly is composed of a base block with two pins rigidly connected.  The 

top plate has a hole on the left side manufactured so as to always be able to fit over the 

pin.  The tolerance variation of the hole is not under consideration in this problem.  On 

the right of the plate is a slot.  Again, the pin can fit perfectly between the edges of the 

slot if the part assembles.  The variation in the size or width of the slot is not under 

consideration. 

 

If the slot is at 0o (its nominal position), the assembly is exactly constrained.  It is 

synonymous to the figure below. 
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However, if the slot is at 90o, as shown in the figure below, the assembly is now over-

constrained in the x-direction and under-constrained in rotation.  In other words, there 

may be some play in the block.   

 

 

 

The assembly at 90o is synonymous with the figure below. 
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In this problem, the right pin in the slotted block is allowed to vary its position in 

the x-direction.  The angle of the slot (user-defined) is allowed to vary between 0o and 

90o.  A Monte Carlo simulation will be run to determine if the block can assemble given 

the position of the right pin and the angle of the slot. 

 

Development of the problem 

In order to determine if the block will assemble, the vector loop equations will be 

used.  The assembly with the vector loops is shown below.  The slot has been rotated 45o, 

and the plate is allowed to rotate in order to assemble. 

 

x1

x2
x3

x4

y1 y2
y3

y4

r r

u1

 

 

Notice there is only one loop.  It is assumed for this problem that there are 2 parts: 

the block and the plate.  There are 2 joints, one revolute joint from the pin fitting in the 

hole, and one cylindrical joint where the pin touches only one side of the slot (with 

almost no clearance on the other side).  Thus, according to the equation L = J – P + 1, 

there should only be one loop. 
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The vector loop equations that result from this setup are given below. 

 

hx = x1 cos(0) + y1 cos(90) + r cos(270 + θ) + y2 cos(270 + θ)+ x3 cos(180 + θ) + x2 

cos(θ) + y3 cos(90 + θ) + u1 cos(θ+ φ) + r cos(θ + φ+ 90) + y4 cos(270) + x4 

cos(180) 
 

hy = x1 sin(0) + y1 sin(90) + r sin(270 + θ) + y2 sin(270 + θ)+ x3 sin(180 + θ) + 
x2 sin(θ) + y3 sin(90 + θ) + u1 sin(θ+ φ) + r sin(θ+ φ+ 90) + y4 sin(270) + x4 

sin(180) 
 

hθ = 0 + 90 + 180 + θ + 0 – 90 – 180 + 90 – φ + 90 + 180 – θ – φ – 90 – 180 
 

Where θ is the angle between the top plate and the base, and φ is the angle of the slot. 

 

The unknowns for this problem are u1 and θ.  Most of the other dimensions 

necessary for a solution are easily pulled from a CAD model of the assembly.  However, 

in order to find x2 and y3, some calculations need to be performed based on the angle of 

the slot. 

 

Finding x2 and y3 

In order to proceed with an analysis of this slotted assembly, x2 and y3 must be 

found.  This can be done using geometries, and the derivation will be shown with the help 

of the following figure. 
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In this figure, the slot is shown in both the 0o position and the 45o position.  To 

find both x2 and y3, the location of the bottom left corner must be found for both slots.  

The bottom left corner for the slot at 0o is simply pulled from the CAD drawing.  It is the 

distance from the left corner of the plate to the left bottom corner of the slot.  Thus, for 

the slot at 0o, x2 is 4, and y3 is 2. 

 

However, to find these values for the 45o slot requires some calculation.  The next 

figure helps to show that through the rules of a right triangle, the length of the upper sides 

of the bolded triangle can be found.   

 

2.0

0.5 ϕ1
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It is known that the distance from the center of the slot to the left edge is 2.0 in the 

x-direction and 0.5 in the y-direction.  Thus, the hypotenuse of this upper triangle, which 

represents the side length of the bolded triangle, is simply 

 

06155.25.02 22 =+=hypotenuse  

 

This length is also the length of the opposite side of the bolded triangle, relating 

the center of the slots to the corner on the 45o slot.  Now, the angle marked as φ1 must be 

found for future use.  Again, from the geometry,  

 

o1
1 96.75

5.0

2
tan =






= −ϕ  

 

Now, consider the following figure.  Because the slot has been rotated 45o, θ1 

must be 45o.   

 

2.0

0.5 θ1
θ2

θ2

2.062
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The θ2’s are the same angle, due to the nature of the triangle.  They are simply 

computed, as shown below. 

 

o
2 5.67

2

45180 =−=θ . 

 

To find the third side of the bolded triangle requires the next figure.  The bolded 

triangle has been divided into two.  Each of the known dimensions is listed in the figure.  

To find half the length of the side in question requires a simple calculation, shown below 

the figure. 

 

2.062

l

22.5
o

67.5
o

ϕ3

∆y

∆x  

 

5778.1

7889.006155.2*)5.22sin(
2

1 o

=

==

l

l
 

 

To find ϕ3, 

 



 253 

o
3 54.365.6796.75180 =−−=ϕ  

 

The change in the x and y-direction can now be found: 

 

( )
( ) 9393.057784.1*54.36sin

2677.157784.1*54.36cos
o

o

==∆
==∆

x

y
 

 

To now find x2 and y3, simply add each change to the nominal positions.  The 

following table shows all values for the independent variables. 

 

Variable value 
x1 2.5 
x2 4+∆x 
x3 2.0 
x4 variable 
y1 3.0 
y2 2.0 
y3 2 - ∆y 
y4 3.0 
r 0.5 

 

Error 

One final consideration before the Monte Carlo simulation is run is the error.  The 

assembly is considered to have no error if the bases of the block and the plate are parallel.  

If there is any angle between them, the error is calculated as the square root sum of the 

squares of this difference between the nominal positions of the corners of the plate and 

the new positions of the corners of the plate. 
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Consider the following figure.  The error is the square root of the sum of the 

squares for the difference in the x and y-positions of each corner.  
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APPENDIX F 3D JOINTS IN ASSEMBLIES 

 

While assemblies in 3D will not be treated in this thesis, it is important to note 

that Waldron and Kinzel [1999] demonstrate two types of 3D joints: lower pair joints and 

higher pair joints.  Lower pair joints are those joints that keep all points of the mating 

surfaces of the links in contact.  Higher pair joints only keep contact on isolated points or 

along line segments.  They also suggest that there are six distinct lower pair joints, and an 

infinite number of higher pair joints (Fig. F.1). 

 

Revolute
Hinge

Turning Pair

Prismatic joint
Slider

Sliding pair

Screw joint
Helical joint
Helical pair

Cylindric joint
Cylindric pair

Spherical joint
Ball joint

Spherical pair

Planar joint
Planar pair

 

Figure F.1 – Six lower pair joints for 3D assemblies (after Waldron and Kinzel 
[1999]).  The arrows represent the allowable degrees of freedom. 
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APPENDIX G RECIPROCAL RELATIONSHIP FOR FIG. 5.12 

 

Table G.1 – Relationship between the equations of equilibrium and the DLM for 
the block with three constraints. 

 
 C (Equilibrium)  B (DLM) 
More unknowns than equations 

5 equations 
6 unknowns 

Over-constrained Under-constrained 

More equations than unknowns 
5 unknowns 
6 equations 

Under-constrained Over-constrained 

Exactly constrained 
OR 

Exactly constrained 
OR 

Over-constrained: 
columns are linearly 

dependent 
OR 

Under-constrained: 
column goes to zero 
columns are linearly 

dependent 
OR 

Equal number of equations and 
unknowns 

5/6 equations 
5/6 unknowns 

Under-constrained: 
row goes to zero 

column goes to zero 
 

 
Over-constrained: 
row goes to zero 
rows are linearly 

dependent 
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