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ABSTRACT

ESTABLISHING A QUANTITATIVE FOUNDATION FOR EXACTLY

CONSTRAINED DESIGN

AlishaM. Hammond
Department of Mechanical Engineering

Master of Science

Exactly constrained (EC) design is arobust design method which can be used for
mechanical assemblies. It entails using the minimum number of constraints to eliminate
all desired motion.

While found by some engineersin industry to have many benefits (including
robust assembly, no binding or play, ease of assembly, and the ability to tolerate the wear
of parts), EC designs remain somewhat unrecognized by academia. One reason for this
minimal exposure may be the lack of a quantitative foundation for such designs. This
thesis describes the history and current background for EC designs, and it also beginsto
develop a quantitative foundation for EC design based on several mathematical methods.

EC designs can be analyzed quite smply by understanding that they are statically
determinate. Because of this, the equations of equilibrium can be used to validate the

rules and the nesting force window that have been defined by Blanding [1999]. In



addition, a generalized method using the equations of equilibrium has been developed in
this thesis to analyze an EC design based on the |ocations of the constraints and to find
the nesting force window.

The direct linearization method (DLM) is another mathematical method used to
quantify information in an EC design. While EC designs provide many advantages, some
EC assemblies may be “better” than others. A quantitative measure of goodnessis
developed in this thesisusing the DLM. The goodness value assigned to each design
through this process can either be used to make a decision on an individual design, or it
can be used to compare similar EC designs.

Finally, the robust nature of EC design is examined using a Monte Carlo
simulation. In general, the results show that EC designs have a higher rate of assembly
than similar designs that are over-constrained. They are more robust. In addition, EC

designs have lower assembly error than the similarly over-constrained assemblies.
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CHAPTER 1 MOTIVATION FOR ESTABLISHING A QUANTITATIVE
FOUNDATION FOR EXACTLY CONSTRAINED DESIGN

1.1 INTRODUCTION

Anincreasingly competitive marketplace has sparked the demand to find more
effective design methods that produce higher quality, cost-competitive mechanical
assemblies. Yet, quality and cost often become competing objectives in many

manufacturing processes because of unanticipated variability.

Unanticipated variability can adversely affect mechanical assemblies. Examples
of unanticipated variability may include worn tools, varying dimensions among similar
parts, varying job skills among technicians, or changing environments (such as
temperature or load changes). Ultimately, variability leads to designs that do not always

properly assemble as desired.

Avoiding the effects of variability can lead to higher quality, cost-competitive
assemblies. Therefore, a prominent need has surfaced to find design methods that allow

parts to correctly assemble, even when subjected to variation.



1.2 MOTIVATION FOR THE RESEARCH

Recent design methods have focused on eiminating the effects of variability.
Collectively caled “robust design”, they are intended to reduce the effects of variability

without necessarily eliminating the causes.

For example, smart assemblies have recently been recommended as a robust
design method. Smart assemblies include “features, not otherwise required by the
function of the design, which allow the design to absorb or cancel out the effects of
variation” [Downey et. a. 2002]. Some examples of smart assemblies include adjustable
screws, springs that absorb variation, and slotted holes [Downey 2001]. The smart
features can adjust as needed to allow the assembly to be used under a wide range of

conditions.

Traditionally, however, robust designs get overlooked in favor of the more
familiar methods of problem solving in manufacturing. These traditional methods

include tightening tolerances on parts, re-design, and brute-force.

Designerstighten tolerances to try to control variability in an assembly. It seems
logical that if parts will not come together in an assembly, those parts must be re-
manufactured with dimensions closer to the nominal position. To avoid any future re-
work, the parts are assigned tighter tolerances. However, assemblies that require high
accuracy can have tolerances so tight that certain parts are almost without tolerances,
leading to very costly designs. Perfect parts are high expectations from imperfect

manufacturing processes and environments.



Another popular method to deal with variability in assembliesisto redesign parts
mid-process until everything comes together as desired. Shapes change; different
materials are explored; designs are atered; and the new design is progressively
implemented. Problematic variability issimply eliminated through design changes made
over time that seem to work. Re-designisavery real, very popular, and often very costly

solution in industry.

Often, the most popular or common method employed to fix the effects of
variability does not involve much thought about tolerances or the various properties of
the parts. Instead, sheer brute force, often leading to deformations or dysfunctional

assembilies, becomes the solution of choice.

However, the recent work of engineers, especially at the Eastman Kodak
Company, has suggested that the solution may be more basic or fundamental than
currently practiced or understood. Faulty assemblies may not be the effect of
dimensions, tolerances, shapes, or material. The problem may well be with the total
number of constraints found in an assembly. If adesign does not behave as intended, it
could be due to not enough or too many constraints in the assembly. Thisthesiswill
explore another robust design method called exactly constrained design that absorbs
variability through minimizing the total number of constraintsin an assembly, while still

eliminating all necessary motion.



1.3 EXACTLY CONSTRAINED DESIGN

For any unconstrained part in 3D, six directions of motion are allowed:
trandation in the x, y, and z directions, and rotation about the X, y, and z axes. Likewise,
for 2D parts, trandation in the x and y-directions and rotation about the z-axisis possible.

There are no limitations on motion if there are no constraints.

As parts come together to form an assembly, the joints formed by mating parts
introduce constraints into the system. The constraints limit the allowable motion of the

assembly.

Exactly constrained (EC) design uses a minimum number of constraints to
eliminate undesired motion. In addition, each constraint must have a complementary
force applied (called anesting force) that keeps the part and the constraint in contact.
Strategic placement of the minimum number of constraints coupled with the nesting force

constitutes an EC design.

Asasimple example, consider Fig. 1.1, which is ablock resting on atable. Inthis
case, the block must not be allowed to move. Currently, however, this block can didein

the x and y directions, and it can rotate about z.
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Figure 1.1 — Block resting on atable. (a) Front view (b) Top view

To inhibit the motion currently allowed, constraints must be added (Fig. 1.2). To
constrain trandlation in the x-direction, a peg (C,) is placed to the right of the block. To
constrain y-trandation, a peg (marked C,) is placed at the top of the block. In order to
inhibit rotation, afinal peg (marked Cs) is added to the bottom left of the block. As
mentioned earlier, it is necessary to have a nesting force for each constraint (Fig. 1.2a),
but these forces may be combined to find one resultant nesting force for the design (Fig.

1.2b).

(@ (b)

Figure 1.2 — Constraints and nesting for ces to make the box immaobile
(@) Individual nesting for ces (b) Resultant nesting force



A simple comparison of two common assemblies may further help to understand
EC design. Imagine athree-legged stool versus a normal table chair with four legs. Both
assemblies need to stay flat on the ground for optimal convenience. When just onelegis
attached to the seat of the stool or chair, each assembly can still rotate in al three
directions. When two legs are attached, each assembly can still rotate about the line
formed by the two points where the legs rest. When athird leg is added, all three legs sit
flat on the ground. Thereisno rotation or trandation. All the legswill rest squarely on
the ground regardless of incline or roughness. Adding afourth leg now makes the chair
over-constrained. In order for al four legsto sit squarely on the ground (and thus allow
no “wobble”), the ground must be perfect and the legs must be the same height.
Otherwise, there must either be deformation between the ground and the legs so the chair
sitsflat, or the user must have atolerance for “wobble.” The fourth leg makes a
difference. The exactly constrained stool has more flexibility for use than the four-legged
chair, athough the four-legged chair has greater stability (and hence the reason four-

legged chairs are used more often).

1.4 ADVANTAGESOF EXACTLY CONSTRAINED DESIGN

Exactly constrained design yields some highly desirable advantages. Aswill be
discussed throughout this thesis, EC designs will assemble under a wide range of
conditions with no looseness or binding. In fact, EC assemblies will not just assemble
under awide variety of conditions, but they will operate under awide variety of
conditionsaswell. For example, changesin material due to temperature often become a
non-issue. Thiskind of robust design methodology means that assemblies can be

produced with lower priced, less accurate parts.



Additional advantages include other benefits aswell. Assemblies can be
assembled and reassembled with very little overall change to the function of the system.
Tolerances can be looser. Costs are often reduced due to less re-work. Less time and/or

resources are spent in re-design or problem solving to fix an EC assembly.

1.5 ADVOCATESFOREXACTLY CONSTRAINED DESIGN

Exactly constrained design is unusual because the greatest advocates have come
not from academia, but from industry. Lawrence Kamm [1993], who refersto EC design

as“MinCD”, states the benefits of such adesign.

When you do minimum constraint design (MinCD), you support
and guide each body only at points, and at as few points as possible to get
the desired performance. If you do so, you will achieve zero looseness
and zero binding of moving parts; you will achieve assembly of fixed parts
without strains or rework; and you will do so despite loose manufacturing
tolerances and semiskilled assembly labor. You will minimize the
manufacturing cost of your mechanism, you will make it more reliable,
you will make it easier to disassemble and reassemble, and you will make

it easier to maintain.

Douglass L. Blanding [1999] of the Eastman Kodak Company, and one of the
leadersin defining principles related to EC design, explains some of the advantages he

has found in his experience with EC design.

The use of these [EC design] principles, collectively called Exact
Constraint Design principles, provides the designer with a better

understanding of a machine’s behavior. This understanding allows the



designer to easily create new designs which are both low in cost and high

in performance.

... Among the benefits to be attained in following these principles
are extreme precision, predictable performance, and infinitesimal

distortion of the component parts.

Jon Kriegel [1994], also of the Eastman Kodak company, made a pleato include

EC design as part of the engineering curriculum.

Based on...an unending list of ...examples, it is suggested that
these problems represent a major weakness in the undergraduate
engineering educational system. The objective...isto solicit the support
of academicians in including Exact Constraint Design as abasic topic in

Machine Design classes and textbooks. Thisinvolves vocabulary,
concepts, and examples or case-studies, (the author could personally

supply 30), and deserves an independent chapter heading.

Michael French, who has included EC design in his textbooks Form, Structure
and Mechanism [1992] and Conceptual Design for Engineers[1998], writes, “It must not
be used blindly or invariably..., but it is perhaps the most useful principlein machine

design.”

1.6 CURRENT PRACTICES

Current techniques to analyze and use EC design have primarily centered on
intuition and graphical methods. They often rely on the designers' experience to make

decisions on where to place constraints.



For example, Blanding [1999] has developed a system where all constraints are
schematically the same (essentialy pin joints) thus leading to a6 Rsinterpretation—
where any tranglation isreally just arotation at infinity. He observes that the type of
constraint is not as important as whereit is placed. Aswill be shown in Chapter 2, rules
primarily based on experience have been developed by him to find alocation for the
constraints in an assembly. Included in his method is a graphical approach, which shows

“windows” where nesting forces may sit to keep the assembly properly seated.

1.7 OBJECTIVESOF THE THESIS

The purpose of thisthesisisto build a solid quantitative foundation for exactly
constrained design. This foundation will be built upon two primary concepts. First, it
has been observed that EC designs are statically determinate. This observation allows
equilibrium equations to be used to compute forces. Second, EC designs can be analyzed
using the direct linearization method (DLM). The vector loopsin the DLM are utilized to

show the effects of variation on EC designs.

The concepts stated above will be used to build a quantitative foundation for

exactly constrained design by:

e Developing asolid definition of exactly constrained design based on
quantitative principles
e Developing quantitative methods for analyzing locations of constraints

e Developing quantitative methods for analyzing the nesting force window



e Developing a quantitative method to determine the “ goodness® of an EC
design
e Examining the effects of variation in exactly constrained designs vs. over-

constrained designs

1.8 DELIMITATIONS

The thesis presented will primarily treat 2D assemblies. The results found for 2D

assemblies can be generalized for 3D assemblies.

Also, mechanisms are not included in thisthesis. Only immobile assemblies are

presented as examples.

19 THESISOVERVIEW

The remainder of the thesiswill proceed in logical fashion. Chapter 2 will give
much more detail and further background for exactly constrained design. Chapter 3 will
define and use mathematical or quantitative principles to validate many of the heuristic
rules developed over time for EC design. Chapter 4 will expand the work of Chapter 3
by presenting a general method to analyze the placement of constraints in an EC design.
Chapter 5 builds upon the work in Chapter 4 by showing a procedure to find a measure of
“goodness’ between several configurations of an EC design. Chapter 6 will then show
how EC designs are more robust than similarly over-constrained designs. Finally,
Chapter 7 will state all contributions, conclusions, and recommendations related to this

thesis.
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CHAPTER 2 BACKGROUND AND LITERATURE REVIEW FOR EXACTLY
CONSTRAINED DESIGN

21 |INTRODUCTION

As mentioned in Chapter 1, exactly constrained (EC) design can be a useful tool
in the engineering world. Chapter 2 will discuss the background, history, and current

analysis methods for EC design.

EC design is arobust design method for mechanical assemblies with a history
dating back to at least the early 1840's. The history, background, and current methods of
anaysiswill be followed by an explanation of the antithesesto EC design: over-
constrained and under-constrained design. Examples of EC design will be followed by
the explanation of several toolsthat will help to ultimately develop the quantitative

foundation presented in this thesis.

2.2 EXACTLY CONSTRAINED DESIGN AS A ROBUST DESIGN METHOD

Parkinson [1995] has defined robust design as “a design that works properly even
when subjected to variation, which may be introduced by manufacturing processes, by
the environment, by the end user, or by parts provided by outside suppliers.” Although

applicable to assemblies, robust design also pertainsto al types of design models.
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Aswill beillustrated in Chapter 6, EC designs fall into the category of robust
design because they can appropriatel y assemble and reassemble even when subjected to
variation. Aswill be explained in Section 2.4, EC designs do so by using the minimum

number of constraints to hold an assembly in place.

Before the technical details are presented for such arobust design, however, the
history of the method will be reviewed. The purpose in reviewing the history is best
explained by Chris Evans[1989] in Precision Engineering as away to “show the present
to itself by revealing itsorigin.” The history shows that the basic principles were
understood and preserved by a handful of followersin the generations that followed the

original pioneers.

2.3 HISTORY OF EXACTLY CONSTRAINED DESIGN

One of the earliest leadersin EC design was Robert Willis, who extensively
lectured and published his Principles of Mechanism beginning around 1841. Presumably
asaresult of Willis work, William Thomson (Lord Kelvin) and James Clerk Maxwell

carried on the principles known in that day as “geometric” or “kinematic” design.

In 1876, James Clerk Maxwell [Niven 1890] clearly described the basic ideas

relating to what was often referred to as “kinematic design”.

Each solid piece of the instrument is intended to be either fixed or
movable, and to have a certain definite shape. It is acted on by its own
weight, and other forces, but it ought not to be subjected to unnecessary

stresses, for these not only diminish its strength, but (what for scientific
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purposes may be more injurious), they alter itsfigure, and may, by their
unexpected changes during the course of an experiment, produce

disturbance or confusion in the observations we have to make.

We have, therefore, to consider the methods of relieving the
pieces of an instrument from unnecessary strain, of securing for the fixed
parts a determinate position, and of ensuring that the movable parts shall
move freely, yet without shake.

Thiswe may do by attending to the well-known fact in
kinematics—'A RIGID BODY HAS SIX DEGREES OF FREEDOM’.

A rigid body is one whose form does not vary. The pieces of our
instrument are solid, but not rigid. They are liable to change of form
under stress, but such change of form is not desirable, except in certain

special parts, such as springs.

Hence if a solid piece is constrained in more than six waysiit will
be subject to internal stress, and will become strained and distorted, and
thisin a manner which, without the most exact micrometrical

measurements, it would be impossible to specify.

In instruments which are exposed to rough usage it may
sometimes be advisable to secure a piece from becoming loose, even at
the risk of jamming it; but in apparatus for accurate work it is essential
that the bearings for every piece should be properly defined, both in
number and in position (emphasis added).

Thus, Maxwell described that any solid piece must not be constrained in more

than six ways; otherwise, the part will become strained and disfigured. He continued by

13



illustrating “[m]ethods of placing an instrument in a definite position”. His example
explains the three V' s method for a geometrical or kinematic clamp (Fig. 2.1a), which he
compares to Kelvin's kinematic clamp (which uses atrihedral hole, aV-groove, and the
horizontal plane of the base to constrain motion). While more specific details will be
discussed in Section 2.4, the six degrees of freedom are constrained by three joints to

allow no motion between parts in both clamps.

(@) (b)

Figure 2.1 — Examples of kinematic clamps (a) Maxwell’s3 V'sexample (b) Lord
Kelvin’sclamp (after Evans[1989])

In 1937 and again in 1954, T. N. Whitehead published his Design and Use of
Instruments and Accurate Mechanism which is based on the principles described by
Maxwell. It resurrected and developed the ideas promoted by the previous experts, and it

formed the basis for what is today called exactly constrained design.

Kinematic design, as that term is frequently used, implies adesign

whereby the various links of each element, forming an instrument, are
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constrained by the theoretically minimum number of point contacts, given

the degrees of constraint required.

Lawrence Kamm [1993] developed an entire career based on the principles as
outlined in Whitehead' s book. In his book, Designing Cost-Efficient Mechanisms, Kamm
follows Whitehead' s approach in presenting “abook of ideas and not of calculations.”

He offers a basic description and many ideas on designing mechanisms based on the

number and placement of constraints.

Severa other industrial leaders also built their careers on principles as defined in
the work of Whitehead. Most notably, engineers from the Eastman Kodak Company
used EC design for over 20 years to solve many problems. John McLeod (who coined
the term “exact constraint design”) and John E. Morse (“Exact Jack” Morse) used the EC

principles for designs ranging from structures to conveyor belts to flexure mechanisms.

The design principles of EC design were more fully described by another member
of the Eastman Kodak Company, Douglass L. Blanding, author of Exact Constraint:
Machine Design Using Kinematic Principles. He had the benefit of working with and
learning from Jack Morse for about two years. This mentoring helped him establish and
further define many basic principlesin EC design. Blanding’'swork is the basis for many

of the EC designsin use today.

Before a detailed overview can be presented for the current methods devel oped by

Blanding and others on how to use the principles of EC design, the underlying concepts
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must be discussed. A brief background for EC design will be followed by the methods

currently in use.

24 BACKGROUND FOR EXACTLY CONSTRAINED DESIGN

An assembly is comprised of smaller, interconnecting parts. It can be immobile,
such as astool is an assembly made of a seat and legs, or it can have motion, such asa

robot.

Each part in an assembly connects to another part by way of ajoint. Each time

parts are joined together, the degrees of freedom are affected.

The degrees of freedom define the motion that is alowed. It iswell known that
for 2D solids with no constraints (Fig. 2.2), there are three degrees of freedom: x-

trandation, y-trandation, and rotation about the z-axis.

Figure 2.2 — 2D aobject with three degrees of freedom. The object can trandate
along the x and y-axes, and it can rotate about the z-axis.
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For 3D solids with no constraints (Fig. 2.3), there are six degrees of freedom.

Therewill bex, y, and z trandation, as well as rotation about the x, y, and z-axes.

»

<« SR> x
-4

Figure 2.3 — 3D object with six degrees of freedom. The object can trandate along
and rotate about the x, y, and z-axes.

When parts assembl e together and form joints, the degrees of freedom change.
Each type of joint in the assembly constrains motion in one or more directions, but the
joint may also continue to allow motion in other directions. For each direction inhibited
by ajoint, one degree of freedom is lost, thus adding one degree of constraint to the
assembly. The types and number of joints used ultimately determine the degrees of

freedom in an assembly.

Chase [1999] has suggested that all mating partsin 2D assemblies can be
described by the six kinematic joint typesin Fig. 2.4 (asimilar graphic for 3D assemblies
isfound in Appendix F). Therigid joint provides three constraints. A planar joint

provides two constraints. An edge slider joint provides one constraint, and so on.
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Figure 2.4 — Six kinematic jointsfor 2D assemblies. The arrowsrepresent the
allowable degrees of freedom (after Chase [1999]).

It should be noted that while Blanding [1999] has chosen to limit his designs to
the cylinder dlider type joint, any of the joints presented in Fig. 2.4 can be used in an EC
design. Figure 2.24, for example, shows a block assembly which uses arevolute joint to

constrain two degrees of freedom.

With a basic understanding of assemblies and their constraints, EC design can be
easily described. An EC design entails assigning a minimal number of constraintsto
eliminate each necessary degree of freedom in an assembly. Constraints are achieved
through joints, and the appropriate type and number of joints to use depends on which
degree(s) of freedom should be constrained. The 2D joints shown earlier (Fig. 2.4) can

provide one, two, or three constraints per joint, depending on the type of joint chosen.

Placing a constraint includes more than just finding alocation for ajoint. If the

constraint does not stay in constant contact with its mating part in an assembly, itisasif
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no constraint exists and unexpected motion results. Therefore, every constraint must also

have a nesting force to guarantee constant contact with the part.

If there are three constraints, the assembly must then aso have three nesting
forces. However, these three nesting forces can be combined into one resultant nesting
force that would properly seat the assembly. It isimportant to emphasize that to properly
seat the assembly, the nesting force must be applied so asto provide forcein all
necessary directions; thus, there must be a nesting force that provides seating in both the

x and y-directions.

Examples of nesting forces may be the weight of an assembly, an applied force,
friction, and smart features that absorb variability. Pearce [2003] gives a method to

design nesting forces using smart features.

25 CURRENT METHODSTO ANALYZE EXACTLY CONSTRAINED DESIGN

The basic background to EC design naturally leads to a discussion on the current
methods used by the experts. EC design requires several major considerations. First,
how many constraints will be required to exactly constrain the assembly as necessary,
and where should those constraints be placed in an assembly? Then, where should the

nesting force(s) be placed?

251 DEFINING THE CONSTRAINTS

Asmentioned earlier, the type and number of constraints depend on the required

motion of the assembly. However, certain rules have been described by Blanding to help
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correctly place constraints for EC design. Those rules are presented as summarized by

Skakoon [2000].

2D rulesfor exactly constrained design
1. No two constraints are co-linear.
2. Nofour constraints are in asingle plane.
3. Nothree constraints are parallel.

4. No three constraints intersect at a point.

3D rulesfor exactly constrained design
1. Nofour constraints are parallel.
2. Nofour constraints intersect at a point.

3. Nofour constraints are in the same plane.

25.2 DEFINING THE NESTING FORCE

Blanding describes a graphical method to find a proper position for the nesting
force. His method finds a“window”, and the nesting force can be placed in this region
without causing motion or instability in the assembly. His method can be summarized, as

follows.

20



1. Draw constraint linesto find the instant centers between constraints.

2. Remove the constraints one at atime to find the effects on the assembly.

3. Determine the proper rotation of the block with respect to the pertinent instant
center to enable the constraint to restore contact with the assembly.

4. Determine which line segments of the constraint lines drawn allow aforceto
crossit and still maintain the proper rotation for each instant center.

5. If the conditionsin step 4 are met, the segment is allowed into the nesting

force window.

This method can be better understood with an example. Therefore, consider the

constrained triangle given in Fig. 2.5.

O

O

Figure2.5 —Triangle with three constraints

The resultant nesting force must sit within a certain window in order to be
effective. To find that window, “constraint lines” must first be drawn. They are
infinitely long lines normal to the object’ s surface at the point of contact. The

intersection of each of these linesis called an instant center (Fig. 2.6).
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Figure 2.6 — Triangle with constraint lines drawn and instant centers defined

Next, each constraint must be moved away from the triangle, one at atime, to
determine the effects on the assembly. What would need to happen for the object to
restore contact with the constraints? Asan example, if the top constraint were moved as
shown in Fig. 2.7a, the triangle would need to pivot counterclockwise about the instant
center of the two remaining constraints in order to restore contact with the top constraint.
Therefore, a counterclockwise arrow is drawn around that instant center to show what

would need to happen to restore contact between the part and the constraint (Fig. 2.7b).
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(@ (b)
Figure 2.7 — Finding rotation on the left instant center (a) Moving the top constraint

(b) Direction of necessary rotation at theinstant center to restor e contact between
the constraint and thetriangle

Next, the constraint on the hypotenuse is moved away from the triangle (Fig.
2.8a). In order to re-establish the contact between the constraint and the object, it will
again be necessary to rotate the triangle counterclockwise about the instant center for the

two remaining constraints (Fig. 2.8b).

(@ (b)
Figure 2.8 — Finding rotation on thetop right instant center (a) Moving the

constraint on the hypotenuse (b) Direction of necessary rotation to
restore contact between the constraint and thetriangle
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After moving the left side constraint away from the triangle, the final rotation can
be found. The object would need counterclockwise rotation about the remaining instant

center to maintain its current position (Fig. 2.9).

Figure 2.9 — Direction of all necessary rotations on each instant center

After finding the proper rotations on each instant center, each segment of each
constraint lineisindividually evaluated to determine if it is allowed in the nesting force
window. Certain conditions must be met for aline segment to qualify to bein the

window.

1. Theline of action for the nesting force must intersect the segment, AND

2. Thedirection of the force must cause correct rotation about each of the instant

centers related to the segment of the constraint line that is being evaluated.
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If the conditions are met, the segment is part of the allowable region of the nesting
force window. If the conditions are not met, a thick, bolded line isimposed on the

drawing to show which segments the nesting force line of action cannot cross.

To continue the example presented earlier, consider the line highlighted in Fig.
2.10 below, with aforce crossing the segment (only the rotations for the relevant instant
centers are shown). The force causes counterclockwise rotation about the instant center
for the top left instant center, as well as the bottom instant center. Thus, the line of action
for anesting force would be alowed to cross this segment, and it is an acceptable region

of the nesting force window.

Figure 2.10 — Test to seeif the nesting forceis per mitted to passthrough the
highlighted line.

Now, consider the highlighted line segment in Fig. 2.11a, which has aforce

passing through it. The force allows correct rotation for the lower instant center, but the

rotation isincorrect for the top instant center. Therefore, thisline segment is not allowed,
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and the highlighted line is blackened to show that the line of action for the nesting force

cannot pass through this line segment (Fig. 2.11b).

Figure 2.11 — Testing a segment in the nesting forcewindow (a) Testingaline
segment to determineif it isin the nesting force window (b) Bolded lineto
show theline segment is not allowed in the nesting force window

Each segment of each constraint line in turn can be tested. Fig. 2.12a showsthe
nesting force window after all line segments have been checked. Again, the bolded lines
show where the line of action for the nesting force cannot cross. Also, aresultant nesting

force is shown on the assembly.

The nesting force window can be more easily understood if it is projected onto the
surface of the assembly. While specific details showing how to project the graphical
nesting force window onto the boundary of the assembly have never been seenin
publication, this projection is easily accomplished by placing a nesting force along each

segment of the boundary. If the nesting force passes through the unacceptable region of
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Fig. 2.12a, that portion of the boundary isbolded. If it does not pass through the
unacceptable region, all constraint line segments through which the line of action for the
nesting force passes must be re-tested to ensure proper rotation at the instant centers.

Figure 2.12b shows the nesting force window projected onto each surface.

(@) (b)

Figure 2.12 — The allowable nesting force window. The bolded lines show the
segments through which the nesting for ce line of action cannot go (a) The
line of action of the nesting for ce cannot passthrough the bolded region (b)
A perpendicular nesting force cannot be placed in any bolded portion of the
assembly.

Thus, the graphical method used by Blanding finds the nesting force window
based on the position of the constraints and the intersection of the constraint lines. The

nesting force itself can be placed anywhere in the acceptable region of the window.

26 ALTERNATE DESIGNS

With such a powerful tool in engineering, one may wonder why EC design is not

used more frequently. Asthe principles of EC design are not generally taught in school,
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engineers are not usually familiar with, or they simply do not have an appreciation for the
method. They tend to have more experience with two other modes of design: over-

constrained design and under-constrained design.

26.1 OVER-CONSTRAINED DESIGN

It isnot fair to say that all designs must be exactly constrained, although there are
indeed many advantages to making a design exactly constrained. For example, lower
cost, inaccurate parts can be assembled and reassembled with a very high level of
precision (meaning that the results can be consistently reproduced in the same assembly).
However, sometimes higher stability, or greater load sharing is desired. One alternative
isto over-constrain the design, at a higher cost (and often lower quality) to the

manufacturer.

An over-constrained (OC) design simply uses more constraints than the minimum
number necessary, and it is very common in design today. Two or more of the

constraints compete to hinder the same degree of freedom.

Asavery simple example, consider the block assembly in Fig. 2.13abelow. The

base plate of the assembly has two rigidly-connected pegs. They fit through the two

drilled holes of the top plate.
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Figure 2.13 — Slotted block OC and EC design (a) Over-constrained assembly
(b) Exactly constrained assembly

The left peg constrains the assembly in the x and y-directions. Only one more constraint
is needed—something to eliminate rotation; however, the right peg not only eliminates
rotation, but it al'so competes to constrain the block in the translational x-direction. If the
location of either peg is manufactured with any variability in the x-direction, this block
will not assemble. A similar design that is exactly constrained is shown in Fig. 2.13b.

This new assembly could absorb variation in the x-direction.

Over-constrained assemblies often happen without the designer realizing what is
causing the assembly problemsin adesign. Designers have learned to tighten tolerances,
develop manufacturing methods with higher precision, expect higher accuracy from
intermediate parts, and just force something to work when they do not understand that the
design is over-constrained. Valuable resources are used in redesign, and timeislost
when things do not work correctly. In all of the redesign, very rarely does an engineer
turn to the root of the problem—the design is not properly constrained to allow for

flexibility in an assembly.
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In the case of over-constrained designs, the designer must determine if the
advantages of over-constraint outweigh the advantages of an EC design. Symptoms of
over-constraint include binding or loose fitting parts, built-up stresses in assemblies, and

the need for tighter tolerances.

2.6.2 UNDER-CONSTRAINED DESIGN

An under-constrained design is a design that should not have motionin a
particular direction, but motion still occurs. Thereisinsufficient constraint or insufficient

nesting force to inhibit the motion.

An example of an under-constrained design can be found in asimple four bar

mechanism.

Figure 2.14 — Four bar mechanism.

Under most circumstances, a designer would want one degree of freedom in the four bar
mechanism. However, sometimes designers use the four bar for immabile designs, such
asfences or platforms. If not properly constrained, the design will fail. An exactly

constrained immobile design is shown in Fig. 2.15.
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Figure 2.15 — Exactly constrained design.

2.7 EXAMPLESOF EXACTLY CONSTRAINED DESIGN

Now that the background has been presented, several examples will be offered to
show just how effective EC design can be. Kelvin's kinematic clamp will first be
revisited, followed by an example from Blanding. Finally, an industrial example will be

given to show how EC design improved a copy machine component.

271 KELVIN'SKINEMATIC CLAMP

Lord Kelvin's [Evans 1989] kinematic clamp example from Fig. 2.1 (shown
below as Fig. 2.16) provides a simple case in which to see the strength of EC design.
Three simple joints will provide six constraints which eliminate all six degrees of

freedom to provide arepeatable assembly.

Figure 2.16 — Kelvin’s kinematic clamp (after Evans[1989])
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To begin, imagine the triangular top piece with three pegs, and the circular fixed
base without any notches. If the two pieces are assembled, the design would obviously
not be immobile. Rather, three points from the triangular part would slide along the face
of the base. The assembly would be partially constrained, allowing two directions of

trandlation and one direction of rotation.

After adding the trihedral notch (on the left), three degrees of freedom are
eliminated (x, y, and z positions have been set) because the trihedral has three points of
contact with its mating peg. The trough shape eliminates two more degrees of freedom
(two rotations) after two points of the right-back peg make contact with it. The top piece
can now only rotate about the line formed between the trihedral notch and the trough.
That leaves one degree of freedom, and thus the third peg contacts the face of the base,
which eliminates the remaining rotation. In this example, the weight of the clamp isthe
nesting force. Notice that this clamp shows high precision because it can be assembled
and reassembled with no change to the overall function of the clamp. Also, the
tolerances on any of the parts would not have much effect on the function of the

assembly. Inaccurate parts can be used with similar results.

2.7.2 BLANDING'S2D BODY ON TWO PINSEXAMPLE

Douglass Blanding [1999] shows the example depicted in Fig. 2.17. This2D
assembly has the body situated on two pins. The left pin provides two constraints for the
assembly, which leaves the body to rotate. The right pin provides the constraint against

rotation.
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Figure 2.17 — 2D body located by two pins (after Blanding [1999])

Figure 2.18 shows an industrial example in 3D based on the same principles. Itis
called the MicronWorm, and it is used in optical research. Notice at the base of the
machine that two rollers move along a shaft, while to the bottom right of the design a

roller moves along the base.

Figure 2.18 —Industrial example using the assembly presented in Fig. 2.17
(after Savoie, MIT)

2.7.3 KRIEGEL’'SCOPY MACHINE EXAMPLE

Kriegel [1994] used the theory of EC design to resolve over-constraint in an
office copier machine. The copier machine had two large foam rolls mounted inside the

part in question, called a baffle. Therollersinside the baffle feed paper around aturn,
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and they send it on to the staple hopper. Theinitial baffle design (Fig. 2.19) had four
mounting screws holding the part in place between the side plates of a major frame.
Unless the baffle was nearly perfect when manufactured, there was some clearance
between the baffle and the side plates. As the screws were tightened, the side plates

deflected inward, and that in turn inhibited other parts of the machine from performing

properly.

Figure 2.19 —Initial baffle design (after Kriegel [1994])

In an attempt to stop the side plates from deflecting, an engineer added angle-iron
channelsto be welded onto the side frames (Fig. 2.20). This step indeed stopped the
deflection of the side plates; but when the screws were tightened, the baffle arched in

such a manner that there was a gap in the foam rolls, and the paper-drive was | ost.



Figure 2.20 — Baffle with angle-iron channels (after Kriegel [1994])

In response, the engineer added an additional stiffening brace to the baffle (Fig.
2.21) to eliminate the possibility of the rollslosing their function. Hence, when the

screws were tightened, the ears fractured, and they tore off the baffle.

Figure 2.21 — Baffle with an additional stiffening brace (after Kriegel [1994])
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A designer began to focus on the source of the problem instead of just the
symptoms of the problem. To counter the latest issue, two relatively expensive fasteners
were designed into the system to be used at whichever end had the screws tightened |ast
(Fig. 2.22). Thefastener could now be adjusted at the time of assembly to set a specific

gap for each baffle.

Figure 2.22 — Fastener for the baffle (after Kriegel [1994])

Kriegel explained that the solution to this problem was to be found in the number
of constraints controlling the baffle. Once the first two screws were tightened on one end
of the baffle, the final position of the baffle along the z-axis (see Fig. 2.19) was aready
decided. Trying to tighten the screws on the other side of the baffle competed with the
already established position of the screws on the first side. In fact, the first two screws
fixed all degrees of freedom for the assembly except rotation about the line connecting

the two screws.

Thus, on the free end, a pin may be inserted through one, but not both of the

remaining ears. To ensure that the baffle would not rattle (which may result with just one
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pin inserted), a single straight tab through the frame allowed for a natural clamp without
applying aload along the z-axis (Fig. 2.23). AsKriegel states, “ Slots in both parts,
arranged at 90° to each other, allow loose tolerances and low cost with no compromise to

positional accuracy.”

frame bent back
with avertical ot
-\

ear from the baffle
with a horizontal slot

Figure 2.23 — Final design for the baffle (after Kriegel [1994]). The double slot
absorbs variation in the design without affecting the assembly along the z-
axis.

Thus, EC design provided Kriegel, Blanding, and Kelvin simple, inexpensive
solutions to some very complicated problems. They all showed that controlling the

constraints in a system can be beneficial and productive.

Asillustrated in the examples, a designer does not always realize adesign is over-

constrained (or perhaps under-constrained) until it istoo late. Methods have been
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developed to help determine the constraint status of an assembly. For example, Adams
[1998] has developed atool to find the constraint status of adesign. This method will be

discussed in the next section.

2.8 USING SCREW THEORY FOR CONSTRAINT ANALYSIS

It is not the aim of thisthesis to redevel op the concepts behind screw theory as a
method for constraint analysis. A detailed description of the method can be understood
by reading Adams [1998]. In short, screw theory [Ball 1900] can be used to find whether
an assembly is under-constrained through an analysisin “twist” space or over-constrained
through an analysisin “wrench” space. If the assembly is not shown through screw

theory to fal into either of these cases, the design is exactly constrained.

To find whether a design is under-constrained, the designer must develop a twist
matrix for each joint in an assembly. In the twist matrix, each row represents one degree
of freedom allowed by the joint. A reciprocal operation (which is a series of matrix
operations described in Appendix A) transforms each twist matrix into a wrench matrix.
All the wrenches are unionized (combined into the same matrix), and the reciprocal
operation is again applied to transform the matrix into a resultant twist matrix. From this

twist matrix, any under-constraint can be detected.

To find whether a design is over-constrained, the designer must develop atwist
matrix for each joint in the assembly (these are the same twist matrices as found above
for the under-constrained analysis—they are not the resultant twist matrix). They are

initially unionized, and then the reciprocal operation isapplied. The resulting wrench
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matrix shows the over-constraint that is present. Additional explanation can be found in
Adams [1998], Adams and Whitney [2001], Whitney et. al [1999], Phillips (1984), Roth

(1984), Wadron (1966), Konkar (1993), and Konkar and Cutkosky (1995).

As an example of Adams’ constraint analysis method, consider the 2D assembly
inFig. 2.24. Similar examples are outlined in several documents [Adams 1998, 2001].
The assembly has a base block with two rigidly connected pegs. A top plate has two
features machined out such that the left peg fits exactly into the left hole of the plate. The
right peg fitsin the slot. The dimensions of the hole and slot are not under consideration;
however, the angle of the slot is allowed to vary from assembly to assembly. Note that

the specific details and calculations for this example can be found in Appendix A.

<—— 25— |€K— 4.0 —>

y

A
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<Y

Figure 2.24 — Slotted block example for Screw Theory
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To determine if this assembly is exactly constrained, twist matrices must be

found. To do so, atransformation matrix relates each feature to the partsin the assembly.

From these transformation matrices, atwist matrix can be found. Each twist
matrix will have arow for each possible degree of freedom allowed by thejoint. For
brevity, only the twist matrices are shown here. More detail on how to find the twist

matrix can be found in Appendix A.

Twist,, =[0 0 1 3 -25 0]

. 0013 -6520
Twist =

0001 0 O

A motion analysisis performed to learn if the assembly is under-constrained.
This entails applying the reciprocal operation (Appendix A) to each twist to form wrench
matrices. These wrenches are combined into the same matrix by a union, and the
reciprocal operation is applied to the unionized wrench matrix, leading to a resultant twist

matrix. For Fig. 2.24, the resultant twist matrix is empty, as shown below.

Xy z 6,0, 0,
Twist=[0 0 0 0 0 O]

Thus, for the given setup, this assembly is not under-constrained. All degrees of freedom

are constrained, and there will be no unanticipated motion.
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A force analysisis performed to learn if the assembly is over-constrained. This
time, the twist matrices are unionized at the beginning. Then, the reciprocal operation is
applied. Thefirst three columnsin the resulting wrench matrix show translation in the x,
y, and z directions. The last three columns show rotation in x, y, and z, respectively. For
this example, the wrench matrix shown below illustrates that this assembly is not over-
constrained. Based on the description above, thereis no translation in x or y, and there is
no rotation about z. Asthisexampleisonly in 2D, the over-constrained directions shown

in the wrench matrix (z-translation and x and y-rotation) do not apply.

29 THE DIRECT LINEARIZATION METHOD USED FOR VARIATION
ANALYSIS OF EC DESIGNS

The direct linearization method [DLM] is a tolerance analysis method for
assemblies [Chase, 1999]. The analysis shows the effects that tolerances from various
parts have on the overall assembly. Understanding how the tolerances propagate through
an assembly can help the designer choose good tolerances on dimensions for the parts.
The method applied to tolerance analysis by the DLM can be adjusted to perform a

“variation analysis’ for EC design.

One of the major issues in manufacturing and assembliesis variability in

dimensions from part to part. As has been suggested earlier and in literature, variability
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ismuch less of anissue for EC design. The effects of dimensional variation on EC
assemblies versus over-constrained (OC) assemblies will be explored (Chapter 6) using

the vector loops from the DLM.

Several steps from the DLM can be used to find the effects of variation in

assemblies. They arelisted here, and each is briefly described.

1. Create an assembly graph.

2. Locate the datum reference frame for each part.

3. Locate the kinematic joints and create datum paths.
4. Create vector loops.

5. Generate vector loop equations.

6. Calculate derivatives and form matrix equations.

7. Solvefor assembly sensitivities.

The general method will be illustrated with the simple assembly shown in Fig. 2.25.

Figure 2.25 — Sample assembly to show variation analysis method
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29.1 CREATE AN ASSEMBLY GRAPH

The assembly graph is a diagram representing connectivity relationshipsin an
assembly. For the given example, the diagram looks like Fig. 2.26. The assembly graph

shows that there will be one vector loop for this example.

The number of vector loops can also be determined by using a simple equation.
#Loops (L) =#joints (J) - # parts (P) + 1

Thus, for the examplein Fig. 2.26,J=3,P=3,and L = 1.

Circle Triangle

Figure 2.26 — Assembly graph

29.2 LOCATE THE DATUM REFERENCE FRAME FOR EACH PART

The datum reference frame (DRF) isalocal coordinate system for each part. The
datum reference frames for each part in Fig. 2.25 areillustrated as black solid shapes on

Fig. 2.27.

29.3 LOCATE KINEMATIC JOINTSAND CREATE DATUM PATHS

The next step isto relate all the joints to the datum reference frames established in
Section 2.9.2 through vectors that form what is called a datum path. The kinematic joints

are the contact points between parts. A datum path is achain of vectorsthat link ajoint
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to all relevant datum reference frames. The chain starts at ajoint and goesto all the

related datum reference frames for that joint.

Figure 2.27 shows an example of the datum paths. The arrows represent the

datum path vectors.

<« Vv
<

Figure 2.27 — Datum paths

294 CREATEVECTOR LOOPS

The vector loops are formed from the datum paths. The loops are formed by rules

established in Chase [1999].

1. Enter through ajoint.
2. Follow the datum paths.
3. Follow a second datum path leading to another joint.

4. Exit to the next adjacent part in the assembly.



In short, vector loops are created by linking together datum paths tip-to-tail
passing through all the joints, but not passing through any part or joint twice. The vector

loop for Fig. 2.25 isshown in Fig. 2.28.

i
4
u2
X2
o 2 y1
<1 v
- X
1
Y2 =r + height

Figure 2.28 — Vector loop for the assembly

295 GENERATEASSEMBLY EQUATIONSFROM VECTOR LOOPS

Three assembly equations per vector loop can be derived by summing all the
vectorsin the x and y-directions and by finding the overall sum of the rotations of all
vectorsintheloop. The vector loopsfor Fig. 2.28 are shown below. A non-linear

equation solver can be used to find the unknowns.

h = x, cos(0)+ y, cos(90) + x, cos(180) + u, cos(90) + r cos(90 + 6) + y, cos(270)
+u, cos(180)

h, =% sin(0)+ y, Sin(90) + x, sin(180) + u, sin(90) + r in(90 + &) + y, sin(270)
+u, Sin(180)

h,=0+90+90-90+ 6 +180 - 6 — 90 + 180
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29.6 CALCULATE DERIVATIVESAND FORM MATRIX EQUATIONS

In the case of tolerance analysis, only small changes in the components are of

interest. Finding the unknowns as stated in Section 2.9.5 is not the final goal.

Finding small changes is easily done by linearizing the vector |oop equations by a
first-order Taylor series expansion. The linearized equation for hy is shown below. All

the equations can be linearized in similar fashion.

o, o, + o, o,

o, =
oy, au,

XX, + —= 0y, +
, ay25y2 or

oh oh 0
XX+ —20, +
X . o, 5

h oh oh,
X X

5r+ahx o0 +
00

The linearized loop equations are written in matrix form. If the partial derivatives
of all known variables are placed in amatrix called [A], and the partial derivatives of the
unknown variables are placed in amatrix called [B], the vector loops are given by the

matrix equation below.

[AKax}+[Bfeu }= {0}

29.7 SOLVE FOR ASSEMBLY SENSITIVITIES

The matrix equation can be solved to find the assembly sensitivities, as shown

below.
fou}=-{BAfox}
The matrix [B™A] is the matrix of assembly sensitivities. Itisakey matrix in tolerance

analysis of assemblies because it represents how the dependent variables change with
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small variations in the independent variables. It will be used and further explained in

Chapter 5.

2.10 CONCLUSIONS

This chapter showed the history and background of EC design to better
familiarize the reader with the long history of this method. It also described over-
constrained and under-constrained designs. Examples were presented that helped to

illustrate some of the benefits of EC design when properly used.

Rules for the placement of constraintsin an EC design and a method to find the
nesting force window were presented in this chapter. Chapter 3 will take thisinformation
and validate it through a quantitative means. Chapter 4 will continue to build upon that

foundation by presenting a generalized method to analyze EC design.

Screw theory was applied in this chapter to determine the constraint status of a
design. It will berevisited in Chapter 5 during the formulation of a method to find a

measure of “goodness” for EC designs.

Finally, the background and steps for the DLM were presented in preparation for
Chapters 5 and 6. In Chapter 5, it will be used to help establish a method to find the
“goodness’ of EC designs. In Chapter 6, it will be used to help validate the claim that EC

designs are more robust than over-constrained designs.
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CHAPTER 3 VALIDATION OF THE CURRENT RULESAND METHODS FOR
EXACTLY CONSTRAINED DESIGN USING A QUANTITATIVE
FOUNDATION

3.1 INTRODUCTION
Chapter 2 presented the fundamental concepts and current methods that exist for
generating exactly constrained (EC) designs. In addition, examples were given which

illustrated the advantages allowed by EC design.

Kriegel’ s baffle example [1994] especially showed the efficiency and strength of
EC design. The final solution was more robust than previous versions, and the tolerances
did not control the overall design and function of the baffle. In addition, the threat of

binding or tearing of key parts disappeared.

However, considering the strength of the methodology, relatively few designs use
the principles of EC design. And, despite pleas to include some of the basic principles of
EC design in engineering curriculum [Kriegel, 1994], the material is largely unknown to
the engineering community. One reason for the apparent oversight may be the lack of a
solid quantitative foundation for the rules, principles, and design methods already in

practice for EC design.
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If thisisthe case, EC design need not be so unfamiliar to the engineering world.
The reason is that the mathematical premise for EC design rests in basic engineering
principles. It has been independently observed by the author and others (Hammond and
Parkinson [2003], Kamm [1993)]) that EC designs can be analyzed quantitatively based

on the following principle:

Exactly constrained designs are statically determinate.

With this definition in hand, the heuristic rules established by Blanding can be
validated based on the equations of equilibrium. A review of the basic rules governing
the application of the equations of equilibrium will be followed by several sections

validating the rules and guidelines established through years of experience for EC design.

3.2 STATICALLY DETERMINATE ASSEMBLIES

Forces acting on an assembly come in two forms: applied forces and reaction
forces. An applied force is an external force which pushes or pulls on the assembly, such
asanesting force. A reaction forceis the resulting force at any joint or constraint of the

assembly.

If an assembly is statically determinate, it means that the equations of equilibrium

can be used to find all the unknown (reaction) forcesin asystem. It iscommonly known

that the sum of the forces must equal zero for asystem in static equilibrium. If al of the
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forces are not pointing in the same direction, they must be broken down into their

directional components before they can be summed together.

2F

I
o

OR
SFc=0
SF,=0

M =0

Because EC designs are statically determinate, the equations of equilibrium can
be used to analyze them. Later in this chapter, the equilibrium equations will be used to

validate the rules that have been established for EC assemblies.

First, however, recall from Chapter 2 that no two constraints should be co-linear.
Nevertheless, there are some situations where the equations of equilibrium require co-
linear constraints. Therefore, a brief discussion will first explore the various force
systems (two force, three force, four force, etc.) that can be analyzed using the equations
of equilibrium, and this discussion will show which kinds of force systems qualify as an

EC design.

321 TWO-FORCE MEMBERS

Recall that Newton’s laws require that the sum of the forces for asystemin

equilibrium must equal zero. If only two forces act on a system, those forces must then
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be equal in magnitude, opposite in direction, and co-linear in placement. Otherwise, the
forces would not properly balance, and some motion would occur. Figure 3.1 shows an

example of atwo-force member.

Figure 3.1 — Two-force member

While the two-force member will not rotate as long as the forces are co-linear, the
member itself is not constrained from motion. Any applied force will cause this system
to no longer bein equilibrium. Therefore, atwo-force member cannot be exactly

constrained.

3.22 THREE-FORCE MEMBERS

Again, for any system in equilibrium, the forces must balance and sum to zero.
Therefore, if only three forces are acting on a system, the lines of action for the forces
must intersect at apoint. Otherwise, the force whose line of action does not intersect the
other two lines at the same point would cause a resultant moment about the instant center
of the other two forces. It should be noted that none of the constraints have to be co-
linear, only that all three forces must be concurrent at the same point. Figure 3.2 shows

an example of athree-force member.
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Figure 3.2 — Three-for ce member

Asin the two-force member, there is nothing actually constraining this three-force
member. Itisin equilibrium aslong as no outside forces displace or cause the member to

rotate. Itisnot an EC design.

3.2.3 FOUR FORCESIN A SYSTEM

Especidly in 2D space, afour-force assembly provides more design flexibility
than the two or three force systems because the attributes (direction, magnitude, and point
of contact) of each force no longer must follow such rigid restrictions to maintain
equilibrium. Equilibrium can be maintained with many different configurations of the
forces. All attributes for each force can vary according to the needs or limitations of the

design.

If the four forcesin the system are all reaction forces, the system is statically
indeterminate, and the equations of equilibrium cannot be used. If there are at most three
reaction forces, which would make the final force an applied force, the system is

statically determinate and the equations of equilibrium can be applied.
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An EC design can be afour-force system if there are at most three reaction forces
(constraints) and one applied force (aresultant nesting force). The three reaction forces
must be placed in such a manner as to constrain the motion in each direction only once.

The nesting forceis required to keep the assembly seated.

3.24 FIVE OR MORE FORCESIN A SYSTEM
An assembly with five or more forces can only be statically determinate if there
are no more than three reaction forces that constrain three different degrees of freedom.

All remaining forces must be applied forces.
This condition could exist, for example, asin Fig. 3.3. Inthis EC design, there

are three reaction forces (one at each constraint), and one nesting force perpendicular to

the block in each necessary direction. This EC assembly is statically determinate.

\vi
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Figure 3.3 — Statically deter minate block



Again, four or more reaction forces leave the assembly statically indeterminate. 1t

also makes the design over-constrained.

3.3 VALIDATING THE RULESFOR EXACTLY CONSTRAINED DESIGN

With this explanation of forcesin a system, two main considerations for EC
design can be validated using the equations of equilibrium. First, the rules established by
Blanding [1999] will be quantitatively validated by using the equations of equilibrium.
Then, the nesting force window will be constructed using the equations of equilibrium,
and the results will be compared to the nesting force window found by the graphical

approach.

This section will vaidate the rules for 2D EC assemblies using simple examples
in conjunction with the equations of equilibrium. As mentioned in Chapter 2, Blanding's

rulesfor 2D assemblies can be summarized in four points [ Skakoon, 2000].

1. No two constraints should be co-linear.
2. Nofour constraints are in asingle plane.
3. Nothreeconstraints are parallel.

4. No three constraints should intersect at a point.

3.31 NO TWO CONSTRAINTSSHOULD BE CO-LINEAR

The equations of equilibrium validate the rule that no two constraints should be

co-linear in an EC design. Remember that there are at least four forcesin an EC design:
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three reaction forces and one or more nesting forces. In general, if any two of the three
reaction forces become co-linear, they will not be able to resist amoment, and motion
(such as “wobble”) may result. The equations of equilibrium make it easy to understand
this general result: the two reaction forces of the co-linear constraints can no longer act as

aforce couple and resist amoment applied by the nesting force.

As an example, Fig. 3.4 shows a block with three edge slider constraints. The
dimensions can be found in the figure. Constraints 1 and 2 do not move during the
analysis, however, constraint 3 is allowed to slide along the top of the block in the x-
direction. Note that while the nesting forces to seat an assembly in the translational
directions are usually applied perpendicular to the surface of an assembly, for smplicity,
one resultant nesting force is here placed at a 45° angle to the side of the block to provide

the necessary seating in the x and y-directions.

v

height = 6.667 units
width = 10 units

Fn =1 unit
yL
@ * Mg o

Figure 3.4 — Block with three constraints
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To mathematically see what happens when constraints 1 and 3 line up, a moment
is taken about M, (which isthe instant center between constraints 1 and 2, thus allowing
R; and R, to fall out of this stage of the analysis) to find the reaction force on constraint 3
asit moves along the top of the block. The valuesfor R; are plotted on a graph to see the

results.

Figure 3.5 shows the results of the moment analysisin Excel®. (Please note that
while the overall results are presented here, the detailed analysis may be found in
Appendix B.) When constraints 1 and 3 line up, the reaction force Rz (constraint 3)

necessary to keep the block immobile goes to infinity!

R; as C3 moves along the top of the block

T
2 \g

X3

Figure 3.5— Reaction force on Cz required to keep the block immabile

As noted earlier, the co-linear reaction forces on constraints 1 and 3 cannot resist
the moment caused by the nesting force. Aswill be described in more detail later in this
thesis, the block becomes over-constrained in the y-direction, and under-constrained in

rotation.
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This ssimple example quantitatively demonstrates the information presented in the
first paragraph of this section. Although only one simple example has been presented,

the result isgeneral. No two constraints should be co-linear.

It should also be noted that this example violates another rule when two constraint
lines become co-linear: no three constraint lines should intersect at a point. These two
rules are ssmultaneously violated because of the use of the edge slider joints to constrain
the assembly. The rule that no three constraint lines should intersect at a point will be

investigated later in this chapter.

3.3.2 NO FOUR CONSTRAINTSARE IN A SINGLE PLANE

Figure 3.6 shows asimilar block to Fig. 3.4, only now there are four constraints
instead of just three. A quick glance at the number of reaction forces shows that this
block has four unknowns. The equations of equilibrium only provide three equations for

three unknowns, and thus the block is statically indeterminate.

v
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Figure 3.6 — Block with four constraints
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A brief look at the constrained degrees of freedom can also show the over-
constraint that is present. Constraint 1 eliminates translation in the y-direction.
Constraint 2 eliminates translation in the x-direction. Adding constraint 3 now eliminates
any rotation. The nesting force ensures that contact is maintained with each constraint.
Thus, constraint 4 is ssimply competing with constraint 2 to eliminate translation in the x-
direction, and this block is over-constrained. Skakoon states, “ Since there are only three

constraints required or possible in one plane, four would be over-constrained” [2002].

In general, if there are more unknowns than equations of equilibrium, the
assembly is statically indeterminate and over-constrained. Additional information would

be required to find all the reaction forces.

In order for this part to correctly assemble, either some type of deformation to the
block would be required for all four constraints to be touching it, or the tolerances would
have to be very tight to ensure a perfect fit. Regardless, no four constraints are allowed

in asingle plane for an EC design.

3.3.3 NO THREE CONSTRAINTSARE PARALLEL
Figures 3.7 and 3.8 show equivalent assemblies. Each assembly has three parallel
constraint lines. A simple ook at the degrees of freedom shows the block is over-

constrained in the y-direction, and under-constrained in the x-direction.

59



When trying to apply the equations of equilibrium to these assemblies, the force
equation in the x-direction disappears. It will not sum to zero if the nesting forceis
applied in any way to the x-direction. Regardless, there remain three reaction forces to
be found by two equations (one equation to sum the forces in the y-direction and one

moment equation), and the assembly is again statically indeterminate.
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Figure 3.7 — Block assembly with three parallel constraints
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Figure 3.8 — Similar block assembly with three parallel constraints
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Suppose another constraint is added, asin Fig. 3.9, to inhibit motion in the x-

direction. The over-constraint in the y-direction does not go away.

i

L,

/e /e

Figure 3.9 — Adding an x-constraint to the block

3.34 NO THREE CONSTRAINTSSHOULD INTERSECT AT A POINT

Figure 3.10 shows a simple triangle with three constraints. Constraint 3is
allowed to move along the right side of the part, while constraint 1, constraint 2, and the
nesting force remain fixed in the positions shown. The reaction forces are found using
the equations of equilibrium, and the baseline results for R3 are shownin Fig. 3.11.

Again, the detailed results can be found in Appendix B.
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height = 6 units
base = 6 units

X1o = 3 units
Y12 = 2 units

(o

Figure 3.10 — Triangle assembly with three constraints

R;as C;moves along the right side of the triangle
10
g /
6 J
4 /
- 2
£ 0 ‘ : : : ‘
T, 35 4 4 5 —F5 |
4 y
6 /[
5 |
10 [
X3

Figure 3.11 — Reaction force on C3 required to keep the block immobile

Asin the case with two co-linear constraints, when all three constraint lines
intersect at a point, the assembly cannot resist a moment caused by the nesting force.

Thisfact isshown in Fig. 3.11 where Rz goes to infinity when the three constraint lines
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intersect. The equations of equilibrium thus show that no three constraints should ever

intersect at a point for an EC design.

Although shown here through a simple example, thisresult is general for al 2D
EC assemblies when three constraint lines intersect at apoint. In this case, the equations
of equilibrium show that the moment equation goes to zero on the left hand side (all
reaction forces go to zero because the sum of the moments about the point of
intersection—IC,—leaves no reaction forces); however, when the nesting forceis
applied, the right hand side of the moment equation is no longer zero. The assembly
cannot resist the moment caused by the nesting force, and the equilibrium conditions are

not satisfied.

3.35 SUMMARY OF THE RULES
Table 3.1 gives asummary of the results outlined above. While each rule was

only illustrated with one simple example, these rules are general and hold for all EC

assemblies.
Table 3.1 — Summary of theresultsfor therules
Rule Why it will not work for EC design
No two constraints should be co-linear Moment equation will not sum to zero
No four constraints are in asingle plane Statically indeterminate
No three constraints are parallel Statically indeterminate
No three constraints should intersect at apoint | Moment equation will not sum to zero
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3.4 NESTING FORCE WINDOW
One of the most important considerationsin EC design relates to the placement of
the nesting force. As mentioned in Chapter 2, thereisa“window” that shows the

appropriate locations where a nesting force may be applied.

This section will use the equations of equilibrium to illustrate how to find the
window in aquantitative fashion. This quantitative approach will then be compared to

the graphical approach presented in Chapter 2.

341 QUANTITATIVE APPPROACH TO FIND THE NESTING FORCE
WINDOW

The equations of equilibrium provide a straightforward, quantitative approach to
find the nesting force window. For thisthesis, each constraint is represented as a reaction
force in compression on the block. The nesting forceis an applied force, alsoin
compression. All of the forces are summed in the x and y-directions, and a moment is
taken about some point on the assembly. Solving these equations will find the reaction

forces, given adeterminate system of constraints.

If any of the reaction forces are in tension (recognized as a negative value from
the equations) for a given placement of the nesting force, that point on the assembly is
not allowed in the window. Conversely, for any point along the assembly where all
reaction forces meet the compression criteria (all forces are positive), that positionisa

valid point in the nesting force window.



Figure 3.12 will now be used to show how the nesting force window can be found
using the equations of equilibrium. All the constraints remain fixed in the given
positions, and the nesting force is allowed to slide along each edge of the assembly. The
reaction forces are calculated for several points along the path of the nesting forcein
order to determine the allowable window. Only one nesting force is applied, and it is
always perpendicular to the surface/edge of the assembly. Note than only one nesting
force is necessary because, coupled with the directions of the reaction forces, it provides

the necessary directions of force to seat the assembly.

A height = 6 units

width = 6 units
13 X1 =3.0units  y; =0.0 units
Xy = 1.5 units Yo = 3.0 units
IC X3 = 3.56 units Y3 = 4.875 units

Figure 3.12 — Triangle assembly example used to find the nesting for ce window

To begin, amoment is taken about point IC,,, and the appropriate equations for
Rs are developed. Note that in this example, “left” refersto when the nesting force

moves along the | eft edge of the assembly, “right” refers to when the nesting force moves
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along the right edge of the assembly, and “base” refers to when the nesting force moves

along the base edge of the assembly.

R — Fn cos(e)*(ylz—yn)+Fnsin(49)*(x12—xn)
s Sin(ﬁ)* (Xs - X:LZ)_ COS(H)* (Y:a - Y12)

R Fycos(0)+(y, - i) - F sin6) (%, — %)
e Sin(e)* (Xa — Xp )_ COS(Q)* (ys - ylz)

Fn(xn — X12)
sin(G)* (X3 - X12)_ COS(H)* (ys - y12)

RB-BASE =

To find the window for the whole system, the other two reaction forces must al'so
be found. Thus, forces are summed in the x-direction to find R,. And finally, the forces

are summed in the y-direction to find R;.

_ Fycos6)- R, cos(6)

IQZ—LEI-—I' - _ COS(Q)
R _ F,cos(6)+ R, cos(6)
2-RIGHT —
cos(6)
RZ-BASE = R3

R, e = F,sin(@)+ R,sin()+ R, sin(9)
Rirer =F sin(9)+ R, sin(9)+ R, sin(é?)

Rigase =—F + stm(e)"‘ R3Sin(9)
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For simplicity, Fig. 3.13 shows the results of the equationsin a graphical
representation based on the detailed calculations shown in Appendix B. The bolded lines
in Fig. 3.13 show the points along the figure where the nesting force is NOT alowed
because the reaction forces as found in the equations of equilibrium do not all stay
positive. All other points on the assembly are valid positions for the nesting force

because the reaction forces show that the constraints stay in contact with the part.

Figure 3.13 — Nesting for ce window accor ding to the equations of equilibrium

342 COMPARISON BETWEEN GRAPHICAL AND QUANTITATIVE
APPROACHES

Recall from Chapter 2 that Blanding uses a graphical method to find the nesting
force window based on instant centers, constraint lines, proper rotations, etc. Figure 3.14

shows the window as found by the graphical method for the triangle assembly example.
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‘23 ~UC
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(© (d)

Figure 3.14 — Finding the nesting for ce window using the graphical method (a) An
assembly with three constraints (b) Finding instant centersfor the constraints
(c) Removing constraint Cs to find therotation the nesting force must exert on
the part to restor e contact with the constraint. (d) The nesting for ce window—
neither the nesting force nor theline of action of the nesting for ce can pass
through the darkened triangle.

How does the window found by the equations of equilibrium compare to that

found by the graphical method? Before this question can be answered, Fig. 3.14d must
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be transformed to match the representation of Fig. 3.13. Thistransformation issimply
accomplished by applying a force to each segment of the assembly. If the force
maintains the proper rotation through all necessary instant centers, that segment of the
assembly boundary is allowed. Figure 3.15 shows a comparison of the two methods, and

it appears that the two methods match.

Cy

(@ (b)

Figure 3.15 — Nesting for ce window comparison (a) The graphical method
transformed (b) The window found with the equations of equilibrium

In order to determine just how similar the windows are to each other, the point at
which the window transitions from the acceptable to unacceptable region was found for
the graphical method and compared to the point of transition found from the equations of
equilibrium. The detailed explanation and results of this analysis can be found in
Appendix C. From the analysis, the results show that the nesting force windows are the

same, within round-off error.
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Thus, the nesting force window can effectively be found using the equations
equilibrium. They in fact provide a more fundamentally basic approach to find the
window because they show the designer when and why the design will or will not work

according to the position of the nesting force.

3.5 CONCLUSIONS
In conclusion, the equations of equilibrium become avery simple yet powerful
tool by which to analyze EC design. Both the rules established through years of

experience and the nesting force window were validated using these basic equations.

However, looking at every point along the surface of the assembly is rather
cumbersome and tedious. Chapter 4 will present a generalized method using the
equations of equilibrium to more efficiently find both the nesting force window and the

configuration(s) when assemblies violate EC design rules.
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CHAPTER 4 GENERALIZED METHOD TO USE THE EQUATIONS OF
EQUILIBRIUM IN EXACTLY CONSTRAINED DESIGN

41 INTRODUCTION

Chapter 3 provided a quantitative validation for exactly constrained (EC) design
based on the equations of equilibrium for the rules governing the placement of constraints
and the nesting force window. Various simple examplesillustrated how the rules
established through heuristics and years of experience agree with the results from the

equations of equilibrium.

Chapter 3 aso identified two main design considerations for EC design. First, the
location of the constraints must not violate any EC rules. Second, the nesting force can
only be placed in a certain region, denoted as the “nesting force window.” With the

equations of equilibrium, both these considerations may be analyzed and predicted.

The work in Chapter 3 applied the equations of equilibrium from point-to-point
along every surface in an assembly to find the resultant reaction forces given a certain
nesting force. Validating the rules with simple examples adds strength and integrity to

the existing methods, and it begins to lay the quantitative foundation for EC design.
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However, it is quite inefficient to analyze each point along the surface of an
assembly to determine whether the design meets the criteriafor EC design. A stronger
foundation could be built by generalizing the method to analyze EC design. Rather than
look at each point along the surface of the assembly, a more efficient method utilizes the

equations of equilibrium to inspect or predict the behavior of adesign.

Chapter 4 presents a generalized method to quantitatively analyze an EC design.
First, the equations of equilibrium are set up in ageneral matrix form, Cr = b, based on
the initial locations of the constraints in the design. Then, a general method will be
introduced to find the nesting force window, followed by a general approach to either

inspect or predict the behavior of an EC design.

4.2 INITIALIZING THE ANALYSISFOR EC DESIGN

The first step to generalize the quantitative method to analyze EC design isto set
up the equations of equilibrium in matrix form, Cr=b. To initialize the set-up of the
matrix, all necessary information for each reaction and nesting force must be known or

assumed.

Each force is defined by three attributes: a magnitude, a direction, and a point of
contact. The magnitudes of the reaction forces are unknown, but they can be found by
solving the equations of equilibrium, given the nesting force(s). For the examples
presented in this chapter, the positive direction for the reaction and nesting forces are
assumed to be in compression. The point of contact for each reaction force may be

known or assumed. Initially, the point of contact for the nesting force must be assumed,
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but a method to find an acceptable point of contact will be presented in Section 4.3, and it

will be more fully utilized in Section 4.4.

With the initia information defined, the generalized process can begin by
formulating the equations of equilibrium and setting them up in matrix form to find the
reaction forces. Figure 4.1 introduces an example that will be used throughout the

chapter to illustrate each step in the general process.

v

height = 6.667 units
width = 10.0 units

Fnl =1 unit

y <— Fn2 Fno =1 unit
[} ° My, X1 =2.0units yq = 0.0 units
x X2 =0.0units y2 =2.5units

x3 =8.0units y3 =6.667 units
Xpn1 = 5.0 units  yp1 = 0.0 units

i E T Xn2 = 10.0 units yn2 = 3.5 units

Fn1

Figure 4.1 — Block with 3 constraintsto be used for generalized method

This assembly uses two nesting forces, thus allowing them to be perpendicular to
the block, while still seating the assembly in both the x and y-directions. Remember that
the positions of the nesting forces are assumed. It would be just as reasonable to assume

that the vertical nesting force, denoted Fr;, could be along the top of the block.
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From the information provided in Fig. 4.1, the equations of equilibrium are set up
in matrix form, Cr = b. The moment equation is summed about the point M1,, which
corresponds to the coordinate values for x; and y,. After forming the matrix equation, it

can be solved to find the reaction forces.

+O YMp=0 - R3(X3 - X12)+ Fnl(xnl - X12)+ Fnz(ynz - ylz) =0

+= YF=0 R,-F,=0

+1 TR0 R -R,+Fy=0

00 —(X3—X12) Rl _Fnl(xnl_XIZ)_FnZ(ynZ_y12)

1 0 R, |= F.,
10 -1 R, -F,
R1 00 (X12 - Xa) - Fnl(xnl - X12)+ Fn2 (y12 - ynz)
R, |=|0 1 0 F,
R, 10 -1 -F,

The information from Fig. 4.1 can be plugged into the matrix equation above to

find the numerical values for the reaction forces. They are shown below.

R] [-0333
R |=| 1
R,| | 0667
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While setting up the equations of equilibrium as a system of linear equationsis
not new, it isavery important step in generalizing the design method. Using thisbasic
process to find the reaction forces, an efficient method to find the nesting force window

can be presented.

4.3 GENERALIZED METHOD TO FIND THE NESTING FORCE WINDOW

An applied nesting force can only sit within a specific range of the assembly. It
will be shown later on that the nesting force window depends upon the location of the
constraints. However, for a given placement of the constraints, the nesting force window

can be found.

Recall in Chapter 3 that the nesting force window was found by analyzing many
points along each side of the assembly. However, here, amore general approachis

presented where the nesting force window is generated based on transition points.

4.3.1 DEFINITION OF TRANSITION POINTS

To begin generalizing the method to find the nesting force window requires the
understanding of one significant term: atransition point. The transition point is any point
on an assembly at which the unacceptable portion of the nesting force window transitions
to an acceptable region of the window. Figure 4.2 shows the transition points found in

Fig. 3.13.
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Transition point v\/’\

) . .
} Transition point
/

Transition point

Figure4.2 — Transition points marked on the triangle assembly from Fig. 3.13

The acceptable region of the nesting force window shows the possible locations
for the nesting force that make all reaction forces greater than zero. This definition

physically meansthat all constraints would be in compression on the part.

The unacceptable region of the nesting force window shows the possible
locations for the nesting force that make any one or more of the reaction forces negative.
This definition physically means that one or more of the constraints would need to bein

tension, instead of compression, for equilibrium.

The point at which the acceptabl e region and the unacceptable region come
together is the transition point. To further clarify, aportion of the point-by-point force
analysis from Chapter 3 isshownin Fig. 4.3. This section of the force analysis

corresponds to the transition point located along the | eft surface of the assembly in Fig.
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4.2. Noticein Fig. 4.3 that R; and R3 turn positive when the x-coordinate of the nesting
force, Xy, isabout 1.45 units. However, R, is still negative. R, does not transition out of
the negative region until x, isat 2.4375 units. Based on the requirement defined earlier
for thisthesisthat all reaction forces must stay in compression to the main part, the
transition point does not happen until al reaction forces have turned positive; therefore,
the transition point in this caseis at (2.4375, 4.875). Notice that the value of R; at the
transition point is zero; therefore, the transition point itself is technically in the infeasible

region.

Reaction Force values:
R; and R, are along the same line

REACTION FORCE VALUES
o
MY N ;
{
.

Xn

[~ @ R3 —m—R2 R1 O Transition points O

Xn Yn Rs Ry Ry
13 2.6 -0.14959 -1.149592 -0.14959
14 2.8 -0.04853 -1.048529 -0.04853
1.45 29  0.002003 -0.997997 0.002003
15 3 0.052534 -0.947466 0.052534
16 3.2  0.153597 -0.846403 0.153597
17 34 0.25466 -0.74534 0.25466
18 3.6 0.355723 -0.644277 0.355723
19 3.8 0.456786 -0.543214 0.456786
2 4 0.557849 -0.442151 0.557849
21 4.2 0.658912 -0.341088 0.658912
22 4.4  0.759975 -0.240025 0.759975
23 4.6 0.861038 -0.138962 0.861038
24 4.8 0.962101 -0.037899 0.962101

24375 4.875 1 0 1
25 5 1.063164 0.0631644 1.063164
26 52 1.164227 0.1642274 1.164227
2.7 54 1.26529 0.2652905 1.26529
2.8 56  1.366353 0.3663535 1.366353
29 5.8 1.467417 0.4674165 1.467417
3 6 1.56848 0.5684795 1.56848

Figure 4.3 — Transition points shown in aforce analysis
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To quickly find the nesting force window, the x and y-coordinates of the
transition points on each surface must be found. It is now possible to present asimple,

yet powerful method to efficiently find the nesting force window.

43.2 PRESENTATION OF THE GENERALIZED METHOD
By understanding the transition points, the nesting force window is generated

through a series of simple steps.

1. Find al possible transition points from the equations of equilibrium.
2. Determine which side of the transition point is allowed and which is not.

3. If desirable, draw the window on a sketch of the assembly.

STEP1: FIND THE TRANSITION POINTS
The first step to efficiently define the nesting force window isto find the
transition points. Recall from Fig. 4.3 that the transition point is simply where one
reaction force has gone to zero, and the other reaction forces are positive. Therefore,
rather than evaluate every point on the surface of the assembly, it is only necessary to

find if and where each reaction force goes to zero along each surface.

To find the transition point, therefore, first requires that the equations of
equilibrium be set-up in matrix form as outlined in Section 4.2. After formulating the
matrix equations for each possible surface where the nesting force may be placed, any

simple iteration routine may be used to find the transition point.
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For thisthesis, asimple and well defined optimization routine called the
generalized reduced gradient (GRG) method (as found in Microsoft Excel’s Solver®) will
be used to find the transition points. As the equations of equilibrium represent a system

of linear equations, the GRG algorithm will easily converge to the transition points.

As with any optimization routine, the design variables and design functions
(optimization constraints and design objective) must be defined. The design variables are
the x and/or y-coordinates of the nesting force. Remember that an initial point of contact
for the nesting force is assumed in the set-up. That initial guess gives the optimization
routine somewhere to begin. In many cases, once the x-coordinate has been chosen, the
y-coordinate is set based on the geometry of the surface; therefore, an optimization
constraint may define any relationship between the x and y-coordinates of the assembly
surface. Three additional optimization constraints are defined to require the reaction
forces to stay greater than or equal to zero. The objective function isto make each
reaction force go to zero on each surface of the assembly. Thus, the optimization routine

will be run three times per surface to find al possible transition points.

It isworthy to note that the objective function is not defined in the traditional
sense. Usually, the objective function would be “maximized” or “minimized”. However,
using the capabilities of Excel®, it is possible to drive the reaction force to a specific
target value. Asthe transition points will happen when one reaction force is at a value of
zero, the objective function for this routine will be to drive each reaction force to a target

value of zero.
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The transition points will now be found for the assembly in Fig. 4.1. Because

there are two nesting forces, the nesting force window analysis will be performed in two

steps. The transition points related to the vertical nesting force will be found first. Then,

the horizontal nesting force will be added to the assembly to find its transition points.

This method isaform of superposition, and it can be shown to work the same as having

both nesting forces applied from the start and iterating through locations until the

transition points can be found. This approach will be used to maintain clarity and

simplicity.

Figure 4.4 shows the assembly asit will be analyzed to find the transition points

along the base. Applying the values shown in Fig. 4.1 generates the matrix equation to

be used for this optimization routine.

C3

>

Fn1

Find xn1

Subject to constraints:
R1>=0

R2>=0

R3>=0

When Ry =0
Then R =0
Then R3 =0

ST f" T _______ —" "2 transition points?

Figure 4.4 — Finding transition pointsfor the bottom surface
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0 0 -06|R -0.3

01 0 |R|=| 0

10 -1|R, -1
Cr=b

R] [-167 0 1]-03] [-05

R|=| O 1 0| 0 |=| O
R,| |-167 0 0 -1 0.5
r=C?

Notice that R; is negative. The negative sign gives the indication that the initial
placement of the nesting force (Xn1 = 5.0 units) is not in the nesting force window. The

initial guess happens to be in the infeasible region.

Using Excel’s Solver® to find the transition points, the first objective function
(called the target) will be Ry. It must equal avalue of 0.0. The design variable (changing
cell) will be x,; (which currently sits at 5.0 units). The only optimization constraints
defined will be that each reaction force must be greater than or equal to zero (R; >0, R,
>0, R3 >0). Solving the routine finds where the nesting force resides when R; goesto

Z€Ero.

R 0
R, | =] 0| when Xn = 8.0 units, yn1 = 0.0 units
R, 1

As all reaction forces are greater than or equal to zero, thereisatransition point along the

base of the block at (8.0, 0.0).
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Note that because the horizontal nesting force has not yet been added onto the
problem, R, will always be zero. It is not necessary to investigate it as an objective

function at this point.

Thus, the next optimization routine for the base surface of this assembly will be to
find when Rz equals avalue of 0.0. However, because of the optimization constraints (all
reaction forces must be greater than or equal to zero), the routine finds that there are no
transition points for when R3 is driven to zero along the base. Thus, only one transition

point isfound along the base of the block, as shown in Fig. 4.5.

v

@ ® Mjp
A transition point

Figure 4.5 - Transition point found along the base

Next, the transition points aong the top of the block will be found. Figure 4.6
shows the assembly with the problem definition for the nesting force window along the

top of the block.
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< 7 -~ >» transition points?
Find xp1
Subject to constraints:
R1>=0
R2>:O
[} ® M1z R3>=0
When R1 =0

L3 Then R2 =0
A ThenR3 =0

Figure 4.6 — Finding the transition pointsfor thetop surface

Equations are reformul ated based on the nesting force’s current position. The
initial coordinates of the nesting force on the top surface are x,; = 5.0 unitsand y,; = 6.67

units.

0 0 -06|R 0.3

01 0 |R|=|0

10 -1]|R, 1
Cr=b

R] [-1.67 0 1]0.3] [ 05

R|=| 0 10[0]= 0
R | |-167 0 0| 1| |-05
r=C"b

The transition points can now be found. R;will be driven to avalue of zero

(objective function) as xp; is allowed to translate along the top surface. However, asR;
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drivesto zero, the optimization constraints cannot be satisfied. There are no transition

points found from this optimization run.

Now, the other two reaction forces must be driven to zero. Again, R, will always
equal zero for the given configuration because there is no horizontal nesting force
assumed on the block yet. Therefore, only Rsisleft to be driven to zero in order to find

any transition points.

R 1
R, |=10| when Xq = 2.0 units, yn1 = 6.67 units
R, 0

All reaction forces are greater than or equal to zero, and this point is atransition
point for the nesting force window. Figure 4.7 shows all the transition points currently

found.

transition point W

I} * Mip
A transition point

Figure 4.7 — Transition points along the top and bottom surfaces




Now that the transition points for F,; have been found, the horizontal nesting
force, Frp, Will be added to the assembly. Notice that F,, cannot be placed on the left side
of the block because it would cause the block to displace in the x-direction. Figure 4.8
shows the problem definition to find any transition points associated with the right

surface of the block.

Py ; ‘| transition points?

1 \
,'I \ Find yn2
B Subject to constraints:
: 6: — Fn2 Elxg
| >=
| ' 2

@ ® Mqio X \ R3>:0
'; . WhenR1 =0
an ThenR2 =0

A T I ThenR3=0

Fn1

Figure 4.8 — Finding the transition pointsfor theright surface

After substituting in the coordinate values as shown in Fig. 4.1 (except now F; is
placed at X1 = 8.0 and yn; = 0.0), the reaction forces are found (see below). Notice that

they are positive, and the initial guess for Fn, liesin the feasible region.

0 0 -6|R -7

01 0|R,|=]1

10 -1|R| |-1
Cr=b
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R] [-0167 0 1-7] [0.167

R| |-0167 0 of-1| |1.167
r=C"'b

The optimization routine can now find the transition points on the right surface.

First, yn2 will be allowed to change as R; goes to zero.

R 0
R, |=|1| when Xy =10 units, yn2 = 2.5 units
R, 1

All values are greater than or equal to zero, and thus (10, 2.5) isatransition point. Note
that R, cannot have any other value than 1.0 because the forces must balance. Finaly,
running the routine to find the value of yn, when Rz goesto zero shows that R3 never goes
to zero. Thus, only one transition point isfound. Figure 4.9 shows the assembly with all

the transition points.

transition point W

[> * Mjp2 @ transition point
A transition point

Figure 4.9 — The block assembly with all transition points
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With all possible transition points found, the next stage in the processisto find
which side of each transition point is acceptable and which isnot. That process will now

be explained.

STEP 2: DETERMINE WHICH SIDE OF THE TRANSITION
POINT ISALLOWED AND WHICH SIDE ISNOT

To find the acceptable side of each transition point requires an examination of the
reaction forces for some other point along each surface. A good point to use would be

theinitial guessfrom step 1 for the location of the nesting force.

For example, recall that while finding the transition point for the base of the
block, theinitial nesting force position (x,1=5.0 units) led to a negative reaction force.
Therefore, the nesting force is not allowed to the left of the transition point on the base
surface. Figure 4.10 illustrates this unacceptabl e region as athick, bold line. Hence, the

region to the right of the transition point is allowed in the window.

i v

@ . My <
r

Figure 4.10 — The nesting force window on the bottom surface. The bolded portion
of thelineisthe unacceptableregion.
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The same procedure can be done for the other two transition points. For the top
surface, theinitial guess of x,; = 5.0 units led to a negative reaction force. Therefore, al
points to the right of the transition point along the top surface are not allowed. When yy,»
was 3.5 units, the reaction forces were all positive. Thus, everything above the transition

point on the right surface is allowed in the nesting force window.

STEP 3: IF DESIRED, DRAW THE NESTING FORCE
WINDOW ON A SKETCH OF THE ASSEMBLY

It is often easier to visualize the nesting force window if it is drawn on a sketch of
the assembly. Figure 4.11 shows the block assembly with the nesting force window
drawn. The thick, bolded lines represent the unacceptable locations for the nesting force.
It is easily seen that the nesting force window found using the general quantitative

method matches the window found by the graphical method outlined by Blanding [1999].

kv

b’ * My
/e

Figure4.11 — The nesting force window for the block assembly. The bolded portion
isthe unacceptable region of the window.
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Thus, the nesting force window can easily be found using the equations of
equilibrium to locate transition points. This simple procedure will now be used as part of

the generalized method to quantitatively analyze EC design.

44 GENERALIZED METHOD TO QUANTITATIVELY ANALYZE EC DESIGN

Chapter 3 showed how the equations of equilibrium can be used to analyze an
assembly from point-to-point. Now, all the information presented in this chapter will be
brought together to show a general, more efficient method to quantitatively analyze EC

designs.

There are two primary reasons to analyze any EC design: to inspect the design to
make sure all criteriaare met for an EC assembly, or to make predictions about the
behavior of the design. First, ageneral method will be presented in Section 4.4.1 to
inspect an EC design. A very similar method will be presented in Section 4.4.3 that

predicts unwanted and avoidable behavior of an EC assembly for design purposes.

441 GENERAL METHOD TO INSPECT EC DESIGN

It is the purpose of this section to present a general method using the equations of
equilibrium to verify that an assembly complies with the rulesfor EC design. Itisa
useful method when the designer ssmply wants to inspect or check an assembly. (Section
4.4.3 will show a general method that will predict when an assembly violates EC rules so

unwanted configurations can be avoided.) Four steps define the procedure.
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1. Find the reaction forces using the method outlined in Section 4.2.

2. Veify that the reaction forces meet EC design rules.

3. If necessary, determine the appropriate changes to bring the assembly into
compliance.

4. Find the nesting force window to appropriately place the nesting force.

Each step will be explained. Figure 4.1 will continue to be used to illustrate how

the method works.

STEP 1: FIND THE REACTION FORCES
Section 4.2 shows how to find the reaction forces for an EC design when the
equations of equilibrium are set up in matrix form. The matrix equation associated with

the given assembly in Fig. 4.1 yields the following reaction forces.

R [-0.333
R|=| 1
R,| | 0.667

STEP 2: VERIFY THAT THE REACTION FORCESMEET EC
DESIGN CRITERIA

The next step isto verify that the reaction forces meet EC design criteria. There
are two criteriain particular which must be monitored: (1) The magnitude(s) of the
reaction forces must not approach infinity, and (2) The signs on the reaction forces must

be positive (according to the definition presented earlier in thisthesis).
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Recall from Chapter 3 that reaction forces go to infinity when the rules of EC
design areviolated. If any of the reaction force magnitudes approach infinity (i.e. very
large in comparison to the applied force), it is an indication that the design is close to
violating the rulesin Chapter 3. Therefore, in quantitative terms, this step means that the
magnitudes of the reaction forces are not approaching infinity.

In Fig. 4.1, the reaction forces are on the same order of magnitude as the nesting
forces. They arein no way approaching infinity. Therefore, the locations chosen for the

constraints do not violate the rules for EC design.

Notice, however, that R; isnegative. Clearly, by the end of the analysis, the sign
on R; must be positive. However, the signs on the reaction forces are determined by the
location of the nesting force(s). That discrepancy will be remedied in the fourth step

when the proper nesting force window has been found.

STEP 3: DETERMINE THE APPROPRIATE CHANGESTO
BRING THE ASSEMBLY INTO COMPLIANCE

If any of the reaction forces are approaching infinity, it will be necessary to
change the location (point of contact) of one or more of the constraints. To determine
which one to move, choose the constraint associated with areaction force that has alarge
magnitude. The equations of equilibrium are then re-solved. Continue to move the

constraints until all magnitudes are acceptable.

If any of the reaction forces are negative, the nesting force must be moved into the

acceptable region. To do so, the nesting force window isfound. Then, the nesting force
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ismoved into the acceptable region. The matrix equation is re-solved to ensure that the

signs are correct on each reaction force.

STEP 4: FIND THE NESTING FORCE WINDOW
The next step isto find the nesting force window. The details to do this are found

in Section 4.3.2, and they will not be repeated here.

Once the window has been found, the nesting force can be placed within the
allowable region. The equations of equilibrium are again solved based on the new
location for the nesting force. With the nesting force in an appropriate location, all
criteria should be met for an EC design. The reaction forces should not be approaching

infinity, and they must be positive.

Returning to Fig. 4.1 (shown below as Fig. 4.12a), thisfinal step can be
illustrated. Recall from step 2 that the magnitudes of the reaction forces were acceptable,
but the directions were not. The wrong sign on R; shows that the nesting force is not in
the acceptable window. Also recall that the nesting force window was found earlier for

this example (Section 4.3.2), and it is shown as Fig. 4.12b.
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A T AN

Fn1

(@ (b)

Figure 4.12 — Placing the nesting force (a) I nitial set-up for the block example, Fig.
4.1 (b) Nesting forcewindow, Fig. 4.11

Comparing theinformation in Fig. 4.12, theinitial assignment for the location of
Fn1 isnot in the alowable nesting force window. Moving the nesting force to where X,

rests at 9.0 units changes the values for the reaction forces.

R] [033
R |=| 1
R| 133

All magnitudes and directions are now appropriate. Figure 4.13 showsthe

acceptable design.
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Figure 4.13 — Acceptable design for the block assembly

This generalized method inspects an assembly to determine if it meets all
guantitative criteriato be exactly constrained. It shows when changes must be made to
find an acceptable design. The major benefit of using the generalized method shown here
isthat it is no longer necessary to check every point on the assembly to ensure that the

design is exactly constrained.

In some instances, however, it may be desirable to use the equations of
equilibrium to design for the locations of the constraints (and not just inspect them). The

process shown above can be slightly modified to accommodate this desire.

However, before the method is presented to show how to predict and design an
assembly based on the equations of equilibrium, it will be important to more fully
understand when and why EC rules are violated from a mathematical perspective.
Therefore, a brief discussion about when the C matrix becomes singular will be followed

by the presentation of a generalized method to predict and design for EC assemblies.
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442 SINGULARITY OF THE [C] MATRIX

When reaction forces have gone to infinity, it is because the C matrix is singular.

In turn, the singular C matrix yields a determinant of zero.

Any matrix becomes singular due to one of three reasons. When the reaction
forces go to infinity, any of these three reasons could be the contributor. In addition, at
the point where the C matrix becomes singular, the EC assembly has become over and/or
under constrained, as can be seen in the matrix. In order to learn what caused the

singular resultsin the C matrix, each one of these cases must be checked.

1. Arowiszero
2. A columnis zero

3. Linear dependence

4421 A ROW OF ZEROS
Each row in the C matrix represents either the sum of a moment or the sum of the
forcesin aparticular direction. When arow in the C matrix has gone to zero, it
mathematically shows that there is no resistance to motion in that direction, and the

assembly is under-constrained.

Consider the example when two constrai nts become co-linear, as was discussed in

Section 3.3.1. The C matrix for such a design shows that the sum of the moments row

has gone to zero.
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d>M=0[0 0 0
C=)F=001 0
> F, =010 -1

Thereis no resistive couple in the assembly, and rotation will result because of
the applied nesting force (i.e. the right hand side has not gone to zero). In physical terms,
thiswill be recognized as rotation in the assembly. The C matrix shows the under-

constraint in rotation for this assembly.

4422 A COLUMN OF ZEROS
Each column in the C matrix contains coefficients from the equations of
equilibrium relating to the individua constraints. Physically, the termsin each column

show the components of direction for each constraint with respect to the main part.

In the moment equation, the coefficients show the moment arm. In the force
equations, the coefficients give the angle of each force in each respective direction. For
example, assuming that the resultant magnitude of some force is one unit, a coefficient of
one shows that the force is parallel to the direction being summed. A coefficient of zero

shows the force has no influence in the direction being summed.

If one column has gone to zero it means that one of the constraintsis no longer in
contact with the part. The assembly is again under-constrained. Whichever column has
goneto zero will tell the designer which constraint is no longer in contact with the part,

and the constraint can be modified accordingly.
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4423 LINEAR DEPENDENCE
In order to ensure that the assembly is exactly constrained, the equations of
equilibrium must be a system of linearly independent equations. If thereis linear

dependence in the columns or rows, the assembly is no longer exactly constrained.

Linear dependence really means that one equation or constraint is a scalar
multiple of another. Thus, when columns are linearly dependent, two or more constraints
are competing to constrain the same degree of freedom. Linear dependence shows that

the assembly is over-constrained in one direction.

Using the example when two constraints become co-linear from Section 3.3.1, the

first column and the third column are linearly dependent by afactor of -1.

R R R

> M=0[0 0 0
C=)F =001 0
> F,=0[1 0 -1

The C matrix also shows which two constraints are competing. In this example,
constraints 1 and 3 are competing to constrain the y-direction, and thus the linear

dependence shows that the assembly is over-constrained in the y-direction.

Notice that in this example, the matrix demonstrates two reasons for the

singularity. Asmentioned, this matrix islinearly dependent (showing over-constraint in
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the y-direction). However, it aso reveals the moment equation as arow of zeros

(showing under-constraint in rotation).

443 GENERAL METHOD TO DESIGN AND MAKE PREDICTIONS
FOR EC ASSEMBLIES

Now that a more thorough explanation has been given concerning why the C
matrix may become singular, the generalized method can help design for the locations of
constraintsin an EC design. This method determines the locations of the constraints
where the assembly will no longer be exactly constrained, and those locations are

avoided.

The general method to predict and design the location of the constraintsis very
similar to the method presented to inspect an EC design. Many steps are the same, and
they are both based on quantitative principles instead of heuristics. However, in the
method for design or prediction, the locations (contact points) where constraints violate

EC rulesare found. The steps are given below.

1. Find the reaction forces using the method outlined in Section 4.2.

2. Find the constraint coordinates, such that the C matrix becomes singular.

3. Find an acceptable location for the constraints, taking note to avoid those
locations found where the C matrix goes singular.

4. Find the nesting force window to appropriately place the nesting force.
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STEP 1. FIND THE REACTION FORCES
Section 4.2 defined the process to find the reaction forces using the equations of
equilibrium. Recall that the matrix equation associated with Fig. 4.1 was also presented

in step 1 of the genera method to inspect EC design.

R [-0.333
R =] 1
R,| | 0.667

STEP2: FIND THE CONSTRAINT LOCATIONSTO AVOID
Just as the transition points can easily be found using a GRG a gorithm, the
locations for the constraints that violate the rules for EC design can be found using a
similar process. Thistime, however, instead of setting each reaction force equal to zero,

each force will be maximized.

To find the desired point of contact using the GRG algorithm, the design variables
and functions must be defined. The design variable(s) will be the x and/or y-coordinates
for the constraint under surveillance. One optimization constraint will define the
relationship between the x and y-coordinates of the constraint, if one exists. Another
optimization constraint requires that the reaction forces must again be greater than or
equal to zero. The objective function will be to maximize the desired reaction force. In
connection with this objective, another optimization constraint could set an upper limit on

the reaction force.
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This process will need to be repeated for each set of matrix equations developed.

There will be one set of matrix equations per surface under consideration.

Now the unacceptabl e contact points for Cz will be found for Fig. 4.1. First, Ry
will be set as the objective function (target cell in Microsoft Excel’s Solver®) to be
maximized. The design variable (changing cell) will be x3. After solving the routine, the

reaction forces for constraints 1 and 3 go to infinity.

R — oo
R,|=| 1 | whenxz=2.0units
R, — oo

This result shows that when constraints 1 and 3 line up, the system is no longer
exactly constrained. It agreeswith all the quantitative and heuristic examples aready

presented.

The C matrix shows what has happened so that this assembly is no longer exactly
constrained. It isunder-constrained in rotation, as shown by the moment equation going
to zero, and it is over-constrained in the y-direction as shown by the linearly dependent

columnsfor R; and Ra.
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Because the forces must balance, R, will never reach infinity. Thus, for this
example, the design will remain exactly constrained as long as constraints 1 and 3 do not

become co-linear.

STEP 3: FIND AN ACCEPTABLE LOCATION FOR THE
CONSTRAINTS

This step takes the information found in Step 2 to make an informed decision on
where to place the constraints. The points found in that step should be avoided, while
still maintaining a good balance between the nesting forces and the reaction forces. In
other words, the magnitudes for the reaction forces are checked at this stage to ensure that
they are all on the same order of magnitude. High reaction forces signal problems, as

discussed earlier. Thisstep issimilar to Steps 2 and 3 of the inspection method.

For the designin Fig. 4.1, the current placement of the constraints is satisfactory.
The magnitudes are all about the same order of magnitude. No one forceis controlling
the assembly. Now, the directions must be corrected, and thisis done through the

placement of the nesting force.

STEP 4: FIND THE NESTING FORCE WINDOW
The details to find the nesting force window are outlined in Section 4.3.2. This
step isalso found in Step 4 of the inspection method, where the current example has also
been presented and solved. Figure 4.13 shows the final design based on the nesting force

window.
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Figure 4.1 is an extremely oversimplified example, which has been used to
illustrate the methods in this chapter. However, it easily shows the benefits and strengths
of using a quantitative approach to analyze EC design. Additional examples will now be

presented to show how easy these methods can be implemented.

444 MORE SIMPLE EXAMPLES

Severa very simple examples can be used to help further illustrate the methods
outlined in this chapter. The first example will illustrate the method for inspection, while

the second example will use the method for prediction.

EXAMPLE 1. INSPECTION METHOD
Consider the triangle shown in Fig. 4.14. The coordinates for all the constraints

and theinitial placement of the nesting force along the left surface are listed.

x1 = 2.0 units y1 = 0.0 units
X2 = 4.0 units y2 = 0.0 units
x3 = 3.6 units y3 = 4.8 units
xn = 1.5 units yn = 3.0 units
Fn =1 unit

A ey

Figure4.14 — Triangular assembly for the inspection method
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Thistriangle is very similar to that shown in Fig. 3.12, except now there are two
constraints along the bottom, none on the |eft side, and one constraint on the right side.
While avisua inspection of this assembly shows that the nesting force cannot be placed
along the right side or the base of the assembly, all the matrix equations will be analyzed

to show what happens.

Thefirst step isto set up the equations of equilibrium in matrix form. The
equations obvioudly differ depending on where the nesting force rests. Therefore, three
cases will need to be examined: the nesting force will move along the left surface
(denoted “left”), it will continue its path along the right surface (denoted “right”), and it

finishesits path along the base of the assembly (denoted “ base”).

0 (%-%g) 0 [R] [-F,cos(8)s(y;s~y,)~F,sin(0)*(xs~x,)
1 1 ~-sin(@) | R, |= F sin(9)
0 0 —cos8) || R, —F,cos8)
|eft
0 (XZ_X13) 0 Ri - Fn COS(Q)*(yn _y13)+ FnSin(e)*(Xn_XB)
1 1 ~-sin(@) | R, | = F.sin(@)
0 0 ~cosd) | R, =
right
0 (XZ_X13) 0 R1 _Fn(xn_xl3)
1 1 -sn(@) || R, | = ~-F,
0 0 —cos(d) | R, 0
base
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Applying theinitial values shown in Fig. 4.14 to the matrices given above
produces the following systems of equations. Theinitial point of contact along each

surface for the nesting forceis also listed.

0 2 0 R -1.116

11 -05|R|=| 05

0 0 -0866| R, —0.866
left

X, =15units y, =3.0units

02 0 |R 2.93
1 1 -05|R,|=|05
00 -1|R 1
right
X, =3.828units y, =4.344 units

0 2 0 R -2

11 -05|R|=|-1

0 0 -0.866|R, 0
base

X, =15units y_ =0.0units

The next step isto solve the equation Cr = b to find the reaction forces. The

vectors below show the values for the reaction forces.
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R 1.56 R —0.308 R -1.25

R, |=|—-0.558 R,|=| 0.308 R, 0.25

R, 1 R, -1 R, 0
|l eft right base

Now, it is necessary to make certain that the reaction forces are not approaching
infinity. A quick glance shows that indeed this assembly continues to be exactly
constrained. In addition, all the forces are about the same order of magnitude, so no one
force is carrying a disproportionate amount of the load. Note that when the nesting force
has been placed along the base of the block, R3 falls out. Only two constraints are

carrying theload. Because of this, the nesting force cannot be placed along the base.

To fix the signson all the reaction forces, the nesting force must be moved into
the nesting force window. All of the negative signs show that the nesting force isnot in

the window.

The nesting force window is created by first finding the transition points. In
Microsoft Excel’s Solver®, R; is chosen to go to zero, and the transition point is found.
Then, R, isforced to zero followed by R3 forced to zero. The processis repeated for each

surface. The resulting transition points are found in Table 4.1.
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Table 4.1 —Transition points along each side of the assembly

Side of the Transition point Value of Reaction
assembly Forces
R [0
Xn = 2.896 units _
Let Yn = 5.792 units R =1t
[Re] [1]
R [1]
Xn = 2.0 units _
Left yn = 4.0 units R =0
|R] [1]
Right No point exists N/A
Bottom No point exists N/A

Toggling the x-coordinate alittle above and below each transition point shows

which portion of the segment is allowed in the window and which portion is not allowed.

From this information, a sketch of the nesting force window is drawn (Fig. 4.15) to get a

better view of the physical dimensions. The nesting force window is comprised of avery

small portion of the overall assembly.

/A

2\

Figure 4.15 — Nesting force window for thetriangle assembly. Thebolded linesare
the pointswhere the nesting for ceis not allowed.
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The nesting force is moved into the allowable region at x,; = 2.5 units, and the
reaction forces are re-calculated. The method outlined in this chapter quickly found that

Fig. 4.16 is an acceptable EC design.

R [0441
R, |=|0558
R, 1

/A /e

Figure 4.16 — Acceptable EC design for thetriangle assembly

This short example showed how the equations of equilibrium can inspect an
assembly to ensureit is exactly constrained. In the current set-up, unless constraints 1
and 2 were placed at the same point, it would be impossible for any two of the three
constraints to become co-linear or for al three constraint linesto intersect at a point

because of the two parallel constraints along the bottom.
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EXAMPLE 2: METHOD FOR PREDICTION
Now, constraint 2 will be moved over to the left side of the triangular part, asin
Fig. 3.12 (and shown in Fig. 4.17). Thistime, the method to predict bad configurations

will be used to analyze the part.

height = 6 units
width = 6 units
Xy = 3.0 units Yp = 0.0 units
Xy = 1.5 units Yo = 3.0 units

X3 = 3.6 units Y3 = 4.8 units
Xp = 5.5 units Yn = 1.0 units

Figure4.17 — Triangular assembly for the design method

First, the matrix equations must be formulated and solved to find the reaction
forces. The actual equations can be found in Appendix C. For brevity, only the analysis
will be shown for when the nesting force is aong the right surface of the assembly. The

reaction forces are given below.

R [19%
R, |=|1.996
R, | |0.99

108



The next step isto find the configuration(s) of the constraints that violate the EC
design rules of Chapter 3. This step is simply accomplished through Excel’s Solver®: xs
isthe design variable; y; = -2 * x3+ 12 (the equation of the right surface); Ry > 0, R, > 0,
and R3 > 0 are the optimization constraints; and the objective function is to maximize Ry,
R2, and Rs, respectively. Inthisexample, they all go to infinity for the same
configuration of the constraints. Figure 4.18 shows the only configuration for this
assembly that failsto be exactly constrained. This configuration violates the rule

validated earlier that no three constraint lines should intersect at a point.

X1 = 3.0 units Y1 = 0.0 units
X, =15 units ¥, =3.0 units
X3 =4.552 units Y3 =2.896 units
X, =55 units Y, =10 units

1

Figure 4.18 — Configuration that makes the assembly no longer exactly constrained

This configuration is under-constrained in rotation, as shown in the C matrix.

dM=00 0 0
C=>F,=0/0 0.866 —0.866
> F, =01 -05 -05
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The under-constraint means that no resistive moment exists to overcome the moment that

will be caused by the application of the nesting force.

Keeping thisinformation in mind, a position now needs to be found for the
constraints. The original set-up provided a good representation for the reaction forces.
None of the forces carried a disproportional amount of the load, and they were all
positive. The positive reaction forces show that the nesting force is also in agood place
(which was known from Chapter 3). Therefore, Fig. 4.17 represents a good configuration

for this assembly.

45 TRADEOFF BETWEEN THE REACTION FORCESAND THE NESTING
FORCE WINDOW

Each analysis using the generalized method is based on a given placement of the
constraints. Consider Fig. 4.19, which shows Fig. 4.1 in several different configurations.
The constraints, reaction forces, and nesting force windows are all shown. The detailed

force analysis for each design may be found in Appendix D.
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R1=04 <« R1=0.25

R2=10 R2=1.0 Fn2
E;> R3=14 E;> R3=1.25

Fn1 Fn1
§C§7 §c§7
R1 =-infinity @ Fn2
R2=10 R1=0.33
R3 = -infinity R2=10
c < R3=133
No nesting force allowed anywhere| n2
else or the block will have play I

R1=0.1

R2=1.0
E§> R3=11

C1

Fn1

Figure 4.19 — Various configur ations of the same block assembly

Notice that the nesting force window changes according to the locations of the
congtraints. Thereis atradeoff between the location of the constraints and the size of the
nesting force window. While the tradeoff is not always negative, in this example, the
further apart the constraints are to each other, the smaller the nesting force window. The
closer the constraints are to each other, the larger the nesting force window, but the

greater the reaction forces climb until the design becomes unstable.
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Recall from Chapter 2 that one of the benefits of EC design is the alowance for
greater variation in the location of the constraints. While Fig. 4.19 again validates this
benefit, it can also be seen that there are some EC designs that may be better than others.
For example, one design may have lower reaction forces, while another design may

provide a more flexible nesting force window.

There may be additional design considerations that help decide where the

constraints should be placed.

1. Space limitations—it often happens that due to the number of parts or due to
the locations of the parts within an assembly, spaceislimited.

2. Geometry—the geometry of the part often limits the possible locations for the
constraints or joints in an assembly.

3. Required function of the assembly—the constraints cannot interfere with the
function of the assembly, and this stipulation may limit the possible locations
for the constraints.

4. Reaction forces exerted on the assembly—nhigh reaction forces should be
avoided. In addition, balancing the reaction forces will not place undue stress

on the assembly.

However, sometimes the designer may simply locate constraints based on

personal preference. Inthat case, it would be beneficial to have a quantitative means

available to find a factor of “goodness’ for each EC design to help make the decision.

112



The equations of equilibrium show the results of the reaction forces, but thisis not the

only mathematical criterion that may be useful for EC design.

Chapter 5 will explore an additional quantitative method to find the “goodness” of

an EC design. This method could be used to determine which design might provide the

most beneficial tradeoff for given conditions.
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CHAPTER 5 A QUANTITATIVE MEASURE OF “GOODNESS’ IN AN
EXACTLY CONSTRAINED DESIGN

5.1 INTRODUCTION

Chapter 4 introduced a generalized method using the equations of equilibrium to
guantitatively analyze exactly constrained (EC) designs. Using this generalized method,
adesigner can either ensure EC design compliance in an assembly, or he can predict

configurations where an assembly would no longer qualify as exactly constrained.

Another contribution of this generalized method allows for constraint analysis
when the C matrix becomes singular. Investigating where the equations of equilibrium

fail will, at least in part, show why the design no longer meets the criteriafor EC design.

Chapter 4 asoillustrated a natural tradeoff involving the constraints and the
allowable range for the nesting force window. The simple examplein Fig. 4.19 showed
one example of this tradeoff. Configurations with more distance between constraints 1
and 3 had lower reaction forces, but they also had smaller windows for the nesting force.
However, moving the constraints closer together in the x-direction resulted in higher
reaction forces with an expanded nesting force window. The reaction forces continued to

increase until the two constraints in question became co-linear, at which point the
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assembly became over-constrained in the y-direction, under-constrained in rotation, and

the window disappeared for the vertical nesting force.

The discovery of this tradeoff now leads to an investigation into the goodness of
an EC design. “Goodness’ refers to the fact that while many different configurations of
an assembly may constitute an acceptable EC design, there may be some configurations

that fulfill design needs better than others.

Just as the general principles of EC design were strengthened by using the
equations of equilibrium, the goodness criteria must aso be founded on quantitative,
mathematical principles. Chapter 5 investigates an approach using quantitative methods

to define the goodness in an EC design.

A brief discussion defining the qualitative goodness of an EC design isfollowed
by abrief review of constraint analysis using screw theory. It will show an additional
need for a method that will provide a quantitative measure of goodness. Finally, using
information from the direct linearization method (DLM), a quantitative method to

determine goodness for an EC design will be presented.

5.2 THE GOODNESS OF AN EXACTLY CONSTRAINED DESIGN

One of the major benefits of EC design is the robust ability of adesign to assemble
even when variation may enter into the assembly components. This benefit will be

further illustrated in Chapter 6 when variation isintroduced into assemblies. However,
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while the part may assemble under awide variety of conditions, Chapter 4 illustrated that

some configurations may still have certain advantages over others.

The idea that some configurations may pose greater benefits than others will be
referred to as the “goodness’ of EC design. Goodness, as referred to here, is defined by

several aspects.

1. The EC assembly is not on the verge of becoming over-constrained or under-
constrained.

2. Variation or tolerances of the parts have little to no effect on the ability of the
design to assemble.

3. Theassembly offers an acceptable trade-off between the size of the nesting
force window and the distance between constraints in order to minimize the
magnitudes of the reaction forces.

4. All possible advantages of EC design are utilized and preserved.

5. Theoverall assembly error isat a minimum.

The qualitative goodness criteria defined above for an EC design is not enough to
determine which designs would rank higher or better. A mathematical, quantitative
method will add strength to any decision. Thus, mathematical techniques will be

investigated in this chapter as a way to quantitatively measure the goodness of a design.
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5.3 USING SCREW THEORY TO QUANTITATIVELY MEASURE GOODNESS

Recall from Chapter 2 that the screw theory approach to constraint analysis
presented by Adams [1998] pinpointed where any over and under-constraint existsin an
assembly. One of the criteria defined for goodness of an EC design was that the
assembly was not on the verge of becoming over or under-constrained. What happensin

screw theory when an assembly transitions from an EC design to anon-EC design?

In Chapter 2, the dotted block example was used to show how screw theory
performs. When the slot was at an angle of 0° to the block, screw theory found that the

assembly was exactly constrained.

Figure 5.1 shows the final results for the slotted block as the angle of the dlot
changes. The detailed calculations for Fig. 5.1 can be found in Appendix A. Asthe
angle of the dlot changes, the assembly transitions from an EC design to one of over-
constraint in the x-direction and under-constraint in rotation. More particularly, this
analysis with screw theory shows that up to and through 89.9°, this assembly is exactly
constrained. However, when the slot is rotated to 90°, the assembly suddenly becomes

over-constrained in the x-direction and under-constrained in rotation.
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Motion analysis: Force Analysis:
Angle of the slot Under-constrained Over-constrained EC
[e—25—>«—— 10—
No
G- ] | eetooo
I No: empty matrix 000100 Yes
1] 000010
OO
No
® _ 0O 0O100O0O0
No: empty matrix 000100 Yes
0000110
45°
No
O _ 0 0100O0O0
No: empty matrix 000100 Yes
0000110
70°
No
O _ 0 0100O0O0
No: empty matrix 000100 Yes
0000110
89.9°
Yes. x trandation
Y es: rotation about the aongthe axisy = 3.0
point (2.5, 3)
QO @ 10000 -3 No
[0 013 -250/00100 O
90° 00010 O
00001 O

Figure 5.1 — Results of the Screw Theory Analysis. EC meansthat the design is
exactly constrained.
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Screw theory identifies the exact point at which the assembly becomes over and
under-constrained. However, it gives no indication that the assembly is approaching such
astate. In other words, screw theory acts like a“switch.” Itiseither “on” or “off.”

Either the assembly is exactly constrained, or it is not.

While this method provides a powerful way to perform constraint analysis for a
given arrangement in an assembly, screw theory does not appear to provide any
indication when the assembly is approaching an over and/or under-constrained state. It
does nothing to illustrate a tradeoff between design considerations for an EC design, and
it cannot show the effects of variation. It thus shows no difference or superiority between

EC designs with differing slot angles.

54 USING THE DIRECT LINEARIZATION METHOD (DLM) TO PROVIDE A
QUANTITATIVE GOODNESS CRITERIA

The direct linearization method (DLM) was developed for tolerance analysis.
Whileit isnot traditionally applied to constraint analysis, the work of Daniel Smith

[2001] found alink between it and screw theory.

Smith found that the 3D representation of the B matrix (a matrix of first order
partial derivatives with respect to the dependent variables) from the DLM could be used
in place of theinitial twist matrices for the under-constrained (motion) analysisin screw
theory. The F matrix (amatrix of first order partial derivatives with respect to the
geometric feature variables—see Chase et. al [1996]) from the DLM could be used in

place of theinitial twist matrices for the over-constrained (force) analysis. Then, the
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same reciprocal operations and steps were applied as in screw theory to find the overall
constraint status. Smith called his method the V ariation-based Constraint Analysis of

Assemblies (VCAA).

Screw theory as applied to constraint analysis and the VCAA show when and
where adesignisor is not exactly constrained; however, neither of the methods provides
a quantitative measure of goodness that signals when the design may be approaching an
over or under-constrained state. The measure for goodness must do more than state if
the assembly is exactly constrained or not. It must show when adesign iscloseto
violating the rules from Chapter 3. It must also provide a means to compare various
configurations of the same assembly to determine which configuration may best suit the

functional needs of the assembly.

The DLM provides additional information not utilized by other methods that can
provide a quantitative measure of goodness. Aswill be presented in this chapter, the
determinant of the B matrix can signify when adesign is approaching an unstable state.
Also, the assembly sensitivities, BA, provide away to quantitatively compare similar

EC designsto find which configurations are least affected by variation.

A more in-depth discussion of the variables and the partial derivatives (which are
found when the vector loop equations are linearized) must first be discussed to
understand why the two matrices of sensitivities work well as a measure for goodness.

Then, adiscussion of the B matrix and its contributions to EC design goodness will be
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followed by a discussion on using the assembly sensitivities to find an additional

quantitative value for goodness.

54.1 SIGNIFICANCE OF PARTIAL DERIVATIVESIN THE DLM

Before proceeding to find a quantitative measure of goodness for EC design, a
more comprehensive look at the variables and the partial derivatives will be presented.
Thisinformation is explored to give a solid background to the next section, B matrix

contributions.

Each vector in avector loop equation is composed of two or more variables,
which describe the magnitude and direction of that vector. There are two types of
variables. the length variable describes the magnitude of a vector, while the angular
variable relates to the direction of the vector in the assembly. These variables could be

either independent or dependent in the vector loop analysis.

In the DLM, the independent variables are the known (or user-defined)
dimensionsin the analysis. For example, the locations of the constraints or the height
and width of parts are independent length variables; the angles of surfaces or slots are
independent angular variables. The independent length variables will be collectively

denoted as x;, while the independent angular variables will be collectively denoted as ¢.

The dependent variables are the resulting dimensions based on the values of the

independent variables. They are used in the analysis to absorb changes from the
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independent variables to allow the vector loop equationsto close. The dependent length
variables will be denoted as u;, and the dependent angular variables will be denoted as 4.
Vectors that include dependent length variables always go from an unknown position of a
joint (where a constraint connects to the main body of the assembly) to a known position
in the assembly. These vectors can change in magnitude and direction, according to the

variation present in the assembly.

The vectors in the vector loops (Section 2.9.4) are summed together in the vector
loop equations. For example, the vector loop equation hy sums together the component of
each vector in the x-direction. The magnitude of the vector is alength variable, and the
direction involves the cosine of the angular variables. Likewise, the hy equation sums
together the components of each vector in the y-direction. The hy equation sums together

the angles of each vector relative to one another.

Whileit is possible to find the values of the dependent variables using a non-
linear equation solver, the DLM is more interested in quantifying the effects of small
changes (variation) in the assembly. As mentioned in Section 2.9.6, the vector loop
equations can be linearized, based on afirst order Taylor series expansion. The resulting

equation takes the form,

[Afox}+[BRsU }= {0} (1)
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A contains the partial derivatives with respect to the independent variables. B

contains the partial derivatives with respect to the dependent variables.

Variables, vectors, and vector loop equations were presented here because they
influence the first order partial derivatives. Information from the partial derivatives with
respect to each kind of variable (length or angular) will be applied later in this chapter
when the B matrix contributions are presented. However, the specific significance of the

partial derivatives with respect to the each kind of variable will first be explained.

Taking the partia derivative with respect to alength variable will leave the
component of a unit vector in a certain direction. For example, taking the partial
derivative of the hy equation with respect to alength variable will leave the component of
aunit vector in the x-direction, asillustrated in the example below (which only shows the

dependent variables from a vector |oop equation).

h, =...+u,cos(180+ 8) + u, cos(90 + &)

oh, = cos(180+ 6)
ul

oh, = c0s(90 + 6)

au,

To further illustrate, suppose a term representing the partial derivative of hy with

respect to some length variable in the B matrix gives avalue of 0.707.
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du, adu,
_[0.707 1]dh,
- |0.707 1|oh,

By virtue of being in the x-direction, this valueis related to the cosine of an angle.
Because the partial derivatives are all unit vectors for length variables, the angle of the
vector is45°. The value of the partial derivative taken with respect to alength variable

will always be between 0 and 1, asit is the component of a unit vector in some direction.

However, the partial derivative for any angular variable will become the
component of aresultant vector (not a unit vector) in the opposite direction from the
vector loop equation under analysis. For example, Fig. 5.2 shows all vectorsin a vector

loop associated with the variable 0;.

Figure 5.2 — All vector s associated with 0, in a vector loop sample

Thetail of vector u; isthe position of one joint connecting a constraint to the main
block of an assembly, and the tip of u, is another joint connecting a different constraint to

the same block. The portion of the hy equation relating to these vectorsis stated below,
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followed by the partial derivative of the equation with respect to 6;. Figure 5.3 showsthe

components of each vector |abeled.

h, =...4+u,cos(180+6,) +u,cos(90+ 4,)

g_gx = U, SiN(180+ 6;) — u, SIN(90 + 6))
1

uo sin(90+01)

Up cos(90+01) uq cos(180+01)

Figure 5.3 — Components of each vector for the examplein Fig. 5.2

Taking the derivative with respect to 6, shows that the partia derivative of the x-
equation with respect to 6, will be the component of aresulting vector (of some non-unit
magnitude) in the y-direction. Using the information in Fig. 5.3, it can be seen that the
resultant vector for this example will be in the positive direction with a magnitude equal

to the y-distance between the tail of u; and thetip of u, (as shownin Fig. 5.4).
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u : 001
U1 :
01
( ____________________
ahy
001
: : oh, oh,
Figure 5.4 — Resultant vector s representing the values of EY) and 0
1 1

In review, the partial derivatives found in the A and B matrices have meaning that
will be used later in this chapter. The partial derivative in some direction with respect to
alength variable will be the component of a unit vector in that same direction. The
partial derivative in some direction with respect to an angular variable will be the

component of aresultant vector in the opposite direction.

The A matrix will be momentarily set aside because it will not contribute any
additional information until the assembly sensitivities are found. However, with the
previous information presented, a deeper understanding of the B matrix contributions can
begin to be used to define a measure of goodness for EC design. These contributions will
also explain why the assembly sensitivities act as a useful indicator for the goodness

criterion.
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542 [B] MATRIX CONTRIBUTIONS

As previously mentioned, the actual meaning of each term in the B matrix
depends on which kind of variable the derivative was taken with respect to. If the
derivative is taken with respect to u;, the value represents the component of a unit vector
in acertain direction. Becauseit isonly the direction of aunit vector, the values for the
derivatives will dways befrom 0to 1. If, however, the derivativeisfor 4, the value
represents the component of aresultant vector in the opposite direction of the row in

which the term resides.

In order to find the assembly sensitivities, the B matrix must be inverted and
multiplied by A. In order to invert the B matrix, it must be square and non-singular. 1f

the matrix is square, the number of variables equals the number of equations.

Recall that singularity means the determinant of the matrix will go to zero. This

singularity can happen due to any of three reasons.

1. Arowiszero
2. A columniszero

3. Linear dependence

Just as with the C matrix for the equations of equilibrium, a careful examination of the

three criteriafor asingular B matrix in the DLM shows useful information relating to EC

design constraint status. Following an explanation of what it means to an assembly when
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the B matrix goes singular for each case listed, a section will present how to use the B

matrix as a quantitative measure for goodness.

5421 A ROW OF ZEROS

Each row in the B matrix represents the partial derivativesin one direction with
respect to each dependent variable. Because the dependent variables allow the vector
loop equations to sum to zero by absorbing any change from the independent variables, a
row of zerosin the B matrix shows that any variation of the independent variables will
not allow the vector loopsto close. The dependent variables can no longer absorb
changes from the independent variables in the direction corresponding to the row that
went to zero. The assembly is over-constrained in the direction corresponding to the row
that went to zero. For example, the B matrix shown below illustrates an assembly is

over-constrained in the x-direction.

5|0 O]oh,
|1 4)oh

To better understand what this means, equation (1) can be rearranged.
~[AKox}=[BHau} )
For this equation to be true, each of the vector loop equations must equal zero. If any
row in B isall zeros, the independent variables in that direction cannot have any variation

or else the vector loops will not go to zero.
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Consider, for example, when the first row of the following B matrix has gone to

Z€EXo.

11-1-100 0 0 -1 -276,| [0 ofay 3)
000 0 1-11-1-1-05|8,| |1 4|06

The partial derivative of hy with respect to all dependent variablesis zero. Unlessthereis
absolutely no change in the independent variables, the left hand side of the equation will
not go to zero. Therefore, the whole vector loop equation itself cannot sum to zero, if

thereisany variation.

The row of zerosin the B matrix shows that the assembly has become over-
constrained in the x-direction. That isto say, any variation of the independent variables
in the x-direction cannot be absorbed by the dependent variables in that direction;

therefore, the vector loop equation will not sum to zero.
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5422 A COLUMN OF ZEROS

Each column in the B matrix represents the partial derivativesin each direction
with respect to one dependent variable. When the derivative istaken for u; in each of the
vector loop equations, the column in the B matrix shows the components of a unit vector
pointing in the x and y-directions. Because it only involves the components of a unit
vector in some direction, a column for a u; variable can never have all zeros. The square
root of the sum of the squares for the x and y-components in the column will always be

one.

A column can only be full of zerosfor a6; variable. Recall that the partia
derivatives for 6; involve both a non-unit magnitude and the components of direction; in
other words, each term in a column of the B matrix for 6; contains the components of a
resultant vector in the x or y-directions. A column can only be full of zeros when two
constraints that both relate to 6; are placed at the same point. Thereis no resultant vector
between the constraints in this case. Thus, the assembly has become under-constrained.

However, thisisatrivia case becauseit is not likely to occur often.

54.23 LINEAR DEPENDENCE

Linear dependence will aso cause the determinant of the B matrix to go to zero.
If the B matrix does have linear dependence, the vector loop equations must be inspected
to determine if they all summed to zero. If the vector loops did sum to zero, thereisa
constraint problem in the design. If the vector loops did not sum to zero, the design did

not assemble. Each caseis now explained in further detail.
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If each of the vector loop equations sum to zero, the linear dependence signals a
constraint problem in the design. The constraint problem, as seen through the B matrix,

depends on whether the system islinearly dependent due to the columns or the rows.

The system is under-constrained in rotation if the columns are linearly dependent.
The linear dependencein this case will likely occur between a column representing the
partial derivatives of alength (u;) variable with respect to each vector loop equation and a
column representing the partial derivatives of an angular (6;) variable with respect to each
vector loop equation (linear dependence between two length columnsis atrivial case asit
will not occur if there is more than one vector loop or if thereis any resultant rotation of

the part).

For example, the B matrix listed below (and used earlier) shows linear

dependence in the columns.

ou;, 96,

5_[0 O]on,
1 4)oh,

In this case, the columns show that this assembly will have under-constraint in rotation
because the physical joint that provides the constraint associated with u;, which once
eliminated rotation in its nominal position, has moved in such amanner that it provides

no constraint against rotation.
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A physical example that would result in the B matrix given aboveisfound in Fig.
5.5. Therevolute joint provides the trandational constraints and the cylinder slider
provides the rotational constraint in Fig. 5.5a. However, the slider joint has moved in
Fig. 5.5b, and there is no longer constraint against rotation. Linear dependence between

columns signals under-constraint in rotation.

(@)

O

O
)

Figure 5.5 — Example showing when the B matrix would have linear dependencein
the columns (a) EC design (b) Under-constrained in rotation according to the B
matrix
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If rows are linearly dependent in the B matrix, the system is over-constrained in
the direction relating to the dependent rows. The linear dependence signals that two
constraints are competing to constrain the same direction, as shown by the vector loop
equations. For example, Fig. 5.6a shows an exactly constrained design that becomes
over-constrained (Fig. 5.6b) in the y-direction when the two constraints a ong the base
are located at the same point. The B matrix shows this over-constraint by the linear
dependence in the second and fourth rows. Linear dependence between rowsin the B

matrix signals over-constraint.

/A /N /\

constraints 1 and 2

(@) (b)

ou, du, du, 96,

-1 0 0 -25|dh,
01 0 -2]|dh,
0 0 -1 -25|dh,
01 0 -2]Joh,

Figure 5.6 — Example showing when the B matrix would have linear dependencein
therows (a) EC design (b) Over-constrained in the y-direction
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If any one of the vector loop equations do not sum to zero, the linear dependence
signals that the design did not assemble. An important piece of predictive information

can be gained from the B matrix when this happens.

An interesting physical interpretation from terms in the B matrix can be used to
determine why adesign will not assemble. Recall that the partial derivatives associated
with the 6; variables represent the component of aresultant vector in a specified direction.
Asillustrated in Section 5.4.1, the partial derivative of hy with respect to 6; will be the y-
distance between the tip and tail of the string of vectors associated with that variable.
Each end of this string of vectors will be at either a DRF or aconstraint. If thetipisat
one constraint and the tail is at another constraint (as was discussed in Fig. 5.2), the term
in the B matrix for the partial derivative of hy with respect to 6; will be equivalent to the
y-distance between the constraints. Likewise, the partial derivative for 6; relating to hy
will be the x-distance between the constraints. It should be noted that while this
information was independently discovered by the author, it has been more fully described

in Gao et. a [1998].

This physical interpretation can now be applied to discover why adesign did not
assemble (as shown when at least one vector |oop equation does not sum to zero). When
solving the vector loop equations with an optimization routine or an equation solver such
as Excel’s Solver®, the |ast iteration before the routine terminates will show the minimum

distance required between the constraints (or between the constraint and DRF, as the case
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may be) for the design to assemble. For example, the B matrix shown below relates to

Fig. 5.7, which shows a variation of the slotted block example from Fig. 5.1.

U, theta
B= -0 0 h, determinant= -0
1 4 hy

<— 25 —>|<— 35 —>|

O C «

|<— 4.0 —>

Figure 5.7 — Example assembly to show how to use the B matrix to predict why a
design did not assemble

In order for this design to assemble, the two constraints must be 4 units apart in
the x-direction (as shown by the term in the B matrix for the partial derivative of hy with
respect to 0); however, they are only 3.5 units apart. For the design to assemble, the
constraints would have to be moved apart another 0.5 units, or the dysfunctional part

would have to be reemanufactured to fit the dimensional needs found in the analysis.
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5424 USING THE [B] MATRIX ASA MEASURE OF
GOODNESS

Using the determinant of B proves useful for EC design. When the determinant
for the B matrix goesto zero, the assembly has become over-constrained, under-
constrained, or it does not assemble. The reason the assembly does not perform asan EC

design can be inferred from the cause of the singularity in the B matrix.

One of the criteriafor goodnessiis that the design is not approaching an over
and/or under-constrained state. A quick inspection of the determinant of the B matrix is
one measurement of goodness because information from the B matrix can detect stability
of the assembly. When the matrix is singular, the determinant is zero. Asthe assembly
approaches a state of over and/or under-constraint, the determinant gets smaller. Very

small values for the determinant show that the design is approaching an undesired state.

The next task is to define “small values of the determinant.” Obviously the
determinant depends upon the values found in the B matrix. Recall that all partial
derivatives with respect to length variables have values between zero and one. However,
the angular variables have partial derivative values that could be of any magnitude,
depending on the dimensions of parts and locations of jointsin the assembly. Therefore,
the determinant could have many orders of magnitude, or it could have very few. A
“small value”, therefore, ranges in orders of magnitude according to the dimensions of

the assembly.

137



A general guideline can be followed to determine what a small valueisfor a
given design. If the highest dimension involved in any vector loop is a value between
one and ten, the designer can begin to be wary when the determinant is bel ow an absolute
value of one. If the highest dimension involved in any vector loop is between 0.1 and 1,
the absolute value of the determinant should not go below 0.1. If the highest dimension
in the assembly is on the order of 10 (such as 21), the determinant should not go below
10. The same genera pattern can be applied to any given order of magnitude. This
guideline shows where the assembly is beginning to approach an unstable state. It has
not yet reached the over and/or under-constrained state, but the determinant warns that
the assembly is approaching that status. The constraints should be atered to avoid a

determinant that approaches zero, if possible.

With a square and non-singular B matrix, the assembly is exactly constrained. In

that case, the sensitivities can also be used to quantify the goodness of similar designs.

54.3 USING ASSEMBLY SENSITIVITIESTO QUANTIFY GOODNESS

Now the discussion will return to the DLM procedure to find the assembly
sengitivities. Oncethe A and B matrices have been found, the equation can be solved to
find the sensitivities of the dependent variables with respect to the independent variables.

fou}=—[B"afiex} 3
The matrix B™A isthe matrix of assembly sensitivities. They show what effect small
changes of the independent variables will have on al the dependent variablesin the

assembly.

138



The effects of change are very important in analyzing an EC design because one
of the benefits to EC design is that variation in parts or dimensions has little effect on the
overall function of the assembly. Thus, another quantitative measurement of goodness

for an EC design can be found using the assembly sensitivities.

The sengitivities show how the dependent variables will change with any change
from the independent variables. For example, a sensitivity of one shows that changing
the independent variable by some amount will change the dependent variable by the same
amount. A sensitivity of two will force the dependent variables to change twice as much

as the independent variables were changed.

The sensitivity matrix can be evaluated to ensure variation will not have a great
effect on the assembly. The sensitivities should stay low in magnitude, asit would not be
good to have the changes in dependent variables magnified when the independent
variables are changed. Any sensitivity above two should be avoided, although doubling

the changes in dependent variables compared to independent variablesis still high.

If there is a high sensitivity somewhere in the matrix, the designer should avoid
any variation related to that variable, or the design may not assemble. An alternative
solution would be to change the locations of the constraints to lower the sensitivities.
Note that when the determinant of the B matrix is zero, the sensitivities on the critica
variables (the variables that cannot change because of any over-constraint) will go to

infinity.
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The sensitivities can also be compared between configurations for the same
assembly to determine which designs may show a better measure for goodness.
Comparing the assembly sensitivities among various configurations will give the designer

aclearer ideafor which designs will absorb variation better.

In addition to minimizing the effects of variation on an assembly, another criteria
defined earlier for goodness includes a good tradeoff between the locations of the
constraints for good reaction forces, and the size of the nesting force window. The
assembly sensitivities can provide a quantitative way to show the effects of changing
constraint locations. The sensitivities will change as the constraint locations change.
Better sensitivitieswill lead to more robust designs. Whilethe DLM as presented in this
thesis does not bring the actual nesting force window into the analysis, the assembly
sensitivities for various configurations of an assembly can be compared based on the
constraint placements. The configurations that yield the best goodness values can be
analyzed using the equations of equilibrium to find if the nesting force window is

acceptable. This comparison iseasily done in a spreadsheet or similar tool.

Using sensitivitiesis not new to engineering design. For example, Wittwer
[2002] uses sensitivities from both the DLM and the force equations for micro-compliant
mechanisms. However, using the sensitivities to derive a measure of goodness for EC

designisunique.
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54.4 USING THE GOODNESSVALUESFOUND IN THE DLM

With all the information from this chapter in mind, a method can now be
presented using the DLM to find a measure of goodness. The steps themselves are no
different than performing the DLM on an assembly; however, the information within the
DLM at various stages can now be used to form a mathematical or quantitative measure

of goodness.

1. Findthe A and B matrices as outlined by the DLM.
2. Examinethe B matrix.
3. Find the assembly sensitivities, [BA].

4. Evauate or compare the assembly sensitivities between configurations.

STEP 1. FIND THE [A] AND [B] MATRICES
Recall from the discussion in Chapter 2 that the DLM begins by creating vector
loops and formulating vector loop equations. The three vector loop equations (hy, hy, he)

allow for up to three unknown variables per |oop.

It should be noted that in many instances the hy equation either falls out
completely or it solvesin terms of a user-defined value, alowing a substitution to
eliminate one angular variable. In such circumstances, only two unknown dimensions

can be found through the vector loop equations.
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Regardless, solving the vector |oop equations (which ordinarily requires a non-
linear equation solver) finds the values for the unknown dimensions. Whilethe DLM is
more interested in small changes, it is necessary to find the unknown variables, as the

values must be used to numerically evaluate the partia derivatives.

The next step in the method is to linearize the equations by taking partial
derivatives of the vector |oop equations. The A and B matrices are formulated after
taking the partial derivatives of each equation with respect to each dependent and

independent variable.

STEP 2: INSPECT THE [B] MATRIX
At this stage, the B matrix must be inspected to ensure that it is both square and
non-singular. It must meet these stipulations in order to get useful information out of the
assembly sengitivities. Section 5.4.2 can be referenced to determine how the assembly

will behave for anon-singular matrix.

If a design assembles, the value of the determinant for the B matrix is assigned to
the assembly as a measure of goodness. The further away from zero the absolute value
for the determinant is, the better the design. Values approaching zero (as defined in

Section 5.4.2.4) should be avoided, if possible.
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If a design does not assembl e, the information in the B matrix can be used to
make the appropriate changes. Then, the determinant can be evaluated once more to

establish a specific measurement for goodness.

Thus, when inspecting the B matrix for an EC design, not only will the
determinant be used as a measure of goodness, but the B matrix will also be used to
predict what changes must happen in an assembly to fix a design that did not assemble.
These two benefits alone provide avery powerful argument for using the DLM to analyze

EC designs.

STEP 3: FIND THE ASSEMBLY SENSITIVITIES
The B™*A matrix contains the assembly sensitivities. These sensitivities show
what effect changing one independent variable will have on each of the dependent

variables.

STEP 4: EVALUATE OR COMPARE ASSEMBLY
SENSITIVITIESBETWEEN CONFIGURATIONS

Recall from an earlier discussion that part of the definition for goodness of an EC
design isthat variation in the parts has little to no effect on the function of the assembly.
Assembly sensitivities show what effect small changes will have on the assembly. They
can also show which constraints and variables have the greatest influence on the

assembly. Assembly sensitivities above two should be avoided, if possible.
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When comparing the assembly sensitivities between configurations of a design,
the assemblies with lower sensitivities are better. The lower sensitivities show an ability
of the design to absorb variation that may enter from part to part. Thus, using the

assembly sensitivities also provides a quantitative measure for goodness of EC design.

545 ARETURNTO THE SLOTTED BLOCK EXAMPLE

The simple dotted block example shown earlier in Fig. 5.1 can be used to
illustrate the information presented in this chapter. Figure 5.8 shows the slotted block
with the vector loop used in the DLM. The vector loop equations are expressed after the

figure, and the A and B matrices are computed.

x1 = 2.5 units
X2 = 4.0 units
x3 = 2.0 units
x4 = 6.5 units
y1 = 3.0 units
y2 = 2.0 units

r rT y3 = 2.0 units
— y4 = 3.0 units

up r =0.5units

Y1 y angle of slot =0
Y2 3 Yq

O

X1 3

Xq

Figure5.8 —DLM for the slotted block example
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h, = x,cos(0)+y, cos(90)+r cos(270+ 8)+ y, cos(270+ 6)+ X, cos(180+ &) + x, cos(8) +
Y, €0S(90+ 6)+u, cos(@ + ¢)+r cos(90+ & + ¢) + y, cos(270) + X, cos(180) = 0

h, = X, sin(0)+ y, sin(90)+ r sin(270+ )+ y, Sin(270+ 8) + X, Sin(180+ 8) + X, sin(6) +
Y, SiN(90+ 8)+u, sin(6 + @)+ rsin(90+ 6 + ¢) + y, sin(270) + x, sin(180) = 0

h, =0+90+180+6+0-90-180+90—-¢+90+180—-6—-¢—-90-180=0

X1 X2 X3 X4 Y1 Y2 Y3 Ya Y phi
1 1 -1 -1 0 -0 0 -0 -0 -05 h,
0 0 1 -1 1 -1 0 2 h

y

u, theta
B= 1 0 h, determinant= 4
0 4 hy

The determinant of the B matrix is four, which is greater than zero. There appear
to be no signs that the assembly is on the verge of becoming over-constrained. The

assembly is exactly constrained at 0°.

The overall sensitivities are very low (as shown below), no more than a one to one
ratio of change between the independent and dependent variables. Variation in the
dimensions can be absorbed. This set-up for the assembly will be quite robust, and it will

stay exactly constrained.

X1 X2 X3 X4 Y1 Y Y3 Ya r phi
Sensitivities = -1 -1 1 1 0 0 0 -0 0 05 up
-(B'lA) -0 0 -0 0 -0 025 -03 03 O -1 theta
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Now, the dot will be rotated to 45° (Fig. 5.9), with the rest of the assembly
remaining at the same nominal dimensions as previously used. The same vector loop

equations apply, only the ¢ has changed from 0° to 45°.

@ :

Y1

) Ya

y
X2 T?’

X4

Figure 5.9 — Slotted block with the slot at 45°

u, theta
B = 07 O h, determinant= 2.8
0.7 4 hy

X1 X2 Xz X4 Y1 Y2 Y3 Vs r phi
Sensitivities= [-14 -14 1.4 141 0 0 0 -0 1 25 U
-(B'lA) 0.2 025 -03 -0.2 -0 025 -03 03 -01 -1 theta

Again, for the given dimensions and configuration, the assembly stays exactly
constrained. The determinant is still greater than zero, although it is closer to zero than
the ot at 0°. The sensitivities are also higher than when the slot is at 0°. The effect of
change on the design will be greater in this set-up than in Fig 5.8, but the design will still

assemble.

146



Figure 5.10 now shows the block at 89°. Screw theory indicates that this

assembly is exactly constrained, but it gives no indication or warning of how close the

assembly is to becoming over and under-constrained.

P

Y1
Y2

X2

L

Yq

1vs

X4

Figure 5.10 — Slotted block with the slot at 89°

u,; theta
B = 0.017 O h,
1 4 h,
X1 X2 X3

Sensitivities =
-(B'A)

-57.3

Y2
-57.3 57.299 57.299 9E-11
14.32 14.322 -14.32 -14.322 -0.25 0.25 -0.3 0.25 -14.075 -28.65

determinant=

0 0

Y3

0.07

Va r phi
-0 57.29 115.08 U
theta

The determinant of this B matrix is 0.07, which islessthan one. Thesimple

indicator of the determinant shows that while this system isindeed exactly constrained, it

is dangerously close to becoming over and/or under-constrained. If thereis much

variation in the right peg, the block will not properly assemble unless there is some

deformation involved.



The sensitivities are also very high. In some instances, the dependent variables
would have to change 57 times as much as the independent variables changed. The
sengitivities quickly indicate that the design cannot absorb variation from most of the

variables.

The sensitivities can be compared between configurations of this design. Based
on the effects of variation, the 0° or 45° slotted block assemblies would be chosen over
the 89° assembly because the goodness shown by the assembly sensitivities of the other
two designs are better. All three designs are exactly constrained, but the 89° design ison

the verge of not being exactly constrained.

Figure 5.11 shows the same assembly. However, thistime the slot is at 90°.

@ @
y U1
1 Y

Y2

X2 T y3

X4

Figure5.11 — Slotted block with slot at 90°
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u; theta

B = 0 0 h, determinant= -0
1 4 hy
X1 X2 X3 Xy Y1 Y2 Y3 Ys r phi
Sensitivities = |5E+15 5E+15 -5E+15 -5E+15 -7831 -0.7 -1 7830 -5E+15 -1E+16 u;
-(B'lA) -1E+15 -1E+15 1E+15 1E+15 1957 043 0 -1957 1E+15 2E+15 theta

The determinant of the B matrix iszero. Inspecting the matrix can show the
reason why: the x-equation in the B matrix has gone to zero, and over-constraint in the x-
direction hasresulted. Also, thereislinear dependence between u; and 6, which shows

under-constraint in rotation.

The sensitivities have nearly all exploded. This assembly cannot absorb any

changesin the variables, except for y, or y;, and still assemble.

The results from screw theory concur with these findings. Also, avisua

inspection indeed shows that the constraint lines of action do line up in the x-direction.

55 THE [B] MATRIX FROM THE DLM AND THE [C] MATRIX FROM THE
EQUATIONS OF EQUILIBRIUM

Recall that screw theory beginsin twist space. Reciprocal operations are
performed to take the twists into wrench space (the force domain), and then the
operations are applied again to bring the analysis back into twist space (the motion
domain) to find possible motion in the assembly. Likewise, to obtain results from the
constraint analysis, the reciprocal operations are applied to the unionized twists in order

to enter into the wrench space. From this information, the constraint status is found. In
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short, the motion and force domains are reciprocal to each other through the “reciprocal

operation” defined for screw theory.

Section 4.4.2 Step 2 showed that the C matrix in the force analysis goes singular
when an assembly, which was exactly constrained given constraints at some distance
apart, became over and under-constrained when two of the constraints became co-linear.
In the force analysis, the moment equation (first row) went to zero, thus showing that the

assembly became under-constrained in rotation.

The DLM can aso be applied to this example, shown in Fig. 5.12. The vector

loop equations and B matrix follow the figure.

Figure 5.12 — Exactly constrained block with three constraints
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h: = solid line h, = dashed line

h,, = x,c0s(0)+ y, cos(90) + u, cos(180 + ) + u, cos(90 + &)
+ X, c0s(180) + y, cog(270) = 0

h,, = x,sin(0)+ y,sin(90)+ u, sin(180+ &) + u,sin(90+ )
+x,5n(180)+ y, sin(270) = 0

h,, =0+90+90+6-90+90-¢+90+90=0

h,, = x cos(0)+ y, cos(90) + u, cos(180 + &) + height cos(90 + 8) + u, cos(6)
+ %, c0s(180) + y, cos(270) = 0

h,, = % sin(0)+ y, sin(90) + u, sin(180+ #)+ heightsin(90+ 6) + u, sin(6)
+%,8in(180) + y, sin(270) = 0

h,, =0+90+90+ 6 -90-90+180—-¢+90+90=0

u; U, Uz theta

1 0 0 -25 Ny

B= 0 1 0 -764 hy, determinant= 0
1 0 1 -667] hye
o o0 -0 0 hy,

Notice the last row of the B matrix. It showsthat the assembly is over-
constrained in the y-direction for the second vector loop (the dashed vector loop). That
loop shows that the over-constraint happens between constraints 1 and 3. Upon visua
inspection and in agreement with the C matrix from the equations of equilibrium, at the
point when the two constraints line up, it isindeed the case that the assembly has become

over-constrained in the y-direction and under-constrained in rotation.

The B matrix from the DLM and the C matrix from the equations of equilibrium

simply show two sides to the same analysis. They appear to be reciprocal to each other.
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Appendix G gives atable showing the apparent relationship for Fig. 5.12. Thus, through
the equations of equilibrium and the DLM, the status of the assembly (exactly

constrained, over-constrained, or under-constrained) can be found.

5.6 CONCLUSIONS

This chapter showed how to use the DLM to find two measures of goodness for
an EC design. The determinant of the B matrix can help the designer understand when an
EC design is approaching an unstable condition. The rows and columnsin the B matrix
can also be used for constraint analysis. The assembly sensitivities can be used to
guantify the effects of variation on an assembly. These values for goodness can help a

designer make a decision on appropriate configurations for an assembly.

However, as will be shown in Chapter 6, the DLM also provides additional
understanding for EC design, especidly asit relates to variation in positioning of the
constraints. Chapter 6 will use the DLM to show any effects of variation, and it will

illustrate the robustness of an EC design vs. an over-constrained design.
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CHAPTER 6 USING EXACTLY CONSTRAINED DESIGN ASA ROBUST
DESIGN METHOD

6.1 INTRODUCTION

Each of the previous chapters discussed one tool that strengthens the quantitative
foundation for exactly constrained (EC) design. Chapter 3 validated the heuristic rules of
EC design using the equations of equilibrium as afoundation. Chapter 4 developed a
generalized method to use the equations of equilibrium to inspect and/or predict the
effects of different configurations for an EC assembly. Chapter 5 introduced the direct
linearization method (DLM) as a means to determine a measurement of goodness for
varying arrangements of the same design, while also providing warning signals when the

assembly is approaching an under or over-constrained status.

Each chapter thus demonstrates a quantitative eval uation for EC design, and each
method adds insight for when certain configurations approach or have become over
and/or under-constrained. Avoiding the configurations that could lead to over or under-
constrained assemblies preserves the advantages described in Chapters 1 and 2 for EC

design.

The ability of an EC design to assemble under awide variety of conditionsis one

advantage that has been referenced over and over again in thisthesis. However, the mere
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suggestion that such an advantage exists does not substantiate the claim. Chapter 6 now

guantitatively explores the robust nature of EC design in greater detail.

This chapter begins with a brief description of the method devel oped to show
robustness. That explanation is followed by examples that show the robust nature of EC

design vs. similarly over-constrained (OC) designs.

6.2 MONTE CARLO SIMULATION TO SHOW THE ROBUST NATURE OF EC
DESIGN

Aswith all other methods presented previoudly in thisthesis, the robust nature of
EC design must be shown through a quantitative means. This section will show how a
Monte Carlo ssmulation provides a quantitative method to effectively illustrate the robust

nature of EC design.

First, it must be understood that robust designs will assemble under awide variety
of conditions, athough there may still be error. They do this by absorbing the variation
allowed by the dimensional tolerances. Asvariation inevitably arisesin real world

assembling processes, it must be included in any analysis.

A Monte Carlo simulation will be used to show the effects of variation on
assemblies. Each run of the Monte Carlo simulation will vary the position of specific
constraints to determine the effects of that variation. Following the variation, two

guestions will be answered.
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1. Will the design assemble?

2. If it does assemble, what is the overall error?

6.21 WILL THE DESIGN ASSEMBLE?

The vector loop equations will be used in the Monte Carlo simulation to
determine whether the design assembles. Recall that vector |oop equations must sum to
zero; and if they do, it can be stated that the vector loop equations “close.” (Physically, if
something assembles, it means that all parts make contact with each other.) If any

equation does not close, the design fails to assemble.

The simulation determines if the loops close by using a Newton-Raphson (NR)
routine. If the NR routine converges, the design assembles. The NR is considered to
have converged if the residuals for the loops fall below avalue of 0.000001 in less than
15 iterations (Examples of the actual code can be found in Appendix E). Otherwise, the

NR routine fails, and the design does not assemble.

A design will be considered robust if it consistently assembles, even after
variation isintroduced. Designs that assemble even when subjected to variation are more

robust than those designs that do not assemble when variation is present.

6.22 WHAT ISTHE OVERALL ERROR?

As variation enters into the components of an assembly, the possibility of error

associated with the position arises. It isassumed that in some cases, the assembled
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position of the design isimportant. Therefore, the error found in the Monte Carlo

simulation will reflect the error in the position of the assembly.

When al of the partsin an assembly are at their nominal positions, the error in the
assembly is zero. As positions or dimensions change, error may increase in the overall
assembly. Therefore, if the Monte Carlo finds that the design assembles, the possible

error in the assembly is found.

A root-sum-sguared method is used to find the error. For example, consider Fig.
6.1 below. Theerror inthisfigureisfound by subtracting the resulting position of the
left bottom corner of the assembly (B) from the nominal position of the left corner (A).
Likewise, the resulting position of the right bottom corner (D) will be subtracted from the
nominal position of the right corner (C). Each term is squared, and all terms are then
added together. The square root is taken to find the overall error for each assembly.
Appendix E includes the error calculations in the C program for each example presented

in this chapter.
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error :\/(XA_XB)2+(yA_yB)2+(Xc _XD) +(yc _yD)2

Figure 6.1 — Example calculation for theerror of an assembly

6.3 EXAMPLES

The Monte Carlo ssimulation will be used to simulate the effects of variation on
assemblies. It will show how robust an EC design can be compared to asimilar over-
constrained design. During the course of each simulation, two main details are recorded:

the number of runs that assemble and the overall average error for the assembly.

Several examples will now be presented to show the effects of variability on EC
and OC designs. The first example will show the effects of variation on the block
assembly used in Chapters 3, 4, and 5. The slotted block example, from Chapters 2 and

5, follows thereafter.

6.3.1 ECBLOCK WITH THREE CONSTRAINTS

Figure 6.2 shows the familiar block assembly used in previous chapters. For this
example, the Monte Carlo ssimulation varies the positions of al three constraints in the x

and y-directions. The block is allowed to rotate in order to restore contact with the three
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constraints. The nominal dimensions for each constraint are shown alongside the

graphic.

AV

height = 6.667 units
width = 10.0 units

X1 =2.0units y1 =0.0units
@ Xp =0.0units yp =3.35 units

x3 =8.0units y3 =6.667 units
The standard deviation for all dimensions

being changed in the Monte Carlo
simulation is 0.2

/A

Figure 6.2 — Block assembly with three constraints

Figure 6.3 shows an example for one run of the Monte Carlo simulation. All the
dimensional changes are noted in the figure. Note that the block has rotated in order to

maintain contact with the constraints.

X1 = 2.40units y1 =-0.08 units
X2 =-0.05units yo = 3.10 units
X3 = 7.50units y3 = 7.00 units
AX1 = 0.40 units Ayj =-0.08 units
Axp =-0.05units Ayp =-0.25 units

0.23 units

\Xx3 =-0.50units Ay3

Figure 6.3 — Block assembly with constraints at varying positions from the nominal
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Taking into account the variation in Fig. 6.3, the block still assembles with an
error of 0.64 units. The overall angle of the block is now 4.41°. Even with the

introduction of variability, the design assembles, albeit with some error.

After ssimulating 100,000 designs based on the information in Fig. 6.2, the results
show that the EC block assembles 100% of the time with an average error of 0.46 units.
The C code and Excel® spreadsheet with the DLM and error cal culations used to find all

the results can be found in Appendix E.

Recall from Chapter 5 that as the constraints are moved around, the goodness of
the design changes. The goodness of an EC design can get better or worse depending on
how the constraints are placed. One facet involved in the definition of goodness was that
the error should be kept to a minimum. Table 6.1 shows the % assembled and error
results of several configurations (different starting points) for this assembly. It aso
shows the goodness values. Recall that designs with higher absolute values of goodness

were better EC designs.
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Table 6.1 —Block assembly with different starting pointsfor the constraints

Fig 6.2
Height 6.67 units 6.67 units 6.67 units 6.67 units
length 10 units 10 units 10 units 10 units
x1,yl 2.0, 0.0 units | 1.0, 0.0 units 8.0,0.0 9.0,0.0
X2, y2 0.0, 3.35 units | 0.0, 3.35 units 0.0,25 0.0,25
X3, y3 8.0, 6.67 units | 9.0, 6.67 units 2.0, 6.67 5.0, 6.67
Standard
deviation for 0.2 0.2 0.2 0.2
al variables
% assembled 100 100 100 100
A\érerrgrge 0.46 units 0.41 units 0.46 units 0.61 units
Goodness
(B matrix -6 -8 6 4
determinant)

From Table 6.1, the same trends for goodness exist as had been found in Chapter

6.3.2 NON-ECBLOCK WITH THREE CONSTRAINTS

Now, attention will turn to when the assembly from Fig. 6.2 is no longer exactly

configurations assembled for these EC designs.
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5. The further apart the constraints are from each other, the better the error. Asthe

constraints get closer together, the error increases. However, as expected, all

constrained. This happens when constraints 1 and 3 line up. Several previous chapters
explained why Fig. 6.4 does not qualify as an EC assembly. From aforce perspective,
there is no constraint in place that can overcome the resultant moment that would occur

when the nesting force is applied, and constraints 1 and 3 are competing to constrain the




y-direction. That leaves the block with play and looseness if everything is not perfectly
assembled. From aDLM perspective, the vector loops may not close if any of the

independent variablesin the y-direction change.

v

height = 6.667 units
width = 10.0 units

X1 =8.0units yq1 =0.0units
[> xo =0.0units yp =3.35 units

x3 =8.0units y3 =6.667 units
The standard deviation for all dimensions

being changed in the Monte Carlo
simulation is 0.2

/A

Figure 6.4 — Over/Under-constrained block assembly with three constraints

100,000 runs of the Monte Carlo simulation show the effects of variation on this
non-EC design. It reveals that only 50% of the runs assembled, and they had an average
error of 3.02 units! The error is significantly higher due to the negative effects of
variation—this block must rotate significantly for even small variations in the y-direction
on constraints 1 and 3 just to maintain contact with all the parts. Over-constraining the
design in this manner significantly reduced the ability of the block to assemble, and it

significantly increased the error. It isclearly not asrobust as the EC design.
6.3.3 OCBLOCK WITH FOUR CONSTRAINTS

Now, another constraint will be added along the bottom of the block (Fig. 6.5).

Note from discussionsin earlier chapters that this assembly is over-constrained in several
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ways. there are four constraints, the two constraints to the right of the block (constraints

3 and 4) are co-linear, and constraints 2, 3, and 4 intersect at the same point.

\/

/N /a\

Figure 6.5 — Block assembly with four constraints

The fourth constraint adds new complexity to the analysis of this example. Two
conditions must be tested to determine if the block assembles: the vector loop equations

must close, and the fourth constraint must not interfere with the block.

To learn if the vector loops close requires a closer ook at the behavior of this
assembly. When variability enters into the assembly, only three of the four constraints
will stay in contact with the block. There are three possible arrangements (Fig. 6.6) for
the assembly if the constraints are not in the nominal position showninFig. 6.5. Itis
uncertain which of the three options the assembly will assume. Thus, each case must be
checked in each simulation of the Monte Carlo. If any one of the three cases assembles
(the vector loops close), then the design is considered to have passed the first assembly

test.
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case 1 A A

case 2 case 3

Figure 6.6 — Three possible assembly casesfor the over-constrained block

However, after it is determined if the vector loops close, the simulation must
check to ensure the fourth constraint does not interfere with the assembly. It must stay
clear of the block. If itisout of theway of the block, the design assembles. Otherwise,

the assembly fails.

The error primarily comes from the play in the assembly due to the over-
constraint present. For each run of the Monte Carlo simulation that does assemble, the
program finds two values for the assembly error: average error and maximum error. To
find the average error, the program averages the error of all the cases that assembled.
The maximum error is found by comparing the errors of each case that assembled and

keeping the maximum value.

The reported average error is the overall average of the individual average errors
found above. The reported average maximum error is the average of al the maximum
errors found above. The maximum error isfound because the worst case assembly isjust
aslikely as any other case to assemble. To provide afair measure of the error, both the

average and maximum errors are reported.

163



Including variation, the block in Fig. 6.5 will only assemble 50% of thetime. The
average error is 0.67 units, and the average maximum error is 1.23 units. It isinteresting
to note that when the design assembles to case 1 or case 3, the average error stands at
0.31 units. However, when the design assembles to case 2, the average error is
significantly greater at 3.12 units. These results concur with earlier examplesin Sections

6.3.1 and 6.3.2.

Recall that Fig. 6.5 had three different reasons that the block was over-
constrained. If constraint 3 is moved over to the center of the block (Fig. 6.7), that
eliminates two of the reasons for the over-constraint in this assembly. Now, the block is

over-constrained only because there are four constraints.

\V

A\ /a\

Figure 6.7 — Alternate configuration for the over-constrained block

The design will still only assemble 50% of the time. However, the error is
considerably more reasonable. The average error is 0.54 units, and the average maximum
error is0.74 units. Each individual case has an average error of 0.60, 0.60, and 0.41

units, respectively. Eliminating two forms of over-constraint in this block still led to 50%
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assembly (as has been the case for all over-constrained examples to this point), but the

error present in this exampleis closer to that obtained by the EC example.

Theresults of Fig. 6.5 and 6.7 suggest that there are also varying degrees of
goodness for over-constrained designs as well. The goodness for an over-constrained
design is beyond the scope of thisthesis, however, varied configurations show that as
long as there is the fourth constraint, the EC block will always be more robust than any
OC block. Table 6.2 shows the results for various nominal configurations of the

assembly with four constraints.

Table 6.2 — Several over-constrained examples

W .
B A A A A A A A
Fig. 6.5 Fig. 6.7
Height 6.67 units 6.67 units 6.67 units 6.67 units
length 10 units 10 units 10 units 10 units
x1,yl 1.0,0.0 1.0,0.0 1.0,0.0 2.0,0.0
X2, y2 0.0, 3.35 0.0, 3.35 0.0, 3.35 0.0,25
X3, y3 9.0, 6.67 5.0, 6.67 9.0, 6.67 4.0, 6.67
x4, y4 9.0, 0.0 9.0, 0.0 5.0, 0.0 5.5, 0.0
Standard
deviation 0.2 0.2 0.2 0.2
for all
variables
i 50 50 99 51
assembled
Average 0.67 0.54 0.59 0.83
error
Average
maximum 1.23 0.74 0.66 1.16
error
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The two new examplesin the far right columns of Table 6.2 move the vertical
constraints closer together. As constraints 1 and 4 move closer together (as in the fourth
column of Table 6.2), the results become very comparable to an EC design. Recall that if
any one of the three casesin Fig. 6.6 assembles, the design assembles. With the fourth
constraint placed to the inside of the third constraint, the block has a greater range for
rotation, and the extra constraint interferes less (it still interferes in some cases, but it
never interferesin al casesin any run of the simulation). Hence, the results are similar to
that of an EC design. It can be noted that when constraint 3 is at (8.0, 6.67) instead of
(9.0, 6.67) for this example, the % assembly goes down to 90%, and the average and

maximum errors increase to 0.68 and 0.75 units, respectively.

The examplein the fifth column of the table shows that as constraint 3 isalso
moved closer to constraints 1 and 4, the percentage of successful assemblies plummets
again, and the error escalates. Thus, although some OC designs exhibit good robustness,
the placement of the constraintsis very important. OC designs cannot absorb variation as

well as EC designs, and they generally have more error.

6.34 SUMMARY OF THE BLOCK ASSEMBLIESWITH THREE OR
FOUR CONSTRAINTS

In summary, the exactly constrained assembliesin the previous examples have
lower error with higher overall assembly rates than similar designs that are over-
constrained. This observation, based on the results from the Monte Carlo simulation,

provides key insight into the strength of EC design.
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To re-emphasize, there is avery powerful benefit to EC design that is found from
the Monte Carlo ssmulation. Inthe world of manufacturing, it is generally observed that
assemblies with broader tolerances (and thus greater possibility for variation among
assemblies) will lead to higher assembly rates, although the error also increases. Hereit
is shown that with an EC design, there need not be a negative tradeoff. Indeed, compared
to the over-constrained designs, EC designs have greater assembly rates with lower

overall error!

6.3.5 SLOTTED BLOCK ASSEMBLY

Figure 6.8 shows the slotted block assembly which was first introduced in

Chapter 2. The nominal dimensions are listed in the figure.

Y

<— 25

N
,<

@—)x > x

Figure 6.8 — Slotted block example

The angle of the ot is auser defined input which can vary from 0° to 90°. The variation

for this exampleis limited to the x-location of the right peg.
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Dueto the variation in the right peg, the top plate may have to rotate in order to
allow the design to assemble. However, just because the top plate can rotate does not
guarantee that the design will assemble. For example, Fig. 6.9 shows possible
configurations for the slotted block when the dlot has an angle of 75° and the right peg
rests at various positions. The parts would assemble in Fig. 6.9a, but they would not

assemblein 6.9b.

(@) (b)

Figure 6.9 — Slotted block assembly with the dlot at 75° (a) theright peg at 7.0 units
(b) theright peg at 6.0 units

A Monte Carlo simulation will produce assembly results for the slotted block
example at various slot angles. The right peg will be varied in the x-direction for each
run of the simulation. Again, if the vector loops close after the variation has been
introduced, the block assembles. If the block assembles, the program cal culates the
average error for all successful assemblies per ot angle. The error is again defined as
the RSS displacement of the bottom two corners from their nominal positions (as defined

in section 6.2.2).
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6.351 SLOT ANGLE: 0°

With a 0° slot angle, previous chapters showed this block assembly to be exactly
constrained. After 100,000 runs of the Monte Carlo simulation, the block assembled
100% of the time with no error. The slot absorbed the variation in the right peg, and all

possible configurations assembl ed.

6.3.52 SLOT ANGLE: 90°

Chapter 5 showed the block assembly in Fig. 6.10 to be over-constrained using
both the screw theory approach to constraint analysis and the B matrix in the DLM.
After 100,000 runs of the Monte Carlo simulation, the total number of configurations that
assembl ed totaled 48%, which is drastically lower than the 100% assembly rate for the

same block with the slot manufactured at 0°.

O @

Figure 6.10 — Assembly with the slot angle at 90°

Not only is the slotted block assembly less robust at 90°, it shows significant
increasesin error. The average error of thisassembly is 3.27 units as compared to 0.00

units of error when the slot is at 0°.
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6.353 SLOT ANGLE: VARIED

Recall from Chapter 5 that screw theory considered all slotted block assemblies
exactly constrained up to and through a slot angle of 89.9°. However, the goodness factor
developed in Chapter 5 also showed that as the angle of the slot increases, the designs
tend to be more sensitive to change, as evidenced by higher sensitivities. Thus, the

goodness level decreases as the slot angle increases.
Table 6.3 and Fig. 6.11 combine to show the results of a 100,000 run Monte Carlo
simulation for each listed angle. The goodness factor listed is found from the

determinant of the B matrix in the DLM.

Table 6.3 —Table of Monte Carlo resultsfor various slot angles

Slot angle % assembled Error Goodness

0 100 0 4

10 100 0.086 3.9
20 100 0.179 3.76
30 100 0.284 3.46
40 100 0.417 3.06
45 100 0.501 2.83
50 99.8 0.603 2.57
55 99.2 0.724 2.29
60 96.3 0.848 2

65 89.4 0.973 1.69
70 78.9 1.14 1.37
75 67.5 1.44 1.04
80 58.0 1.90 0.69
85 51.9 2.60 0.35
89 48.7 3.27 0.07
90 48.2 3.27 0
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Error and % Assembled for Slotted Block
‘—A—% assembled —e— Error ‘
100 ..—A—A—A—A—A—A—-t\‘\ ,‘ 3.5
90
80 \ / 1 3
= 70 \ / + 2.5
5 60 5/ 12
2 40 < 15 5
§ 30 // I
20 /H/v 05
10 X—’/ 1 ’
0 : : : : 0
0 20 40 60 80
0 of slot

Figure6.11 — Chart of resultsfor slotted block assembly showing % assembled and
error

Figure 6.11 shows that 100% of the configurations assembled up to and through a
dot angle of 45°. However, the error steadily increased for the same slot angles. The
results for this range of slot angles correspond to the results for the block with three
constraintsin section 6.3.1. All configurations assemble, athough those shown to have a

lower goodness value have greater error.

Beyond 45° for the slot angle, both the error and the number of failuresincrease.
While under screw theory these designs are called exactly constrained, it would perhaps
be more correct to use Kamm'’s [1993] description for these designs. semi-MinCD or
semi-exactly constrained. This description gives the designer a more realistic idea that
while the design is not over-constrained, it really does not hold all of the benefits

associated with an EC design.
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6.4 CONCLUSIONS

By using a Monte Carlo simulation, EC designs are found to be more robust than
over-constrained designs. Not only do EC designs have a much greater percentage of
successful assemblies, they also have lower error. These results concur with the
constraint analysis from Chapters 3 and 4, and they strengthen the goodness findings of

Chapter 5.
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CHAPTER 7 CONTRIBUTIONS, CONCLUSIONS, AND RECOMMENDATIONS

The purpose of this thesis was to establish a quantitative foundation for exactly
constrained design. This chapter will explain the contributions and conclusions madein
order to establish that foundation. Finally, recommendations will be made for further

research that may be performed in thisfield of study.

7.1 CONTRIBUTIONSOF THISTHESIS

Exactly constrained (EC) design is a powerful and robust design method for
mechanical assemblies. While many have defined it through heuristics or experience,
this thesis begins to establish a quantitative foundation to both understand and use EC

design in mechanical assemblies.

EC designs can be defined in quantitative terms by noting that they are statically
determinate; therefore, the rules established by researchers and practitioners through
years of experience are easily validated using the equations of equilibrium. Chapter 3

shows this contribution.

In addition to validating existing rules, this thesis al so presents a quantitative
method to analyze EC designs based on the location of the constraints. The equations of

equilibrium can be used to determineif adesign is exactly constrained. When poor
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placement of the constraints leads to an over and/or under-constrained assembly, the C
matrix can be used to see what over and/or under-constraint is present. The equations can
also be used to predict which locations must be avoided so the design can stay exactly

constrained. This method is presented in Chapter 4.

Another contribution of this thesis shows how the equations of equilibrium can be
used to find the nesting force window. Through a quantitative method, the acceptable
and unacceptabl e regions for the nesting force can be found in a simple and concise way.

Finding the window is also presented in Chapter 4.

Thiswork includes the development of a quantitative processto find the
“goodness’ of EC designs. Asall designs are not created equal, this method could help a
designer quantitatively compare similar designs to make an informed decision on which
configuration would be best. Using the DLM, assembly sensitivities can be compared
between designs, or the determinant of the B matrix can be inspected to make decisions
on designs that would best suit the needs of the designer. Also, if adesign has become

unstable, the B matrix can be inspected to determine why.

By using a Monte Carlo simulation, the robust nature of EC design was clearly
demonstrated over similar designs that were over-constrained. The EC designs
consistently had 100% assembly rates with relatively low error. The OC designs had

assembly rates of approximately 50%, with greater error.
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7.2 CONCLUSIONSOF THISTHESIS

Exactly constrained design can effectively be described and analyzed using
guantitative means. Both the equations of equilibrium and the DLM successfully provide

ways to do so.

The equations of equilibrium can be used to validate, inspect or predict the
behavior of an assembly based on the constraintsin an EC design. The locations of the
constraints can be monitored through the reaction forces. High reaction forces
(especialy reaction forces leading to infinity) must be avoided. Also, the nesting force

can be appropriately placed after using the equations of equilibrium to find the window.

The C matrix (from the matrix form of the equations of equilibrium) can give a

general overview for constraint analysis. It isimportant that it not be singular.

Using information from the DLM provides a method whereby a quantitative
measure of goodness can be assigned to various EC designs. The determinant of the B
matrix can indicate how close a design may be to approaching an over and/or under-
constrained design. The determinant must not approach zero (a singular matrix), or the
assembly will lose the benefits of being exactly constrained (inspecting the B matrix
when it does go singular can be used for constraint analysis). The assembly sensitivities
also provide a measurement that can be compared between designs to show which design
in question may provide the best possible assembly under consideration. Lower

sensitivities generally lead to “ better” EC designs.
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In addition to showing a measure of goodness for EC design, the DLM provides
the means to show how robust an EC design can be. By implementing the DLM into a
Monte Carlo smulation, EC designs are found to be more robust than similar OC

designs.

Throughout the thesis, edge slider, cylinder slider, and revolute joints are used to
constrain the assemblies. With a basic understanding of how degrees of freedom work,
any type of joint that will allow the assembly to properly function can be used to
constrain motion. The analysis method used to analyze the design, whether it be the
equations of equilibrium or the direct linearization method (DLM), can find the necessary

information, regardless of the type of joint used.

7.3 RECOMMENDATIONS FOR FUTURE WORK

One areathat could possibly be devel oped further is Section 5.5. As mentioned
there, the C matrix from the equations of equilibrium and the B matrix from the DLM
appear to tell two sides to the same story. Just as screw theory found a link through the
reciprocal operation between the twist space and the wrench space, there may be asimilar

link by way of matrix operations between the B and C matrices.

For example, it could be stated that variation is analogous to velocity [ Faerber

1999]. Therefore, through mechanical advantage, the force and velocity are reciprocal.

In addition to these considerations, the force analysis can be further extended to

include sensitivity. The matrix equation employed in thisthesisis very basic.
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Cr=b
The vector b could actually be separated to make the equation more descriptive.

Cr = Df
C isstill amatrix of coefficients for the reaction forcesin r, and D contains the
coefficients for the nesting forcesin f. If this equation islinearized (as was done for the
vector loop equations in the DLM), the equation begins to resemble the assembly

sensitivity matrix in the DLM.

{or}=|cDfix}

{oul=[BAfax}

The matrix [C™*D] now also provides amatrix of assembly sensitivities. The
method presented in Section 5.4.4 on using the goodness values could now be extended

to include two additional steps.

5. Formulate force equilibrium equations and linearize them to find C and D.

6. Examinethe C determinant and the [C™'D] sensitivities.

The information from this thesis could be further implemented or linked into
CAD systemsto evaluate designs for over or under-constraint. If necessary, the
automated process could fix the designs to achieve an exactly constrained assembly, and

it would further optimize the configuration (through “goodness” values).
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Thisthesis only treats 2D assemblies. Further research should extend this

information into 3D.

The definition for a quantitative measure of goodness was begun in thisthesis.
Work should continue to further examine thisideafor EC design. In addition, the results
for over-constrained designs suggested that there may also be a value for goodness for

OC designs as well. Research could be extended to further define these considerations.

Most of the examplesin this thesis used symmetrical configurations. It may be
interesting to investigate non-symmetrical configurations of the constraints and nesting

force(s) to learn more about their error or assembly rates.

Non-normal nesting forces should be further examined. It has been observed
throughout the research process of this thesis that the nesting force window will change
according to the number, position, and angle of the nesting force(s). It should be further

explored. In addition, nesting moments should also be explored.

Further exploration is needed to investigate the tradeoff between the locations of
constraints and the nesting force window. In particular, Pearce [2003] developed a
method to analyze the placement of the nesting force using the DLM. By generalizing
that method to find the nesting force window, it could be used in conjunction with the

current method presented in this thesis to find a value for goodness that includes the
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nesting force window. That investigation may show a better measure for goodness

relating to the tradeoff found in Chapter 4.

The effects of clearance need to be investigated further. Aslong as anesting
force is present to ensure that the constraint stays in contact with the main assembly,
clearance may not have any effect on the analysis. However, if the nesting force does not
provide the seating necessary, clearance may become an issue. The amount of clearance

needed in an over-constrained system is unclear.

A few other considerations could also be investigated as they relate to EC design.
The effects of elastic deformation, such as press fit bearings, in an EC design could be
investigated further. It isimportant to note that an EC assembly does not have to be
comprised of partsthat are exactly constrained. For example, ball bearings could be used

as a component of an EC design.

Finally, all mechanical assemblies under consideration in this thesis had no
motion. Exactly constrained designs do not have to be immobile; therefore, future work
should include extending the quantitative foundation to mechanisms that alow motion as

well.
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APPENDIX A CONSTRAINT ANALYSISUSING SCREW THEORY

This appendix will show the details involved to use screw theory as a constraint
analysis method. The topic will be presented in outline form. All steps will be done on

the following example.

<— 25— |€K—— 4.0 —>

y y

A
@9)( \>x
YA T

< W

Al FIND THE TRANSFORMATION MATRIX

The transformation matrix simply relates each individual joint initslocal
coordinate frame to the global coordinate frame. Thereis one transformation matrix per

joint. The transformation matrix has the same form for each joint.

181



A isa3x3 rotation matrix—based on direction cosines
d isa3x1 displacement vector

Oisalx3row of zeros

The transformation matrix will be found for both jointsin the example. Asthe
local axisisthe same asthe global axis, A isthe identity matrix. When the slot isat 0°,

the A matrix isthe identity matrix.

>

I
o o
o+ O
P O O

If the ot were at an angle of 90° to its current position, A would have to properly define

rotation between the two axes. The proper matrix for such a case is shown below.

The d vector is ssimply the displacement from the global coordinate zero. In this
example, the left peg is 2.5 units away in the x-direction and 3.0 unitsin the y-direction.
Theright peg is 6.5 unitsin the x-direction and 3.0 unitsin the y-direction. Thus, the

transformation matrix can be written as below.
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1 0 0 25 1 0 0 65

01 0 3 01 0 3
Fet = Fright =

001 O 001 O

0 00 1 0 00 1

A2 FIND THE TWISTMATRIX FOR EACH FEATURE

The information from the transformation matrix can be used to find the necessary
twists for each joint. Thereis one twistmatrix for each joint, and there are the same
number of rows as there are degrees of freedom allowed by ajoint. For example, the
right peg’s twist matrix will have two rows because it will alow both rotation and

tranglation.

Trandational motion is described in the twistmatrix as shown below.

T=[0 v]

0 isa 1x3 vector of zeros

v isa 1x3 vector wherev = (Ak)"

A isdefined in the transformation matrix

k isa3x1 vector, representing the local axis along which the joint can translate

Rotational motion is described in the twistmatrix as shown below.

T=o V]
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& isa1x3 vector, where w = (Aw )’

A isdefined in the transformation matrix
w isa 3x1 vector, which defines the allowed joint rotation, such as (00 1)

v isalx3vector, wherev=r x w

r isthe 1x3 vector d', as defined in the transformation matrix

¢ isa 1x3 vector defined above

The twistmatrix for the right peg will be shown here. It has two degrees of
freedom: one rotation and onetrandation. Thus, it will have two rows. The e ements for

rotation will be found first. Then, the el ements will be found for the trandl ation.

T

1 0 0fo
w=||0 1 of0|| =[0 0 1
00 11

65 3
vmt:‘ 0 j:si—a.sjz[s -6.5 0

0=[0 0 0]
1 0 of1])'

Viwe =10 1 0|0[| =1 0 O
0 0 1f0

Finally, the twistmatrix for the right peg is shown below.
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. 0 013 -6520
TWIgright:

0001 0 O

A.3 DETERMINE IF THE ASSEMBLY ISUNDER-CONSTRAINED

Now that the twistmatrices have been found, the constraint analysis can begin.
Finding whether an assembly is under-constrained begins by applying what is called a
reciprocal operation to each twist. After this stage, the matrices are unionized and the
system isrow reduced. Finally, the resulting matrix is sent back through the reciprocal

operation to find if and where the assembly is under-constrained.

STEP 1: RECIPROCAL OPERATION APPLIED TO EACH TWIST

The reciprocal operation entails taking the null space of each twistmatrix, which
is easily donein Matlab®. After taking the null space, the matrix istransposed. Finaly, a
flip function is applied, such that columns 1 and 4 are swapped, 2 and 5 are swapped, and

3 and 6 are swapped. Each matrix is now awrench.

STEP 2: UNIONIZE THE MATRICES

After the reciprocal operation is applied to each twist matrix, the wrench matrices
are combined through aunion. This operation ssimply means that all matrices are stacked

together into one matrix.

STEP 3: ROW REDUCED ECHELON FORM

The row reduced echelon form of the unionized wrench matrix is found.
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STEP 4: RECIPROCAL OPERATION APPLIED TO THE WRENCH

Finally, the reciprocal operation can be performed on the unionized reduced
wrench matrix. The results of the reciprocal operation will show whether thereis any
under-constraint in the assembly. If the resulting twistmatrix is anything other than

empty, there is motion.

If there is under-constraint, the point of motion can also be found through a* point
algorithm” asillustrated in Adams [1998]. As this composition only relates to 2D

models, only the point algorithm for rotation about the z-axis will be given.

Yy
a)Z
: : : v
if w, # Othen thepoint of rotation =| —
a)Z
0

MATLAB® AUTOMATION OF THE PROCESS

The whole process can be easily implemented into Matlab®, as also shown in
Adams and Whitney [2001]. The twistmatrices are found by hand, and they are entered
asT1, T2, etc. into the command window. An m-filecalled “run.m” finds the resultant

twistmatrix.
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m-file—run.m

Wl=recip(T1);
W2=recip(T2);
WU=[W1,W2];
WU=rref(WU);
Twist=recip(WU)

m-file—recip.m

function R = recip(T)
p=(null(T))’;
R=flip(p);

end
m-file—flip.m
function W=flip(p)

[i.j] = size(p);
if j==6
for [=1:i
for k=1:3
W(l,K)=p(l.k+3);
W(l,k+3)=p(l,k);
end
end

end
W;

The example shown in the beginning of this appendix results in an empty matrix;

therefore, there is no under-constraint in the assembly.
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A4 DETERMINE IF THE ASSEMBLY IS OVER-CONSTRAINED

To learn whether the assembly is over-constrained, the twistmatrices are first
unionized. Then, the row reduced echelon form of the unionized twistmatrix is found,

and that step is followed by the reciprocal operation. Thisleads to awrench matrix.

STEP 1: UNIONIZE THE TWISTMATRICES

To find if there is over-constraint in an assembly requires the twistmatrices to be

unionized before they are sent through the reciprocal operation.

STEP 2: ROW REDUCED ECHELON FORM

The row reduced echelon form of the resulting unionized matrix is found.

STEP 3: RECIPROCAL OPERATION APPLIED TO THE TWIST

The reciprocal operation, as described in section A.3.1, leads to a resultant wrench
matrix which can show whether an assembly is over-constrained. The first three columns
show if the body is over-constrained in the x, y or z trandlational directions. The last
three columns show whether the body is over-constrained in the X, y, or z rotational

directions.

If an assembly is over-constrained, the point algorithm mentioned in section A.3.4

can again be applied to find where the over-constraint happened.
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MATLAB® AUTOMATION OF THE PROCESS

As before, the process can be automated in Matlab®. The same m-files can be
linked to arun file to find the over-constraint. To maximize efficiency, it is best to put
both the motion (under-constraint) and force (over-constraint) analysisin the same run
file. Only the additional information to run the over-constrained analysisis shown

below.

m-file—run.m
TU=[TLT2);

T=rref(TU);
Wrench=recip(T)

For the example, the resulting wrench matrix is shown below. The explanation

follows the matrix.

001000
Wrench=({0 0 0 1 0 O
0O 0O0OO0O1O0O0

This matrix shows that the assembly is over-constrained in z-trans ation, x-
rotation, and y-rotation. However, as the assembly is only 2D, these can beignored. All

possible degrees of freedom are constrained. This assembly is exactly constrained.
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A5 DETAILED EXAMPLESFROM CHAPTER 5

This section will show the development of the twist matrices and the results after
running the slotted block example through the procedure described above. The dlot will
changein each example. Please notethat Fiert and Twistig Will always be the samein

each example.

100 25

- _[010 3

Ieft_001
000 1

Twist,,, =[0 0 1 3 -25 0]
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SLOT AT 45°

|<— 25— |€&—— 40 —>

@»Xy ;
. 4

0.707 -0.707 0 6.5

Twist . - o Vv _ 1007 0707 O 3
right — 0 v right — 0 0 1 0
0 0 0 1

0.707 -0.707 0] 0
w=|10707 0707 0|0|| =[0 0 1]
0 0 1|1

65 3
vmt:‘ O‘:Si—G.Sj:[S -6.5 0
0 01

T

|

0.707 -0.707 0
0=[0 0 0] v,.=||0707 0707 0|0|| =[0.707 0.707 O]

0 0 1(0
: 001 3 -65 0
T\NIStright:
0 0 0 0707 0707 O
001000
Twist = empty matrix Wrench=/0 0 0 1 0 O
000010
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SLOT AT 70°

|<— 25 —)I(i 4.0 —)I

| &
\ i

0342 -09397 0 65
Twist. :{a) v} o 09397 0342 0 3
right right O 0 1 O

0 0 0 1

X

T

0.342 -0.9397 00
®=[/09397 0342 0|0|| =[0 0 1]
0 0 1)1

65 3
vmt:‘ O‘:Si—G.Sj:[S -6.5 0
0 01

0342 -09397 0|1

0=[0 0 0] v,,.=||09397 0342 0]0|| =[0.342 0.9397 0]
0 0 1]0
. 001 3 -65 0
TWIStright:

0 0 0 0342 09397 0
001000
Twist = empty matrix Wrench={0 0 0 1 0 O
000010
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o

SLOT AT 89.9°
I(— 2.5 —)I(— 4.0 —>

y x

b

X

0.00175 -0.999 0 6.5
. o Vv 0999 000175 0 3
T\NIStright = right =
0 v 0 0 1 O
0 0 0 1

T

0.00175 -0.999 00
w=[| 0999 000175 0| 0|l =[0 0 1]
0 0 1|1

v rot

|65 3
o o

j =3 -65]=[3 -65 0]

0.00175 -0999 01

=0 0 0] v,,.=|| 0999 000175 0|0|| =[0.00175 0.999 O]
0 0 1]0

. 0 01 3 -65 0

T\NIStright =

O O O 0.00175 0.999 O

Twist = empty matrix Wrench =

o O O
o O O
o O k-
o +—r O
= O O
o O O
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SLOT AT 9C°

|(— 25 )I( 4.0 —>

0 -1 oJo
w=|1 0 0f0|| =[0 0 1]
0 0 11
65 3 . :
V= =3-65=[3 -65 0
0 0 1
0 -1 of17)
0=[0 0 0] vyue=||1 O OfO[| =[0 1 O]
0 0 1]0
. 0013 -650
Twist;y, =
0000 1 O
10000
. 00100
Twiss=[0 0 1 3 -25 0] Wrench=
00010
00001
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rotation point =

N
ol

OI—‘IOOI—“

coordinateof overconstraint =
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APPENDIX B EXCEL® ANALYSISFOR EXAMPLESUSING THE
EQUATIONS OF EQUILIBRIUM

B.1 NO TWO CONSTRAINTS SHOULD BE CO-LINEAR ANALYSIS (FIG. 3.3)

Fu= 1 X3 Rs
X1= 2 0 -0.27471098 R; as C; moves along the top of the block
V.= 0 -0.54942197
X= 0 15  -1.09884394 6
V= 2.223 1.6  -1.37355492 . \
X3= variable 17 -1.83140656
Y=  0.6667 1.8 -2.74710984 2 ¥
X 1 19  -5.49421969 < ‘ . : :
Vo= 4 1.95 -10.9884394 [ T 3 4 5 6 7 8 9 1
Xeo= 2 1.96 -13.7355492 2
Y= 2223 1.97 -18.3140656 4
Opy= 45 1.98 -27.4710984 .

1.99 -54.9421969 «

2 #DIV/O! ®

2.01  54.9421969
2.02  27.4710984
2.03  18.3140656
2.04  13.7355492
2.05 10.9884394
21 5.49421969
2.2 2.74710984
2.3 1.83140656
2.4 1.37355492
25 1.09884394
3 0.54942197
4 0.27471098
5 0.18314066
6 0.13735549
7 0.10988439
8 0.09157033
9 0.07848885
10 0.06867775
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X3 R;
0 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A16-x_12)
=A16+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A17-x_12)
=A19-0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A18-x_12)
=A20-0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A19-x_12)
=A21-0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A20-x_12)
=A22-0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A21-x_12)
=A28-0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A22-x_12)
=A24-0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A23-x_12)
=A25-0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A24-x_12)
=A26-0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A25-x_12)
=A27-0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A26-x_12)
=A28-0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A27-x_12)
=A17+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A28-x_12)
=A28+0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A29-x_12)
=A29+0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A30-x_12)
=A30+0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A31-x_12)
=A31+0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A32-x_12)
=A32+0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A33-x_12)
=A28+0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of Fn*PI()/180)*(y_n-y_12))/(A34-x_12)
=A34+0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A35-x_12)
=A35+0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A36-x_12)
=A36+0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A37-x_12)
=A37+0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A38-x_12)
=A28+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A39-x_12)
=A39+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A40-x_12)
=A40+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A41-x_12)
=A41+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A42-x_12)
=A42+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A43-x_12)
=A43+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A44-x_12)
=A44+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A45-x_12)
=A45+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A46-x_12)
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B.2 NO THREE CONSTRAINTS SHOULD INTERSECT AT A POINT ANALYSIS

(FIG. 3.10)
x3 y3 R3
3 6 0.610843918
31 5.8 0.652913594 Rj3 as C; moves along the right side of the triangle
3.2 5.6 0.701206679
33 5.4  0.757214429 10
34 5.2 0.822945903 g
35 5 0.901174073 6
3.6 4.8 0.995837053 4
3.7 4.6 1.11272187 2 /
3.8 4.4 1.26069384 L\E o : ‘ ‘ ‘ ‘
3.9 4.2 1.45405727 @, s 4 N //55_’_,
4 4 1.717482259 N
4.1 3.8 2.097471742
4.2 3.6 2.693375673 ®
4.3 3.4 3.762253908 81 /
4.4 32  6.237721845 -10
4.5 3 18.23760431 X3
4.51 2.98  22.58180203
4.52 2.96  29.64269183
4.53 2.94  43.12796752
4.54 2.92  79.12335979
4.55 2.9 478.4288389
4,551 2.898 965.8632625 Fn= 1
45511 2.8978 1075.430636 X12= 3
45512 2.8976 1213.037404 Y12= 2
45519 2.8962 11628.6299 X3= variable
4,552 2.896 -51312.25259 y3= variable
4,553 2.894 -930.8211091 Xn= 5.5
4554  2.892 -469.6705435 Yn= 1
4.555 2.89 -314.0719485 thetacs= 30
4.556 2.888 -235.9149584 thetag,= 30
4.557 2.886 -188.9056705
4.558 2.884 -157.5180424
4,559 2.882 -135.0747008 X7 is the x-coordinate of the instant center (IC;,)
4.56 2.88 -118.2292666 Y12 is the y-coordinate of the instant center (ICy,)

4.57 2.86 -52.61368957
4.58 2.84 -33.83547674
4.59 2.82 -24.93573094

4.6 2.8  -19.74278579
4.7 2.6 -6.40473071
4.8 24  -3.822370384
4.9 2.2 -2.724046401
5 2 -2.116025404
5.1 1.8  -1.729902399
5.2 1.6  -1.462949764
5.3 14  -1.267373075
5.4 1.2 -1.117921959
55 1 -1
5.6 0.8  -0.904581835
5.7 0.6  -0.825786776
5.8 0.4  -0.759618943
5.9 0.2 -0.703268162
6 0 -0.654700538
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x3
3
=A12+0.1
=A13+0.1
=A14+0.1
=A15+0.1
=A16+0.1
=A17+0.1
=A18+0.1
=A19+0.1
=A20+0.1
=A21+0.1
=A22+0.1
=A23+0.1
=A24+0.1
=A25+0.1
=A26+0.1
=A27+0.01
=A28+0.01
=A29+0.01
=A30+0.01
=A31+0.01
=A32+0.001

=A33+0.0001
=A34+0.0001
=A35+0.0007

=A33+0.001
=A37+0.001
=A38+0.001
=A39+0.001
=A40+0.001
=A41+0.001
=A42+0.001
=A43+0.001
=A32+0.01
=A45+0.01
=A46+0.01
=A47+0.01
=A27+0.1
=A49+0.1
=A50+0.1
=A51+0.1
=A52+0.1
=A53+0.1
=A54+0.1
=A55+0.1
=A56+0.1
=A57+0.1
=A58+0.1
=A59+0.1
=A60+0.1
=A61+0.1
=A62+0.1

y3
=-2*A12+12
=-2*A13+12
=-2*Al14+12
=-2*A15+12
=-2*A16+12
=-2*A17+12
=-2*A18+12
=-2*A19+12
=-2*A20+12
=-2*A21+12
=-2*A22+12
=-2*A23+12
=-2*A24+12
=-2*A25+12
=-2*A26+12
=-2*A27+12
=-2*A28+12
=-2*A29+12
=-2*A30+12
=-2*A31+12
=-2*A32+12
=-2*A33+12
=-2*A34+12
=-2*A35+12
=-2*A36+12
=-2*A37+12
=-2*A38+12
=-2*A39+12
=-2*A40+12
=-2*A41+12
=-2*A42+12
=-2*A43+12
=-2*A44+12
=-2*A45+12
=-2*A46+12
=-2*A47+12
=-2*A48+12
=-2*A49+12
=-2*A50+12
=-2*A51+12
=-2*A52+12
=-2*A53+12
=-2*A54+12
=-2*A55+12
=-2*A56+12
=-2*A57+12
=-2*A58+12
=-2*A59+12
=-2*A60+12
=-2*A61+12
=-2*A62+12
=-2*A63+12
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R3
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A12-x_12)+COS (thetaC3*PI()/180)*(B12-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A13-x_12)+COS (thetaC3*PI()/180)*(B13-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A14-x_12)+COS (thetaC3*PI()/180)*(B14-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A15-x_12)+COS(thetaC3*PI()/180)*(B15-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A16-x_12)+COS(thetaC3*PI()/180)*(B16-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A17-x_12)+COS (thetaC3*PI()/180)*(B17-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A18-x_12)+COS (thetaC3*PI()/180)*(B18-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A19-x_12)+COS(thetaC3*PI()/180)*(B19-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A20-x_12)+COS (thetaC3*PI()/180)*(B20-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A21-x_12)+COS(thetaC3*PI()/180)*(B21-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A22-x_12)+COS (thetaC3*PI()/180)*(B22-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A23-x_12)+COS (thetaC3*PI()/180)*(B23-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A24-x_12)+COS (thetaC3*PI()/180)*(B24-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A25-x_12)+COS(thetaC3*PI()/180)*(B25-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A26-x_12)+COS (thetaC3*PI()/180)*(B26-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A27-x_12)+COS (thetaC3*PI()/180)*(B27-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A28-x_12)+COS (thetaC3*PI()/180)*(B28-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A29-x_12)+COS (thetaC3*PI()/180)*(B29-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A30-x_12)+COS (thetaC3*PI()/180)*(B30-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A31-x_12)+COS (thetaC3*PI()/180)*(B31-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A32-x_12)+COS (thetaC3*PI()/180)*(B32-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A33-x_12)+COS (thetaC3*PI()/180)*(B33-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A34-x_12)+COS (thetaC3*PI()/180)*(B34-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A35-x_12)+COS(thetaC3*PI()/180)*(B35-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A36-x_12)+COS (thetaC3*PI()/180)*(B36-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A37-x_12)+COS (thetaC3*PI()/180)*(B37-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A38-x_12)+COS (thetaC3*PI()/180)*(B38-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A39-x_12)+COS(thetaC3*PI()/180)*(B39-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A40-x_12)+COS (thetaC3*PI()/180)*(B40-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A41-x_12)+COS (thetaC3*PI()/180)*(B41-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A42-x_12)+COS (thetaC3*PI()/180)*(B42-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A43-x_12)+COS (thetaC3*PI()/180)*(B43-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A44-x_12)+COS (thetaC3*PI()/180)*(B44-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A45-x_12)+COS (thetaC3*PI()/180)*(B45-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A46-x_12)+COS (thetaC3*PI()/180)*(B46-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A47-x_12)+COS(thetaC3*PI()/180)*(B47-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A48-x_12)+COS (thetaC3*PI()/180)*(B48-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A49-x_12)+COS (thetaC3*PI()/180)*(B49-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A50-x_12)+COS (thetaC3*PI()/180)*(B50-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A51-x_12)+COS (thetaC3*PI()/180)*(B51-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A52-x_12)+COS(thetaC3*PI()/180)*(B52-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A53-x_12)+COS(thetaC3*PI()/180)*(B53-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A54-x_12)+COS (thetaC3*PI()/180)*(B54-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A55-x_12)+COS (thetaC3*PI()/180)*(B55-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A56-x_12)+COS (thetaC3*PI()/180)*(B56-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A57-x_12)+COS (thetaC3*PI()/180)*(B57-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A58-x_12)+COS (thetaC3*PI()/180)*(B58-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A59-x_12)+COS (thetaC3*PI()/180)*(B59-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A60-x_12)+COS thetaC3*PI()/180)*(B60-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A61-x_12)+COS (thetaC3*PI()/180)*(B61-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A62-x_12)+COS (thetaC3*PI()/180)*(B62-y_12))
=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A63-x_12)+COS (thetaC3*PI()/180)*(B63-y_12))
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B.3 NESTING FORCE WINDOW USING THE EQUATIONS OF EQUILIBRIUM
(SECTION 3.4.2)

Fo.=1
Y12= 2
X12 =3
y3 = 4875
X3= 3.5625
Theta = 30
RIGHT SIDE
xn yn R3 R2 R1 R3 R2 R1
3 6 -1.568479538 -0.568479538  -0.5684795 FAILED  FAILED  FAILED
3.1 5.8 -1.467416509 -0.467416509  -0.4674165 FAILED  FAILED  FAILED
32 5.6 -1.36635348 -0.36635348  -0.3663535 FAILED  FAILED  FAILED
33 5.4 -1.265290451 -0.265290451  -0.2652905 FAILED  FAILED  FAILED
34 5.2 -1.164227422 -0.164227422  -0.1642274 FAILED  FAILED  FAILED
35 5 -1.063164393 -0.063164393  -0.0631644 FAILED  FAILED  FAILED
3.6 48 -0.962101364 0.037898636  0.03789864 FAILED ok ok
3.7 46 -0.861038335 0.138961665  0.13896166 FAILED ok ok
38 44 -0.759975306 0.240024694  0.24002469 FAILED ok ok
3.9 42 -0.658912277 0.341087723  0.34108772 FAILED ok ok
4 4 -0.557849248 0.442150752  0.44215075 FAILED ok ok
41 3.8 -0.456786219 0.543213781  0.54321378 FAILED ok ok
42 3.6 -0.35572319 0.64427681  0.64427681 FAILED ok ok
43 3.4 -0.254660161 0.745339839  0.74533984 FAILED ok ok
44 32 -0.153597132 0.846402868  0.84640287 FAILED ok ok
45 3 -0.052534103 0.947465897  0.9474659 FAILED ok ok
451 2.98 -0.0424278 0.9575722 0.9575722 FAILED ok ok
452 2.96 -0.032321497 0.967678503  0.9676785 FAILED ok ok
4.53 2.94 -0.022215194 0.977784806  0.97778481 FAILED ok ok
454 2.92 -0.012108892 0.987891108  0.98789111 FAILED ok ok
455 2.9 -0.002002589 0.997997411  0.99799741 FAILED ok ok
4551 2.898 -0.000991958 0.999008042  0.99900804 FAILED ok ok
4.552 2.896 1.86719E-05 1.000018672  1.00001867 ok ok ok
4553 2.894 0.001029302 1.001029302  1.0010293 ok ok ok
4554 2.892 0.002039932 1.002039932  1.00203993 ok ok ok
4555 2.89 0.003050563 1.003050563  1.00305056 ok ok ok
4.56 2.88 0.008103714 1.008103714  1.00810371 ok ok ok
46 2.8 0.048528926 1.048528926  1.04852893 ok ok ok
47 2.6 0.149591955 1149591955  1.14959195 ok ok ok
48 2.4 0.250654984 1.250654984  1.25065498 ok ok ok
4.9 22 0.351718013 1351718013  1.35171801 ok ok ok
5 2 0.452781042 1452781042  1.45278104 ok ok ok
5.1 1.8 0.553844071 1553844071  1.55384407 ok ok ok
5.2 16 0.6549071 1.6549071 1.6549071 ok ok ok
5.3 1.4 0.755970129 1755970129  1.75597013 ok ok ok
5.4 1.2 0.857033158 1.857033158  1.85703316 ok ok ok
55 1 0.958096187 1.958096187  1.95809619 ok ok ok
5.6 0.8 1.059159216 2.059159216  2.05915922 ok ok ok
5.7 0.6 1.160222245 2.160222245  2.16022224 ok ok ok
5.8 0.4 1.261285274 2.261285274  2.26128527 ok ok ok
5.9 0.2 1.362348303 2.362348303  2.3623483 ok ok ok
6 0 1.463411332 2.463411332  2.46341133 ok ok ok
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LEFT SIDE

R3
-1.463411332
-1.362348303
-1.261285274
-1.160222245
-1.059159216
-0.958096187
-0.857033158
-0.755970129

-0.6549071
-0.553844071
-0.452781042
-0.351718013
-0.250654984
-0.149591955
-0.048528926
0.052534103
0.153597132
0.254660161

0.35572319
0.456786219
0.557849248
0.658912277
0.759975306
0.861038335
0.962101364
0.972207667

0.98231397
0.992420273
0.993430903
0.994441533
0.995452164
0.996462794
0.997473424
0.998484055
0.999494685
0.999595748
0.999696811
0.999797874
0.999898937

1
1.000101063
1.000202126
1.000303189
1.000404252
1.000505315
1.002526576
1.012632879
1.063164393
1.164227422
1.265290451
1.36635348
1.467416509
1.568479538

R2 R1
-2.463411332  -1.4634113
-2.362348303  -1.3623483
-2.261285274  -1.2612853
-2.160222245  -1.1602222
-2.059159216  -1.0591592
-1.958096187  -0.9580962
-1.857033158  -0.8570332
-1.755970129  -0.7559701

-1.6549071 -0.6549071
-1.553844071  -0.5538441
-1.452781042 -0.452781
-1.351718013 -0.351718
-1.250654984 -0.250655
-1.149591955 -0.149592
-1.048528926  -0.0485289
-0.947465897 0.0525341
-0.846402868  0.15359713
-0.745339839  0.25466016

-0.64427681 0.35572319
-0.543213781  0.45678622
-0.442150752  0.55784925
-0.341087723  0.65891228
-0.240024694  0.75997531
-0.138961665 0.86103834
-0.037898636  0.96210136
-0.027792333  0.97220767
-0.01768603 0.98231397
-0.007579727  0.99242027
-0.006569097 0.9934309
-0.005558467  0.99444153
-0.004547836  0.99545216
-0.003537206  0.99646279
-0.002526576  0.99747342
-0.001515945  0.99848405
-0.000505315  0.99949468
-0.000404252  0.99959575
-0.000303189  0.99969681
-0.000202126  0.99979787
-0.000101063  0.99989894
6.40988E-16 1

0.000101063  1.00010106
0.000202126  1.00020213
0.000303189  1.00030319
0.000404252  1.00040425
0.000505315  1.00050532
0.002526576  1.00252658
0.012632879  1.01263288
0.063164393  1.06316439
0.164227422  1.16422742
0.265290451  1.26529045

0.36635348 1.36635348
0.467416509  1.46741651
0.568479538  1.56847954
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BASE SIDE
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R3
-1.358343125
-1.313065021
-1.267786917
-1.222508813
-1.177230709
-1.131952604

-1.0866745
-1.041396396
-0.996118292
-0.950840188
-0.905562084
-0.860283979
-0.815005875
-0.769727771
-0.724449667
-0.679171563
-0.633893458
-0.588615354

-0.54333725
-0.498059146
-0.452781042
-0.407502938
-0.362224833
-0.316946729
-0.271668625
-0.226390521
-0.181112417
-0.135834313
-0.090556208
-0.045278104
-4.0215E-16
0.045278104
0.090556208
0.135834313
0.181112417
0.226390521
0.271668625
0.316946729
0.362224833
0.407502938
0.452781042
0.498059146
0.54333725
0.588615354
0.633893458
0.679171563
0.724449667
0.769727771
0.815005875
0.860283979
0.905562084
0.950840188
0.996118292
0.996571073
0.997023854
0.997476635
0.997929416
0.998382197
0.998834978
0.999287759
0.99974054
0.999785818
0.999831096
0.999876375
0.999921653
0.999966931
1.000012209
1.000057487
1.000102765
1.000148043
1.000193321
1.000646102
1.041396396
1.0866745
1.131952604
1.177230709
1.222508813
1.267786917
1.313065021
1.358343125

R2
-1.358343125
-1.313065021
-1.267786917
-1.222508813
-1.177230709
-1.131952604

-1.0866745
-1.041396396
-0.996118292
-0.950840188
-0.905562084
-0.860283979
-0.815005875
-0.769727771
-0.724449667
-0.679171563
-0.633893458
-0.588615354

-0.54333725
-0.498059146
-0.452781042
-0.407502938
-0.362224833
-0.316946729
-0.271668625
-0.226390521
-0.181112417
-0.135834313
-0.090556208
-0.045278104
-4.0215E-16
0.045278104
0.090556208
0.135834313
0.181112417
0.226390521
0.271668625
0.316946729
0.362224833
0.407502938
0.452781042
0.498059146
0.54333725
0.588615354
0.633893458
0.679171563
0.724449667
0.769727771
0.815005875
0.860283979
0.905562084
0.950840188
0.996118292
0.996571073
0.997023854
0.997476635
0.997929416
0.998382197
0.998834978
0.999287759
0.99974054
0.999785818
0.999831096
0.999876375
0.999921653
0.999966931
1.000012209
1.000057487
1.000102765
1.000148043
1.000193321
1.000646102
1.041396396
1.0866745
1.131952604
1.177230709
1.222508813
1.267786917
1.313065021
1.358343125

R1
-2.358343125
-2.313065021
-2.267786917
-2.222508813
-2.177230709
-2.131952604

-2.0866745
-2.041396396
-1.996118292
-1.950840188
-1.905562084
-1.860283979
-1.815005875
-1.769727771
-1.724449667
-1.679171563
-1.633893458
-1.588615354

-1.54333725
-1.498059146
-1.452781042
-1.407502938
-1.362224833
-1.316946729
-1.271668625
-1.226390521
-1.181112417
-1.135834313
-1.090556208
-1.045278104
-1
-0.954721896
-0.909443792
-0.864165687
-0.818887583
-0.773609479
-0.728331375
-0.683053271
-0.637775167
-0.592497062
-0.547218958
-0.501940854
-0.45666275
-0.411384646
-0.366106542
-0.320828437
-0.275550333
-0.230272229
-0.184994125
-0.139716021
-0.094437916
-0.049159812
-0.003881708
-0.003428927
-0.002976146
-0.002523365
-0.002070584
-0.001617803
-0.001165022
-0.000712241
-0.00025946
-0.000214182
-0.000168904
-0.000123625
-7.83474E-05
-3.30693E-05
1.22088E-05
5.74869E-05
0.000102765
0.000148043
0.000193321
0.000646102
0.041396396
0.0866745
0.131952604
0.177230709
0.222508813
0.267786917
0.313065021
0.358343125

204

R1
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED
FAILED

ok




Example code from Excel®. This spreadsheet is actually set up columns A-E,
where column A isxn, Bisyn, CisR3, D isR2, and EisR1. Itissimply shown herein

this manner as an illustration of the formulas.

LEFT SIDE
XN yn R3
0 =A6*2 =(fn*COS(theta*PI()/180)*(y.12-B6)+fn*SIN(theta*P1()/180)*(x.12-A6))/(SIN(theta*PI()/180)*(x_3-x.12)-COS(theta*|
R2
=(fn*COS(theta*P1()/180)-R3*COS(theta*PI()/180))/-COS(theta*PI()/180)
R1
=fn*SIN(theta*PI1()/180)+D6*SIN(theta*P1()/180)+C6*SIN(theta*PI()/180)

R3
=A6+0.1 =A13*2 =(fn*COS(theta*PI()/180)*(y.12-B13)+fn*SIN(theta*PI()/180)*(x.12-A13))/(SIN(theta*PI()/180)*(x_3-x.12)-COS(thet
R2
=(fn*COS(theta*P1()/180)-C13*COS(theta*PI()/180))/-COS(theta*P1()/180)
R1

=f*SIN(theta*PI()/180)+D13*SIN(theta*PI()/180)+C13*SIN(theta*PI()/180)

RIGHT SIDE
Xxn yn R3
3 6 =(fn*COS(theta*PI()/180)*(B22-y.12)-fn*SIN(theta*PI()/180)*(A22-x.12))/(SIN(theta*P1()/180)*(x_3-x.12)-COS(thet:
R2

=(fn*COS(theta*PI()/180)+C22*COS(theta*P|()/180))/COStheta*PI1()/180)
R1
=fn*SIN(theta*PI()/180)+D22*SIN(theta*PI()/180)+C22*SIN(theta*P|()/180)

R3
=A105+0.1  =-2*A30- =(fn*COS(theta*PI()/180)*(B30-y.12)-fn*SIN(theta*PI()/180)*(A30-x.12))/(SIN(theta*PI()/180)*(x_3-x.12)-COS(thet:
R2
=(fn*COS(theta*PI()/180)+C30*COS(theta*PI()/180))/COS(theta*PI()/180)
R1

=fn*SIN(theta*PI()/180)+D30*SIN(theta*PI()/180)+C30*SIN(theta*P|()/180)

BASE SIDE
XN yn R3
6 0 =(fn*(A39-x.12))/(SIN(theta*PI()/180)*(x_3-x.12)-COS(theta*PI()/180)*(y_3-y.12))
R2

=C39
R1
=(D39*SIN(theta*PI()/180)+C39*SIN(theta*PI()/180)-fn)

R3
=A39-01 0 =(fn*(A47-x.12))/(SIN(theta*PI()/180)*(x_3-x.12)-COS(theta*P1()/180)*(y_3-y.12))
R2
=ca7
R1
=(D47*SIN(theta*P1()/180)+CA47*SIN(theta*PI()/180)-fn)
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APPENDIX C COMPARING THE GRAPHICAL NESTING FORCE
WINDOW TO THE QUANTITATIVE NESTING FORCE
WINDOW

Object: To determineif the equations of equilibrium and the graphical method to find the

nesting force window agree

C.1 BRIEF DESCRIPTION AND BASELINE RESULTS

First method—equations of equilibrium (Section C.2):

e Usethe equations of equilibrium to find the reaction forces at each constraint,
given a certain nesting force position.
e Find the transition points, which happen at the point when the reaction forces are

all positive and then one or more reaction forces become negative.

Second method—qraphical approach (Section C.3):

e Follow Blanding'srules for finding the nesting force window.

e Findthe equation of alinefor all sides of the assembly.

e Find the equation of aline for the constraint lines of action and the perpendicular
intersections of the transition points.

e Find the intersections of the necessary linesto find the transition points.
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Transition pointsaccording to thefirst method (equations of equilibrium):

Along the |eft side

Xn Yn Rs R, R:
2.4376  4.8752  1.000101063  0.000101063 1.000101
Along theright side

Xn Yn R R R:
4,553 2.894 0.001029302  1.001029302 1.001029
Along the base
Xn Yn R R R:
0.7914 0 1.000102765 1.000102765 0.000001

Transition points according to the second method (graphical approach):

Along the left side

Xn Yn
2.40 4.80
Along theright side
Xn Yn
4.60 2.80
Along the base
Xn Yn
0.75 0

They are essentially the same. The graphical method is limited by round-off error.

C.2 FIRST METHOD: EQUATIONS OF EQUILIBRIUM

c1

Given the following information, the reaction forces at each constraint can be found:
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Fo=1

0 =30°
X12 = 3
Y12=2

X3 = 3.5625
ys= 4875

Find Rg,:
+9 XM31,=0 counterclockwise positive
Along the left side of the triangle:

_ F *cos(0)#(y,, — ¥,)+F, #sin(@) = (x, — X,)

Ry SiN(@)* (X; — X,) —Cos() * (Y5 — Vi0)

Along the right side of the triangle:

R3 — I:n * Cos(e)*(yn _ylZ)_Fn >kSin(e)*(Xn _X:LZ)

Sin(e)* (Xs - X12) - COS(@)* (ys - ylz)
Along the bottom of the triangle:

F *cos(@) * (X, — Xp,)

R?’ - Sin(g)* (X3 - 12) —COS(@)* (y3 B ylz)

Find Ry:
+— XR=0
Along the left side of the triangle:

_ F, * cos(@) — R, * cos(6)

RZ
—cos(6)
Along the right side of the triangle:
R - F, * cos(@) + R, * cos(0)
2 cos(6)
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Along the bottom of the triangle:

Find Rl:

+1 EF,=0

Along the left side of the triangle:

R =F,*sin(8)+ R, #sin(8)+ R, * sin(0)

Along the right side of the triangle:

R =F,*sin(8)+ R, #sin(8) + R, * sin(0)

Along the bottom of the triangle:

R, =R, *sin(@)+ R, *sin(6) - F,

Overall results (in numbers):

Xn

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

11
1.2
1.3
14
15
1.6
1.7
1.8
1.9

21
2.2
2.3
24
241
242
2.43
2.437
2.4371

yn
-1.463411332
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
3.8
4
4.2
44
46
48
4.82
484
4.86
4.874
4.8742

R3

-2.463411332

-1.362348303
-1.261285274
-1.160222245
-1.059159216
-0.958096187
-0.857033158
-0.755970129
-0.6549071
-0.553844071
-0.452781042
-0.351718013
-0.250654984
-0.149591955
-0.048528926
0.052534103
0.153597132
0.254660161
0.35572319
0.456786219
0.557849248
0.658912277
0.759975306
0.861038335
0.962101364
0.972207667
0.98231397
0.992420273
0.999494685
0.999595748
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R2
-1.463411
-2.362348303
-2.261285274
-2.160222245
-2.059159216
-1.958096187
-1.857033158
-1.755970129
-1.6549071
-1.553844071
-1.452781042
-1.351718013
-1.250654984
-1.149591955
-1.048528926
-0.947465897
-0.846402868
-0.745339839
-0.64427681
-0.543213781
-0.442150752
-0.341087723
-0.240024694
-0.138961665
-0.037898636
-0.027792333
-0.01768603
-0.007579727
-0.000505315
-0.000404252

R1
Left side of the triangle

-1.362348
-1.261285
-1.160222
-1.059159
-0.958096
-0.857033
-0.75597
-0.654907
-0.553844
-0.452781
-0.351718
-0.250655
-0.149592
-0.048529
0.0525341
0.1535971
0.2546602
0.3557232
0.4567862
0.5578492
0.6589123
0.7599753
0.8610383
0.9621014
0.9722077
0.982314
0.9924203
0.9994947
0.9995957



2.4374 4.8748
2.4375 4.875
2.4376 4.8752 1.000101063
2.4377 4.8754
2.4378 4.8756
2.4379 4.8758
2.438 4.876
244 4.88
2.45 4.9
25 5
2.6 5.2
2.7 5.4
2.8 5.6
2.9 5.8
3 6
3 6 -1.568479538
3.1 5.8
3.2 5.6
3.3 5.4
34 5.2
35 5
3.6 4.8
3.7 4.6
3.8 4.4
3.9 4.2
4 4
4.1 3.8
4.2 3.6
4.3 34
4.4 3.2
4.5 3
4.51 2.98
4.52 2.96
453 2.94
4.54 2.92
4.55 2.9
4.551 2.898
4.552 2.896
4.553 2.894 0.001029302
4.554 2.892
4.555 2.89
4.56 2.88
4.6 2.8
4.7 2.6
4.8 2.4
4.9 2.2
5 2
5.1 1.8
5.2 1.6
5.3 14
5.4 12
55 1
5.6 0.8
5.7 0.6
5.8 0.4
5.9 0.2
6 0
6 0 -1.358343125
5.9 0
5.8 0
5.7 0
5.6 0
55 0
5.4 0
5.3 0
5.2 0
5.1 0
5 0
4.9 0
4.8 0
4.7 0
4.6 0

0.999898937
1

0.000101063

1.000202126
1.000303189
1.000404252
1.000505315
1.002526576
1.012632879
1.063164393
1.164227422
1.265290451
1.36635348
1.467416509
1.568479538

-0.568479538

-1.467416509
-1.36635348
-1.265290451
-1.164227422
-1.063164393
-0.962101364
-0.861038335
-0.759975306
-0.658912277
-0.557849248
-0.456786219
-0.35572319
-0.254660161
-0.153597132
-0.052534103
-0.0424278
-0.032321497
-0.022215194
-0.012108892
-0.002002589
-0.000991958
1.86719E-05

1.001029302

0.002039932
0.003050563
0.008103714
0.048528926
0.149591955
0.250654984
0.351718013
0.452781042
0.553844071
0.6549071
0.755970129
0.857033158
0.958096187
1.059159216
1.160222245
1.261285274
1.362348303
1.463411332

-1.358343125

-1.313065021
-1.267786917
-1.222508813
-1.177230709
-1.131952604
-1.0866745
-1.041396396
-0.996118292
-0.950840188
-0.905562084
-0.860283979
-0.815005875
-0.769727771
-0.724449667
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-0.000101063
6.40988E-16
1.0001011
0.000202126
0.000303189
0.000404252
0.000505315
0.002526576
0.012632879
0.063164393
0.164227422
0.265290451
0.36635348
0.467416509
0.568479538
-0.56848
-0.467416509
-0.36635348
-0.265290451
-0.164227422
-0.063164393
0.037898636
0.138961665
0.240024694
0.341087723
0.442150752
0.543213781
0.64427681
0.745339839
0.846402868
0.947465897
0.9575722
0.967678503
0.977784806
0.987891108
0.997997411
0.999008042
1.000018672
1.0010293
1.002039932
1.003050563
1.008103714
1.048528926
1.149591955
1.250654984
1.351718013
1.452781042
1.553844071
1.6549071
1.755970129
1.857033158
1.958096187
2.059159216
2.160222245
2.261285274
2.362348303
2.463411332
-2.358343
-1.313065021
-1.267786917
-1.222508813
-1.177230709
-1.131952604
-1.0866745
-1.041396396
-0.996118292
-0.950840188
-0.905562084
-0.860283979
-0.815005875
-0.769727771
-0.724449667

0.9998989
1
Approximate transition point

1.0002021

1.0003032

1.0004043

1.0005053

1.0025266

1.0126329

1.0631644

1.1642274

1.2652905

1.3663535

1.4674165

1.5684795

Right side of the triangle

-0.467417

-0.366353

-0.26529

-0.164227

-0.063164

0.0378986

0.1389617

0.2400247

0.3410877

0.4421508

0.5432138

0.6442768

0.7453398

0.8464029

0.9474659

0.9575722

0.9676785

0.9777848

0.9878911

0.9979974

0.999008

1.0000187
Approximate transition point

1.0020399

1.0030506

1.0081037

1.0485289

1.149592

1.250655

1.351718

1.452781

1.5538441

1.6549071

1.7559701

1.8570332

1.9580962

2.0591592

2.1602222

2.2612853

2.3623483

24634113

Base of the triangle

-2.313065

-2.267787

-2.222509

-2.177231

-2.131953

-2.086675

-2.041396

-1.996118

-1.95084

-1.905562

-1.860284

-1.815006

-1.769728

-1.72445



4.5 0 -0.679171563 -0.679171563 -1.679172
4.4 0 -0.633893458 -0.633893458 -1.633893
4.3 0 -0.588615354 -0.588615354 -1.588615
4.2 0 -0.54333725 -0.54333725 -1.543337
4.1 0 -0.498059146 -0.498059146 -1.498059
4 0 -0.452781042 -0.452781042 -1.452781
3.9 0 -0.407502938 -0.407502938 -1.407503
3.8 0 -0.362224833 -0.362224833 -1.362225
3.7 0 -0.316946729 -0.316946729 -1.316947
3.6 0 -0.271668625 -0.271668625 -1.271669
35 0 -0.226390521 -0.226390521 -1.226391
34 0 -0.181112417 -0.181112417 -1.181112
3.3 0 -0.135834313 -0.135834313 -1.135834
3.2 0 -0.090556208 -0.090556208 -1.090556
3.1 0 -0.045278104 -0.045278104 -1.045278
3 0 -4.0215E-16 -4.0215E-16 -1
2.9 0 0.045278104 0.045278104 -0.954722
2.8 0 0.090556208 0.090556208 -0.909444
2.7 0 0.135834313 0.135834313 -0.864166
2.6 0 0.181112417 0.181112417 -0.818888
25 0 0.226390521 0.226390521 -0.773609
24 0 0.271668625 0.271668625 -0.728331
2.3 0 0.316946729 0.316946729 -0.683053
2.2 0 0.362224833 0.362224833 -0.637775
2.1 0 0.407502938 0.407502938 -0.592497
2 0 0.452781042 0.452781042 -0.547219
1.9 0 0.498059146 0.498059146 -0.501941
1.8 0 0.54333725 0.54333725 -0.456663
17 0 0.588615354 0.588615354 -0.411385
1.6 0 0.633893458 0.633893458 -0.366107
15 0 0.679171563 0.679171563 -0.320828
1.4 0 0.724449667 0.724449667 -0.27555
13 0 0.769727771 0.769727771 -0.230272
1.2 0 0.815005875 0.815005875 -0.184994
11 0 0.860283979 0.860283979 -0.139716
1 0 0.905562084 0.905562084 -0.094438
0.9 0 0.950840188 0.950840188 -0.04916
0.8 0 0.996118292 0.996118292 -0.003882
0.799 0 0.996571073 0.996571073 -0.003429
0.798 0 0.997023854 0.997023854 -0.002976
0.796 0 0.997929416 0.997929416 -0.002071
0.7915 0 0.999966931 0.999966931 -3.31E-05
0.7914 0 1.000012209 1.000012209 1.221E-05
0.7913 0 1.000057487 1.000057487 5.749E-05
0.7912 0 1.000102765 1.000102765 0.0001028 Approximate transition point
0.7911 0 1.000148043 1.000148043 0.000148
0.791 0 1.000193321 1.000193321 0.0001933
0.79 0 1.000646102 1.000646102 0.0006461
0.7 0 1.041396396 1.041396396 0.0413964
0.6 0 1.0866745 1.0866745 0.0866745
0.5 0 1.131952604 1.131952604 0.1319526
0.4 0 1.177230709 1.177230709 0.1772307
0.3 0 1.222508813 1.222508813 0.2225088
0.2 0 1.267786917 1.267786917 0.2677869
0.1 0 1.313065021 1.313065021 0.313065
0 0 1.358343125 1.358343125 0.3583431
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C.3 SECOND METHOD: EQUATION OF ALINE TO FIND
INTERSECTION/TRANSITION POINTS

AN

For the given triangle, the equation of alineisfound for each side.

Left side:
y =2X
Right side:
y=-2x+12
Along the bottom:
y=0

Next, the intersection points where the transition points lie must be found. This
can be done by constructing a line perpendicular to each side of the triangle that runs

through the necessary instant center (dashed lines).
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Perpendicular (dashed) line for the transition point on the left side of the triangle:

1
=—=X+6
Y 2

To find the transition point, set the two equations equal:

2*x:—1x+6
2

X=24
y=4.8

Perpendicular (dashed) line for the transition point on the right side of the triangle:

1
=—-Xx+05
y 2

To find the transition point, set the two equations equal:

—2* x+12:%x+0.5

x=4.6
y=28
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To find the transition point along the bottom of the assembly, take the equation of
alinefor the lines of action on constraints 2 and 3, and set them equal to each other (solid

lines).

Equation of alinefor the line of action extending from the top right constraint:

2
=—X+25
y 3

Equation of alinefor the line of action extending from the | eft side constraint:

y= —gx+ 3.333

To find the intersection point, set the two equations equal :

Ex+ 2.5:—ﬂx+3.333
3 9

x=0.75
y=3

The transition point is found by simply projecting the x-value onto the x-axis:

x=0.75
y=0
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APPENDIX D DETAILED ANALYSISUSING THE EQUATIONS OF
EQUILIBRIUM FOR FIGURE 4.19

This appendix first shows the set-up in Excel® for the equations of equilibrium.

Afterwards, each of the examplesin Fig. 4.19 will be solved.

D.1 FORMULASUSED IN EXCEL® FORFIG. 4.19

| c I -
Vertical force only

0 0 =-COS(phi*PI()/180)*(x_3-x_12)-SIN(phi*PI()/180)*(y_3-y_12) R1
=-SIN(phi*P1()/180) =COS(phi*P1()/180) =SIN(phi*PI()/180) R2
=COS(phi*PI()/180) =SIN(phi*PI()/180) =-COS(phi*PI()/180) R3

=MINVERSE(M72:074) =MINVERSE(M72:074) =MINVERSE(M72:074)
=MINVERSE(M72:074)  =MINVERSE(M72:074) =MINVERSE(M72:074)
=MINVERSE(M72:074) =MINVERSE(M72:074) =MINVERSE(M72:074)

Add the horizontal force

0 0 =-COS(phi*PI()/180)*(x_3-x_12)-SIN(phi*PI1()/180)*(y_3-y_12) R1
=-SIN(phi*PI()/180) =COS(phi*PI1()/180) =SIN(phi*PI()/180) R2
=COS(phi*PI()/180) =SIN(phi*P1()/180) =-COS(phi*PI()/180) R3

=MINVERSE(M82:084) =MINVERSE(M82:084) =MINVERSE(M82:084)
=MINVERSE(M82:084) =MINVERSE(M82:084) =MINVERSE(M82:084)
=MINVERSE(M82:084) =MINVERSE(M82:084) =MINVERSE(M82:084)
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=-Fn_1*COS(phi*PI()/180)*(xn_1-x_12)+Fn_1*SIN(phi*PI()/180)*(y_12-yn_1)
=Fn_1*SIN(phi*PI()/180)
=-Fn_1*COS(phi*PI()/180)

=MMULT(M76:078,S72:574)
=MMULT(M76:078,S72:574)
=MMULT(M76:078,S72:S74)

=-Fn_1*COS(phi*PI()/180)*(xn_1-x_12)+Fn_1*SIN(phi*PI()/180)*(y_12-yn_1)-Fn_2*COS(phi*PI()/180)*(yn_2-y_12)+Fn_2*SIN(phi*PI()/180)*(xn_2-x_12)
=Fn_1*SIN(phi*PI()/180)+Fn_2*COS(phi*PI()/180)
=-Fn_1*COS(phi*PI()/180)+Fn_2*SIN(phi*PI()/180)

=MMULT(M86:088,582:584)
=MMULT(M86:088,582:584)
=MMULT(M86:088,582:584)

D.2 THE RESULTSFORFIG. 4.19

R1=04 l——
R2=10
C2 R3=14

Fn1

Force Analysis

Vertical force only (Nesting force is along the base of the block)

x_1= 1 0 0 -5 -6
y 1= 0 7.733E-17 1 -7.73E-17 -7.7E-17
1 -7.73E-17 -1 -1
X_2= 0
y 2= 25 -0.2 7.73E-17 1 0.2
0 1 -7.73E-17 0

x_3= 6 -0.2 0 0 12
y 3= 6.6667
Fn_1= 1 Add on the horizontal force (Vertical nesting force along the base, horizontal along the right)
Fn_2= 1 0 0 -5 -7
xn_1= 7 7.733E-17 1 -7.73E-17 1
yn_1= -4.64E-16 1 -7.73E-17 -1 -1
Xn_2= 10
yn_2= 35 -0.2 7.73E-17 1 0.4|R1
x_12= 1 0 1 -7.73E-17 1|R2
y_12= 25 -0.2 0 0 1.4|R3

Transition points:

Xn1_top = 1

Xn1_base=

Yn2_right= 25
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Force Analysis

Fn_1=
Fn_2=
xn_1=
yn_1=
Xn_2=
yn_2=
x_12=
y_12=

[

7.73E-17
15
35

25

Force Analysis

Fn_1=
Fn_2=
xn_1=
yn_1=
Xn_2=
yn_2=
x_12=
y_12=

Vertical force only (Nesting force is along the base of the block)

0 0 4
7.733E-17 1 -7.73E-17
1 -7.73E-17 -1

0.25 7.73E-17 1

0 1 -7.73E-17

0.25 0 0

Add on the horizontal force (Vertical nesting force along the base, horizontal along the right)

0 0 4
7.733E-17 1 -7.73E-17
1 -7.73E-17 -1

0.25 7.73E-17 1

0 1 -7.73E-17

0.25 0 0

Transition points:

an_top = 6
anﬁbase:
yanrighﬁ: 25
C
R1 = -infinity
R2=10
R3 = -infinity

o nesting force allowed anywhere}
felse or the block will have play

C1

6
-7.7E-17
-1

0.5
0
15

5
1
-1

0.25|R1

1.25|R3

Vertical force only (Nesting force is along the base of the block)

0 0 3.22E-16
7.733E-17 1 -7.73E-17
1 -7.73E-17 -1
3.104E+15 7.73E-17 1
0 1 -7.73E-17
3.104E+15 0 0

Add on the horizontal force (Vertical nesting force along the base, horizontal along the right)

0 0 3.22E-16
7.733E-17 1 -7.73E-17
1 -7.73E-17 -1
3.104E+15 7.73E-17 1
0 1 -7.73E-17
3.104E+15 0 0

Transition points:
an_top = -
anibase: -

Yn2_right= 2.5
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-7.7E-17
-1

1.55E+16
0
1.55E+16

5
1
-1

1.55E+16|R1
1|R2
1.55E+16|R3




«
D Fn2
C;

R1=033

R2=10

R3=133

Fn1

Force Analysis

Vertical force only (Nesting force is along the base of the block)

x_1= 2 0 0 -6 -7.5
y 1= 0 7.733E-17 1 -7.73E-17 -7.7E-17
1 -7.73E-17 -1 -1
X_2= 0
y_2= 45 -0.166667 7.73E-17 1 0.25
0 1 -7.73E-17 0
X_3= 8 -0.166667 0 0 1.25
y_3= 6.6667
Fn_1= 1 Add on the horizontal force (Vertical nesting force along the base, horizontal along the right)
Fn_2= 1 0 0 -6 -8
xn_1= 9.5 7.733E-17 1 -7.73E-17 1
yn_1= -6.57E-16 1 -7.73E-17 -1 -1
Xn_2= 11
yn_2= 5) -0.166667 7.73E-17 1 0.333333|R1
x_12= 2 0 1 -7.73E-17 1|R2
y_12= 45 -0.166667 0 0 1.333333|R3
Transition points:
anilop = 2
Xn1_base™
Yn2_right= 4.5
X/
R1=01 (TM
R2=10
@ R3=11
fen

Force Analysis

Vertical force only (Nesting force is along the base of the block)

x_1= 0 0 0 -10 -10
y_ 1= 0 7.733E-17 1 -7.73E-17 -7.7E-17
1 -7.73E-17 -1 -1
X_2= 0
y_2= 25 -0.1 7.73E-17 1 0
0 1 -7.73E-17 0

X_3= 10 -0.1 0 0 1
y 3= 6.6667
Fn_1= 1 Add on the horizontal force (Vertical nesting force along the base, horizontal along the right)
Fn_2= 1 0 0 -10 -11
xn_1= 10 7.733E-17 1 -7.73E-17 1
yn_1= -6.96E-16 1 -7.73E-17 -1 -1
xn_2= 9
yn_2= 35 -0.1 7.73E-17 1 0.1|R1
x_12= 7.73E-17 0 1 -7.73E-17 1|R2
y 12= 25 -0.1 0 0 1.1|R3

Transition points:

Xn1_top = 0

Xn1_base= 10

Yn2_right= 25
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APPENDIX E DETAILSFOR THE MONTE CARLO SIMULATION
EXAMPLESIN CHAPTER 6

This appendix contains the detailed analysis and programs used to find the results
for the Monte Carlo simulations performed in Chapter 6. Each section contains the C
program developed for the example and the Excel® spreadsheet (if one exists) used to
verify the results. Further description for the development of the slotted block exampleis

also presented.

E.1 ALL BLOCKSWITH THREE CONSTRAINTS (SECTIONS6.3.1 AND 6.3.2)

The C program shown below allows for all three constraints to be varied in both

directions. The starting points are changed for each set-up presented.

#include <math.hs>
#include <stdio.h>
#include "LUD.h"

#define EPS 0.000001
##define PERTURB 0.000001
#define PI 3.14159265

void func (double d[], double f[]);
double resid(double f[], int nVar) ;
double rad (double deg) ;

double nr(double angle) ;

double x1, zl, x2, y2, X3, y3;
double xp, vyp, h, w;

int nfail;

float ranl(int *idum) ;
float gasdev(int *idum) ;
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double errorl, error;
int iSeed, i, nloop;

iSeed = -5;

nfail = 0;

error = 0.;

printf ("Enter number of loops\n");
scanf ("%d", &nloop) ;

for (i=1; i<=nloop; i++)

{

/* generate random deviates from the starting points */

x1 = gasdev(&iSeed) * 0.2 + 2.0;
z1l = gasdev(&iSeed) * 0.2 + 0.0;
x2 = gasdev(&iSeed) * 0.2 + 0.0;
y2 = gasdev(&iSeed) * 0.2 + 3.35;
x3 = gasdev(&iSeed) * 0.2 + 8.0;
y3 = gasdev(&iSeed) * 0.2 + 6.667;

printf ("x1,y1:%1f $1f\nx2,y2:%1f %$1f\nx3,y3:%1f $1f\n", x1,
zl, x2, y2, X3, y3);

errorl = nr(0.);
error += fabs(errorl) ;

}

/* output scalar AF values */

printf ("nfail = %d\n", nfail);
printf ("error average = %1f\n", error/(nloop-nfail));

double nr(double angle)

{

int i, j, nRow, nCol, nB, nVar, count, pvt[MAX ROWS];
double a[MAX ROWS] [MAX COLS], b[MAX ROWS], det;

double d[MAX ROWS], f1[MAX ROWS], f[MAX ROWS], totalResid;
double error, xdl, xd2, ydl, yd2;

/* initialize x */
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nvVar = 4;
d[0] = angle;
alil = y2;
d[2] = x1;
d[3] = x3;

/* call functions */
func(d, £) ;

/* compute residuals */
totalResid = resid(f,nVar) ;

/* enter main loop */
count = 0;

while (fabs(totalResid) > EPS)

{

count++;

/* Evaluate the Jacobian */
for (i=0; i<nVar; i++)

{
/* perturb x */
d[i] = d[i] + PERTURB;

func(d, f1);
for (j = 0; j<nvVar; j++)

aljl[i]l = (f1([j1-f[j]1) / PERTURB;
é[i] = d[i] - PERTURB;

}

/* printf ("matrix a:\n");
for (i=0; i<nVar; i++)

{
{
}

printf ("\n") ;

}

printf ("\n"); */

for (§=0; j<nVar; j++)

printf ("$1f ", alil [j1);

/* Make sure the functions are current */
func(d, £f);

/* load b vector */
for (i=0; i<nVar; i++)

{
}

b[i] = -£[i];
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/*printf ("vector b:\n");
for (i=0; i<nVar; i++)

{
}

printf ("\n"); */

printf ("$1f ", b[il);

/* call LU DECOMPOSITION routine */
det = LUDecomp (a, nVar, pvt);
LUSolve(a, nVar, b, pvt);

/* printf ("matrix a:\n");
for (i=0; i<nVar; i++)

{
{
}

printf ("\n") ;
}o*/

for (§=0; j<nVar; j++)

printf ("$1f ", alil [j]1);

/* compute new value for x */
for (i=0; i<nVar; i++)

{
}

/*printf ("new d:\n");
for (i=0; i<nVar; i++)

{
}

printf ("\n"); */

dali] = dli]l + blil;

printf ("$1f ", d[i]);

/* evaluate the function's residuals */
func(d, £f);

totalResid = resid(f, nVar) ;

if (count > 15)

{

nfail +=1;
printf ("Failure in NR\n") ;
break;

if (count <= 15)
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xd1l=x2 + sin(rad(d[0]))*d[1];
ydl=y2 - cos(rad(d[0]))*d[1];
xd2=xdl + w*cos(rad(d[0]));
yd2=ydl + w*sin(rad(d[0]));

error = pow( (xp-xdl),2.)+pow((yp-ydl),2.)+pow( ( (xp+w) -
xd2),2.)+pow ((yp-yd2),2.);

error=sqrt (error) ;

printf ("ul: %$1f\nu2: %$1f\nu3: %$1f\nphi: %$1f\n",
df[2],df[1],d[3],d[0]);

/*printf ("xdl, ydl, xd2, yd2, angle: %1f %1f %1f %1f
$1f\n",xd1, ydil, xd2, yd2, dl[0]);

printf ("Count: %d, Error: %1f\n", count, error);*/

return (error) ;

}
}

/* ____________________________________________________
DLM Equations
_____________________________________________________ */
void func (double d[], double f[])

{
h=6.667;
w=10.0;
xp=0.;
yp=0.;

f[0] = xl*cos(rad(0.)) + zl*cos(rad(90.)) +
d[2] *cos(rad(180.+d[0])) + d[1l]*cos(rad(90.+d[0])) +
x2*cos (rad(180.)) + y2*cos(rad(270.));
f[1] = x1l*sin(rad(0.)) + zl*sin(rad(90.)) +
d[2] *sin(rad(180.+d[0])) + d[1l]*sin(rad(90.+d[0])) +
x2*sin(rad(180.)) + y2*sin(rad(270.));
f[2] = xl*cos(rad(0.)) + zl*cos(rad(90.)) +
d[2] *cos (rad(180.+d[0])) + h*cos(rad(90.+d[0])) +
d[3] *cos(rad(d[0])) + x3*cos(rad(180.)) + y3*cos(rad(270.));
f[3] = x1*sin(rad(0.)) + zl*sin(rad(90.)) +
(r
(r

d[2] *sin ad(l8O +d[0])) + h*sin(rad(90.+d[0])) +

d[3] *sin d(d[0])) + x3*sin(rad(180.)) + y3*sin(rad(270.));
}

/* ______________________________________________________

double resid(double f[], int nVar)

int i;
double tot;

tot = 0;

for (i=0; i<nVar; i++)
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{
}

return (sqgrt (tot));

tot = tot + f£[i]l*£[i];

/* ________________________________________________________
RADIANS/DEGREES CONVERSION
_________________________________________________________ */
double rad(double deg)
{
return (deg*PI/180.) ;
}
/* _________________________________________________________
GASDEV routine (for monte carlo)
__________________________________________________________ */

float gasdev(int *idum)
{
static int iset=0;
static float gset;
float fac, r, vl1l, v2;
float ranl () ;

if (iset == 0)
{

do

{

I

vl 2.0 * ranl (idum) -
v2 = 2.0 * ranl (idum) -
r = vl * vl + v2 * v2;

1.0
1.0;

I

}

while(r >= 1.0 || r ==
fac = sqgrt(-2.0*log(r)/
gset = vl * fac;

iset = 1;

return v2 * fac;

}

else

iset = 0;
return gset;

#define M1 259200
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#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

IAl 7141
IC1 54773
RM1 (1.0/M1)
M2 134456
IA2 8121

IC2 28411
RM2 (1.0/M2)
M3 24300

IA3 4561

IC3 51349

float ranl (int *idum)

{

stati
stati
doubl
stati
int j

if (*
{

if

1
ixl = (
ixl = (IAl1*ix1+4IC1)
ix2 = 1
ix1l = (

¢ long ix1, ix2, ix3;
c double r[98];

e temp;

c int iff=0;

idum < 0 || iff == 0)

f:

I

IC1- (*idum))

o\°
==
'_l

o\°

x1 % M2;
IA1*ix1+IC1)

[

o\°
=

ix3 = ixl % M3;
for (j=1; j<=97; j++)

{

}

*]
}
ix1
ix2 =
ix3 =
j =1
if (3
rljl
temp

/*pri

ixl = (IA1*ix1+IC1)
ix2 = (IA2*ix2+IC2)

r[j] = (ix1+ix2+RM2)* RM1;

dum=1;

(IA1*ix1+IC1)

(IA2*ix2+IC2)

(IA3*ix3+IC3)
+((97%1x3) /M3) ;
>9

o\

M1 ;
M2 ;
$M3;

o\

7 || j<1) printf ("RAN1: This cannot

= (ix1+ix2*RM2) *RM1;
= r[jl;

ntf ("the ranl: %d %d\n",

return temp;

[

% M1;
% M2;
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The formulas used in the spreadsheet.

length= 10
height= 6.6667
x_base= 0
y_base= 0

x_1= 2.4
y_1= -0.08
X_2= -0.05
y_2= 3.1
X_3= 75
y_3= 7

VECTOR LOOPS
k_1= =x_1+x_base
=y_1+y_base
=x_2+x_base
=y_2+y_base
=height
=(x_3+x_base)
=y_3+y_base
2.19811669790986
3.35904495092889
7.82763809053195

4.41187319831158
hx1= =Kk_1*COS(0*PI()/180)+k_2*COS(90*PI()/180)+u_1*COS((180+phi)*PI()/180)+u_2*COS((90+phi)*PI()/180)+k_3*COS(180*PI()/180)+k_4*COS(270*PI()/180)
hy1l= =k_1*SIN(0*PI()/180)+k_2*SIN(90*PI()/180)+u_1*SIN((180+phi)*P1()/180)+u_2*SIN((90+phi)*PI()/180)+k_3*SIN(180*PI()/180)+k_4*SIN(270*PI()/180)
hthetal= =0+90+90+phi-90+90-phi+90+90
hx2= =k_1*COS(0*PI()/180)+k_2*COS(90*PI()/180)+u_1*COS((180+phi)*PI()/180)+k_5*COS((90+phi)*PI()/180)+u_3*COS(phi*PI()/180)+k_6*COS(180*PI()/180)+k_7*COS(270*PI()/180)
hy2= =k_1*SIN(0*PI()/180)+k_2*SIN(90*PI()/180)+u_1*SIN((180+phi)*PI()/180)+k_5*SIN((90+phi)*PI()/180)+u_3*SIN(phi*PI()/180)+k_6*SIN(180*PI()/180)+k_7*SIN(270*PI()/180)
htheta2= =0+90+90+phi-90-90+180+90-phi+90
Error
xd1= =x_2 + SIN(phi*PI()/180)*u_2
ydi= =y_2 - COS(phi*PI()/180)*u_2
xd2= =xd_1 + length*COS(phi*P1()/180)
yd2= =yd_1 +length*SIN(phi*P1()/180)
error = =(x_base-xd_1)"2+(y_base-yd_1)"2+((x_base+length)-xd_2)"2+(y_base-yd_2)"2

sqrt error= =SQRT (error)
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Example results from the spreadsheet above.

length= 10
height= 6.6667
X_base= 0
y_base= 0
X 1= 2.4
y_1= -0.08
X_2= -0.05
y_2= 3.1
x_3= 7.5
y 3= 7

VECTOR LOOPS

k 1= 2.4
k 2= -0.08
k 3= -0.05
k 4= 3.1
k 5= 6.6667
k 6= 7.5
k 7= 7
u 1= 2.198116698
u 2= 3.359044951
u_ 3= 7.827638091
phi= 4.411873198
hx1= 8.44935E-13
hyl= -7.66942E-13
hthetal= 360
hx2= 5.00534E-13
hy2= -1.08002E-12
htheta2= 360
Error

xd1= 0.20839669
ydl= -0.249091538
xd2= 10.17876502
yd2= 0.520164883
error = 0.408004211
sqrt error= 0.638752073
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E.2 BLOCKWITH FOUR CONSTRAINTS (SECTION 6.3.3)

The C program shown below allows for all four constraints to be varied in both

directions. The starting points are changed for each set-up presented.

#include <math.h>
#include <stdio.h>
#include "LUD.h"

#define EPS 0.000001
#define PERTURB 0.000001
#define PI 3.14159265

void funcl (double d[], double f[]);
void func2 (double d[], double f[]);
void func3 (double d[], double f[]

double
double
double
double
double
double
double

residl (double f[],
resid2 (double f[],
resid3 (double f[],
rad (double deg) ;

nrl (double angle) ;
nr2 (double angle) ;
nr3 (double angle) ;

int ) ;
int ) ;
)

int

)
)
)
nvar
nvar
nvar

7

double
v4;
double xp, yp, h, w;
int nfaill, nfail2,
int constraintfaill,
constraintfail3;

int nochancel,nochance2,
int faill, fail2, fail3,
two, three, assembled;

x1l, zl1, x2, y2, x3, y3, x4,

nfail3;
constraintfail2,

nochance3;
never, one,

float ranl(int *idum) ;
float gasdev (int *idum) ;

double errorcasel, errorcase2,
errorcasel3d, errorl, error2, error3;

double maxerror, totmaxerror,
error, erroroverall;

double averrorone, averrortwo,
averrorthree, averagetwo,
averagethree;

int iSeed, i, nloop, icnt, ierror;
iSeed =
nfaill
nfail2 = 0;
nfail3 = 0;
constraintfaill
constraintfail2
constraintfail3

nochancel = 0;

_5;
0;

o
o O O
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nochance2 = 0;
nochance3 = 0
errorl = 0

error2 = 0.;
error3 = 0

never =
one = 0;
two = 0;
three = 0;

averrorone =
averrortwo =
averrorthree

0;

.
-

0.;

I o o

printf ("Enter number of

loops\n") ;
scanf ("%d", &nloop) ;

for (i=1; i++)

{

/* generate random deviates */

i<=nloop;

x1 = gasdev(&iSeed) * 0.2 + 2.0;

z1l = gasdev(&iSeed) * 0.2 +
0.00;

x2 = gasdev (&iSeed) * 0.2 +
0.00;

y2 = gasdev(&iSeed) * 0.2 + 2.5;

x3 = gasdev (&iSeed) 0.2 + 4.0;

y3 = gasdev(&iSeed) * 0.2 +
6.667;

x4 = gasdev(&iSeed) * 0.2 + 5.5;

y4 = gasdev(&iSeed) * 0.2 +
0.00;

errorl = nrl(0.);

error2 = nr2(0.);

error3 = nr3(0.);

if ((faill == 1) && (fail2 ==
1) && (fail3d == 1))

{

never += 1;

}

if (((faill == 1) && (fail2 ==
1) && (fail3 == 0)) || ((fail2 == 1)
&& (failld == 1) && (faill == 0)) ||
((faill == 1) && (fail3 == 1) &&
(fail2 == 0)))

{

one += 1;

averrorone +=
(errorl+error2+error3l) ;

}



if (((faill == 1) && (fail2 ==
0) && (fail3 == 0)) || ((fail2 == 1)
&& (fail3d == 0) && (faill == 0)) ||
((faill == 0) && (fail3d == 1) &&
(fail2 == 0)))
{
two += 1;
averagetwo =
(errorl+error2+error3l) /2;
averrortwo += averagetwo;
}
if (((faill == 0) && (fail2 ==
0) && (fail3 == 0)) || ((fail2 == 0)
&& (fail3 == 0) && (faill == 0)) ||
((faill == 0) && (fail3 == 0) &&
(fail2 == 0)))

{
three += 1;
averagethree =
(errorl+error2+error3) /3;
averrorthree += averagethree;

}

maxerror = 0.;
erroroverall = 0.;
icnt = 0;

assembled += 1;
if (faill == 0)

if ( fabs(errorl) >
maxerror = fabs(errorl) ;
erroroverall +=
fabs (errorl) ;

ient += 1;

maxerror)

if ( fabs(error2) >
maxerror) maxerror = fabs(error2) ;
erroroverall +=
fabs (error2) ;
icnt += 1;
!

if (fail3 == 0)

if (fabs (error3) »>
maxerror = fabs(error3);
erroroverall +=
fabs (error3l) ;
ient += 1;
}

if (erroroverall != 0.)

{

maxerror)
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ierror += 1;
error +=
(erroroverall/icnt) ;
totmaxerror +=
!

}

errorcasel +=
errorcase2 +=
errorcase3 +=

}

/* output scalar AF values */

(maxerror) ;

fabs (errorl) ;
fabs (error2) ;
fabs (error3i) ;

/*printf ("nfaill =
%d\n", nfaill);

printf ("constraintfaill = %d\n",
constraintfaill) ;

printf ("nochancel = $d\n",
nochancel) ;

printf ("nfail2 = %d\n",
nfail?2) ;

printf ("constraintfail2 = %d\n",
constraintfail2) ;

printf ("nochance2 = $d\n",
nochance?2) ;

printf ("nfail3 = %d\n",
nfail3l) ;

printf ("constraintfail3 = %d\n",
constraintfaill) ;

printf ("nochance3 = $d\n",
nochance3l) ; */

printf ("error averagel = %1f\n",

errorcasel/ (nloop-
(constraintfaill+nfaill-nochancel))) ;
printf ("error average2 = %1f\n",
errorcase2/ (nloop-
(constraintfail2+nfail2-nochance2))) ;
printf ("error average3 = $%1f\n",
errorcase3/ (nloop-
(constraintfail3+nfail3- nochance3)))

printf ("never assembles = %d\n",
never) ;

printf ("one assembles = %d\n",
one) ;

printf ("error for one = $1f\n",
averrorone/ (one)) ;

printf ("two assemble = $d\n",
two) ;

printf ("error for two = $1f\n",
averrortwo/ (two)) ;

printf ("three assemble = %d\n",
three) ;

printf ("error for three = %1f\n",
averrorthree/ (three)) ;

printf ("Total assembled = %d\n",
assembled) ;

printf ("average error = $1f\n",
error/ (ierror)) ;

printf ("Max ave error = $1f\n",

totmaxerror/ (ierror)) ;

}



double nrl (double angle)

{

int i, j, nRow, nCol, nB, nVar,
countl, pvt[MAX ROWS] ;

double a[MAX ROWS] [MAX COLS],
b [MAX_ROWS], det;

double d[MAX ROWS], £f1[MAX ROWS],
f [MAX ROWS], totalResidl;

double errorl, xdl, xd2, ydl, yd2,
yc4;

/* initialize x */

nvar = 4;
d[0] = angle;
dl1] = y2;
da[2] = x1;
d[3] = x3;

/* call functions */
funcl(d, ) ;

/* compute residuals */
totalResidl = residl (f,nVar) ;

/* enter main loop */
countl = 0;
faill = 0;

while (fabs(totalResidl) > EPS)

{

countl++;
/*printf ("Residuals %1f\n",
totalResid) ;*/

/* Evaluate the Jacobian */
for (i=0; i<nVar; i++)

{
/* perturb x */
d[i] = d[i] + PERTURB;
funcl(d, £f1);

for (j = 0; j<nVar; j++)

aljl il = (£f1[31-£(31) /
PERTURB;

d[i] = d[i] - PERTURB;

}

/* Make sure the functions are
current */
funcl(d, f);

/* load b vector */
for (i=0; i<nVar; i++)

{
}

b[i]l = -f[i];

/* print out vector b */
/*printf ("vector b:\n");
for (i=0; i<nVar; i++)

{

printf ("$1f ", b[i]);
}
printf ("\n"); */

/* call LU DECOMPOSITION
routine */

det = LUDecomp(a, nVar, pvt);

LUSolve (a, nVar, b, pvt);

/* print out matrix a */
/* printf ("matrix a:\n");
for (i=0; i<nVar; i++)

{
for (j=0; j<nVar; j++)
{
printf ("$1f ", alil [3]);
}
printf ("\n") ;
}o*/

/* print out vector b */
/*printf ("delta x:\n");
for (i=0; i<nVar; i++)

{
printf ("$1f ", b[il);
printf ("\n"); */

/* compute new value for x */
for (i=0; i<nVar; i++)

dfi] = d[i] + bIli]l;

/* print new d */
/*printf ("new d:\n");
for (i=0; i<nVar; i++)

{

printf ("$1f ", d4l[il);
}
printf ("\n"); */

/* evaluate the function's
residuals */
funcl (d, f);
totalResidl = residl (f, nVar) ;
if (countl > 15)
{
nfaill +=1;
/*printf ("Failure in

NR1\n") ; */
break;
!
}
/* ________________________________

CHECK THE 4TH CONSTRAINT
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xdl=x2 + sin(rad(d[0]))*d[1];
ydl=y2 - cos(rad(d[0]))*d[1];
xd2=xdl + w*cos(rad(d[0]));
yd2=ydl + w*sin(rad(d[0]));

yc4=((yd2-ydl) / (xd2-
xdl) ) *x4+ ( (xdl-
x2) *tan (rad(d[0]))+ydl) ;

if ((countl > 15) && (y4 >
yc4))
{
nochancel +=1;
}
if ((countl > 15) || (y4 > yc4))
{
faill = 1;
}
if (y4 > yc4)
{

constraintfaill +=1;
/*printf ("Constraint4
crashed\n") ; */
errorl=0.0;
return (errorl) ;

}
/* ________________________________
EVALUATE ERROR
_______________________________ */
if ((y4 < yc4) && (countl <=
15))
{
errorl = pow( (xp-
xdl),2.) +pow ( (yp-
ydl) ,2.) +pow ( ( (xp+w) -
xd2) ,2.)+pow ( (yp-yd2),2.);
errorl = sqgrt(errorl) ;
/*printf ("ul: %$1f\nu2:
$1f\nu3: %1f\nphi: %$1f\n",

df2],d[1]1,d[3],d[0]);*/
/*printf ("xd1l, ydl, xd2,

yd2, angle: %1f $1f %$1f %1f
$1f\n",xd1, ydi, xd2, yd2, d[0]);
/*printf ("Count: %d,
Error: %1f\n", count, error);*
return (errorl) ;
1
!
[ * e m e m e e e e DLM
Equations
________________________________ */
void funcl (double d[], double f[])

{

h=6.667;
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f[0] = xl*cos(rad(0.)) +
zl*cos (rad(90.)) +
d[2] *cos (rad(180.+d[0])) +
d[1] *cos(rad(90.+d[0])) +

x2*cos (rad(180.)) +
y2*cos (rad(270.)) ;

f[1] = x1*sin(rad(0.)) +
zl*sin(rad(90.)) +

d[2]*sin(rad(180.+d[0])) +
d[1l]*sin(rad(90.+d[0])) +

x2*sin(rad(180.)) +
y2*sin(rad(270.)) ;

f[2] = xl*cos(rad(0.)) +
zl*cos (rad(90.)) +

d[2] *cos (rad (180.+d[0])) +
h*cos (rad(90.+d[0])) +
d[3] *cos (rad(d[0])) +

x3*cos (rad(180.)) +
y3*cos (rad(270.)) ;

f[3] = x1*sin(rad(0.)) +
zl*sin(rad(90.)) +

d[2]*sin(rad(180.+d[0])) +
h*sin(rad(90.+d[0])) +
d[3]*sin(rad(d[0])) +

x3*gsin(rad(180.)) +
y3*sin(rad(270.)) ;
}
/* ________________________________
RESIDUALS

________________________________ */
double residl (double f[], int nVar)
{

int 1i;

double tot;

tot = 0;

for (i=0; i<nVar; 1i++)

{

tot = tot + f£[i]*f[i];

}

return (sqgrt(tot));
}
/* ___________________________________

NR routine-Case 2

___________________________________ */
double nr2 (double angle)
{

int i, j, nRow, nCol, nB, nVar,

count2, pvt[MAX ROWS] ;
double a[MAX ROWS] [MAX COLS],
b [MAX ROWS], det;
double d[MAX ROWS], £f1[MAX ROWS],
f [MAX ROWS], totalResid2;
double error2, xdl, xd2,
ycl;

ydl, yd2,

/* initialize x */



nvar = 4; }
d[0] = angle; printf ("\n"); */
dl1l] = y2;
dal2] = x4; /* call LU DECOMPOSITION
d[3] = x3; routine */
det = LUDecomp (a, nVar, pvt);
/* call functions */ LUSolve (a, nVar, b, pvt);

func2(d, £) ;
/* print out matrix a */

/* compute residuals */ /* printf ("matrix a:\n");
totalResid2 = resid2 (f,nVar) ; for (i=0; i<nVar; i++)
{
/* enter main loop */ for (j=0; j<nVar; j++)
count2 = 0; {
fail2 = 0; printf ("$1f ", ali]l [§]);
while (fabs(totalResid2) > EPS) printf ("\n") ;
{ }ox/
count2++;
/*printf ("Residuals %1f\n", /*printf ("delta x:\n");
totalResid) ; * for (i=0; i<nVar; i++)
{
/* Evaluate the Jacobian */ printf ("$1f ", b[il);
for (i=0; i<nVar; i++)
{ printf ("\n"); */
/* perturb x */
d[i] = d[i] + PERTURB; /* compute new value for x */
func2(d, £f1); for (i=0; i<nVar; i++)
for (j = 0; j<nVar; j++) dli]l = d4[i] + bl[il;
{ }
aljl[i]l = (£1[31-£[31) /
PERTURB;
} /* print new d */
d[i] = d[i] - PERTURB; /*printf ("new d:\n");
} for (i=0; i<nVar; i++)
{
/* printf ("matrix a:\n"); printf ("$1f ", 4lil);
for (i=0; i<nVar; i++) }
{ printf ("\n"); */
for (j=0; j<nVar; j++)
{
printf ("$1f ", alil [j]); /* evaluate the function's

residuals */

printf ("\n") ; func2(d, f);
totalResid2 = resid2(f, nvar);
printf ("\n"); */ if (count2 > 15)

{
nfail2 +=1;
/*printf ("Failure in

/* Make sure the functions are
current */

func2(d, £); NR2\n") ; */
break;
/* load b vector */ }
for (i=0; i<nVar; i++) }
{
b[i] = -£[i];
} g

/* print out vector b */
/*printf ("vector b:\n"); xd1l=x2 + sin(rad(d[0]))*d[1];
for (i=0; i<nVar; i++) ydl=y2 - cos(rad(d[0]))*d[1];
{ xd2=xdl + w*cos(rad(d[0]));
printf ("$1f ", b[i]); yd2=ydl + w*sin(rad(d[0]));
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yecl=((yd2-ydl) / (xd2-

xdl) ) *x1+ ( (xdl-
x2) *tan(rad(d[0]))+ydl) ;

if ((count2 > 15) && (zl1l >

ycl))

{

nochance2 +=1;

}

if ((count2 > 15) || (zl1 >
ycl))

{

fail2 = 1;

}

if (z1 > ycl)

{

constraintfail2 +=1;
/*printf ("Constraintl

crashed\n") ; */

error2=0.0;
return (error2) ;

}
/* ________________________________
EVALUATE ERROR
________________________________ */
if ((zl1l < ycl) && (count2 <=
15))
{
error2 = pow( (xp-
xdl) ,2.) +pow ( (yp-
ydl) ,2.) +pow ( ( (xp+w) -
xd2) ,2.) +pow ( (yp-yd2),2.);
error2 = sqgrt (error2) ;
/*printf ("ul: %1f\nu2:
$1f\nu3: %1f\nphi: %$1f\n",
dl2],d[1],d[3]1,dI[0]);*/
/*printf ("xdl, ydl, xd2,
yd2, angle: %$1f %$1f %$1f %1f
$1f\n",xdl, ydl, xd2, yd2, d4lo0]);
printf ("Count: %d, Error:
$1f\n", count, error);*/
return (error2) ;
}
}
/K e DLM
Equations
________________________________ */
void func2 (double d[], double f[])
{
h= 6.667;
w= 10.0;
xp=0.;
yp=0.;

f[0] = x4*cos(rad(0.)) +
y4*cos (rad(90.)) +
d[2] *cos (rad(180.+d[0])) +
d[1l]*cos(rad(90.+d[0])) +
x2*cos (rad(180.)) +
y2*cos (rad (270.)) ;

fl1l] = x4*sin(rad(0.)) +
y4*sin(rad(90.)) +
d[2] *sin(rad(180.+d[0])) +
d[1l]*sin(rad(90.+d[0])) +

x2*gin(rad(180.)) +
y2*sin(rad(270.)) ;

f[2] = x4*cos(rad(0.)) +
y4*cos (rad(90.)) +

d[2] *cos (rad (180.+d[0])) +
h*cos (rad(90.+d[0])) +
d[3] *cos (rad(d[0])) +

x3*cos (rad(180.)) +
y3*cos (rad(270.)) ;

f[3] = x4*sin(rad(0.)) +
y4*sin(rad(90.)) +

d[2]*sin(rad(180.+d[0])) +
h*sin(rad(90.+d[0])) +
d[3]*sin(rad(d[0])) +

x3*sin(rad(180.)) +
y3*sin(rad(270.)) ;
}
R e
RESIDUALS

double resid2 (double f[], int nVar)

{
int 1i;
double tot;
tot = 0
for (i=

{
}

return (sgrt(tot));

;
0; i<nVar; i++)

tot = tot + f£[il*f[i];

double nr3 (double angle)

{

int i, j, nRow, nCol, nB, nVar,
count3, pvt[MAX ROWS] ;

double a[MAX_ ROWS] [MAX COLS],
b [MAX ROWS], det;

double d[MAX ROWS], £f1[MAX ROWS],
f [MAX ROWS], totalResid3;

double error3, xdl, xd2, ydl, yd2,
ye3;

/* initialize x */
nVar = 4;
d[0] = angle;
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dl1l] = y2;
dl2] x1;
dl[3] = x4;

/* call functions */
func3(d, f);

/* compute residuals */
totalResid3 = resid3 (f,nVar) ;

/* enter main loop */
count3 = 0;

fail3d = 0;
while (fabs(totalResid3) > EPS)
{

count3++;

/*printf ("Residuals %$1f\n",

totalResgid) ; *

/* Evaluate the Jacobian */
for (i=0; i<nVar; i++)

{
/* perturb x */
d[i] = d[i] + PERTURB;
func3 (d, f1);

for

{

(j = 0; j<nVar; j++)

aljl[i]l = (£1[31-£[31) /
PERTURB;
}
d[i] = d[i] - PERTURB;
}
/* printf ("matrix a:\n");
for (i=0; i<nVar; i++)
{
for (j=0; j<nVar; j++)
{
printf ("$1f ", alil [J]);
printf ("\n") ;
printf ("\n"); */

/* Make sure the functions are

current */

func3 (d, £f);

/* load b vector */

for (i=0; i<nVar; i++)
{
bli]l = -£[i];
}
/*printf ("vector b:\n");
for (i=0; i<nVar; i++)

/* call LU DECOMPOSITION

routine */

det = LUDecomp (a, nVar, pvt);

LUSolve (a, nVar, b, pvt);
/* printf ("matrix a:\n");
for (i=0; i<nVar; i++)
{
for (j=0; j<nVar; j++)
{
printf ("$1f ", alil [§]);
printf ("\n") ;
}ox/
/*printf ("delta x:\n");
for (i=0; i<nVar; i++)
{
printf ("$1f ", bl[il);
}
printf ("\n"); */

/* compute new value for x */

for (i=0; i<nVar; i++)
d[i] = d[i] + bl[i]l;
}
/* print new d */
/*printf ("new d:\n");
for (i=0; i<nVar; i++)
{
printf ("$1f ", d[i]);
1
printf ("\n"); */

/* evaluate the function's

residuals */

func3(d, £f);
totalResid3 = resid3 (f,
if (count3 > 15)
{
nfail3d +=1;
printf ("Failure in NR3\n") ;
break;

nvar) ;

xdl=x2 + sin(rad(d[0]))*d[1l];
ydl=y2 - cos(rad(d[0]))*d[1];
xd2=xd1l + w*cos(rad(d[0]));
yd2=ydl + w*sin(rad(dl[o0]));

ye3=((yd2-ydl) / (xd2-

=
{ xd1l) ) *x3+ ( ((xdl1-x2)*tan(rad(d[0]))+
printf ("$1f ", bl[i]); ydl)+ h);

printf ("\n"); */ /*printf ("count3 = %d\n",

count3) ;

236



printf ("y3 = %1f\n", y3);
printf ("ye3 = $1f\n", yc3);*/
if ((count3 > 15) && (y3 <
ye3))
{
nochance3 +=1;
}
/*printf ("fail3beforeif =
$d\n", fail3l3);*/
if ((count3 > 15) || (y3 < yec3))
{
fail3d = 1;
}
/*printf ("fail3afterif = %d\n",
fail3);*/
if (y3 < yc3)
constraintfail3 +=1;
/*printf ("Constraint3
crashed\n") ; */
error3d = 0.0;
return (error3) ;
}
/* _______________________________
EVALUATE ERROR
_______________________________ */
if ((y3 > yc3) && (count3 <=
15))
{
error3 = pow( (xp-
xdl) ,2.) +pow ( (yp-
ydl) ,2.) +pow ( ( (xp+w) -
xd2),2.) +pow ( (yp-yd2),2.);
error3 = sqgrt (error3) ;
/*printf ("ul: %1f\nu2:
$1f\nu3: %1f\nphi: %$1f\n",

d[21,dl1],d[3],dl[0]);*/

/*printf ("xd1l, ydl, xd2,
yd2, angle: %$1f %$1f $1f %1f
$1f\n",xdl, ydl, xd2, yd2, 4l[o0]);

printf ("Count: %d, Error:

$1f\n", count, error);*/
return (error3) ;
!
!
2 DLM
Equations
________________________________ */
void func3 (double d[], double f[])
{
h=6.667;
w=10.0;
xp=0.;
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yp=0.;
f[0] = xl*cos(rad(0.)) +
zl*cos (rad(90.)) +

d[2] *cos(rad(180.+d[0])) +
d[1]*cos(rad(90.+d[0])) +

x2*cos (rad(180.)) +
y2*cos (rad (270.)) ;
f[1l] = x1l*sin(rad(0.)) +

zl*sin(rad(90.)) +

d[2] *sin(rad(180.+d[0])) +
d[1l]*sin(rad(90.+d[0])) +
x2*gin(rad(180.)) +
y2*sin(rad(270.)) ;

f[2] = x4*cos(rad(0.)) +
y4*cos (rad(90.)) +
d[3]*cos(rad(180.+d[0])) +
d[1l]*cos(rad(90.+d[0])) +

x2*cos (rad (180.)) +
y2*cos (rad(270.)) ;

f[3] = x4*sin(rad(0.)) +
y4d*sin(rad(90.)) +

d[3]*sin(rad(180.+d[0])) +
d[1l]*sin(rad(90.+d[0])) +
x2*sin(rad(180.)) +
y2*sin(rad(270.)) ;

double resid3 (double f[1],

{

int nVar)

int i;
double tot;
tot = 0

for (i

{
}

return

0; i<nVar; i++)
tot = tot + f£[i]*f[i];

(sgrt (tot)) ;

double rad(double deg)

{
}

return (deg*PI/180.) ;

GASDEV routine (for monte carlo)

float gasdev(int *idum)
{
static int iset=0;
static float gset;
float fac, r, vl,
float ranl () ;

v2;

if (iset == 0)



do

{
vl = 2.0 * ranl (idum) - 1.0;
v2 = 2.0 * ranl(idum) - 1.0;
r = vl * vl + v2 * v2;

}

while(r >= 1.0 || r == 0);

fac = sqrt(-2.0*log(r)/r);
gset = vl * fac;

iset = 1;

return v2 * fac;

}
else
{
iset = 0;
return gset;
}
}
/* ___________________________________

#define M1 259200
#define IA1 7141
#define IC1 54773
#define RM1 (1.0/M1)
#define M2 134456
#define IA2 8121
#define IC2 28411
#define RM2 (1.0/M2)
#define M3 24300
#define IA3 4561
#define IC3 51349

float ranl (int *idum)

{

static long ix1, ix2, ix3;
static double r[98];

double temp;
static int iff=0;

int j;
if (*idum < 0 || 1iff == 0)
{

iff = 1;

ixl = (IC1l-(*idum)) % M1;
ix1l = (IA1*ix1+IC1l) % Mi1;
ix2 = ix1 % M2;

ix1l = (IA1*ix1+IC1l) % Mi1;

ix3 = ixl % M3;
for (j=1; j<=97; Jj++)

{
ixl = (IA1*ix1+IC1l) % M1;
ix2 = (IA2*1x2+IC2) % M2;
r[j] = (ix1+ix2+RM2)* RM1;
}
*idum=1;
}
ixl = (IA1*ix1+IC1l) $%M1;
ix2 = (IA2*ix2+IC2) $%M2;
ix3 = (IA3*1x3+IC3) %M3;
j = 1+((97%ix3) /M3) ;
if (§>97 || j<1) printf ("RANL:
This cannot happen\n") ;
r[j] = (ix1+ix2*RM2)*RM1;

temp = r[j];

/*printf ("the ranl: %4 %d\n", ix1,
ix2) ;*/

return temp;

E.3 SLOTTED BLOCK ASSEMBLY (SECTION 6.3.4)

The C program shown below allows the right peg to be varied in the x-

direction. The starting slot angle isinput for each set-up presented in the thesis.

#include <math.h>
#include <stdio.h>
#include "LUD.h"

#define EPS 0.000001
#define PERTURB 0.000001
#define PI 3.14159265

void func(double d[], double £fI[1);
double resid(double f[], int nvar);
double rad(double deg) ;

double nr (double angle) ;

double x1, y1, x2, y2, x3, y3, x4,
v4, r, phi;
double xp, yp, delx, dely, theta;
int nfail;

float ranl (int *idum) ;
float gasdev(int *idum) ;
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double errorl, error, theta, dl1l],

Y, X;
int iSeed, i, nloop;

FILE *data;

/* Information for the slot:

distance from center of slot to
bottom = 0.5

distance from center of slot to
left sd= 2 */

y = 0.5;
x = 2.0;

7

printf ("Angle of the slot
(CCW+) :\n") ;
scanf ("%1f", &phi);

/* to help find x2 */

delx = cos(rad(((180.- phi)/2)-
(atan(y/x)*180./PI)))*2*sin(rad(phi/2
)) *

(y/sin((atan(y/x))));

/* to help find y3 */

dely = sin(rad(((180.- phi)/2.)-
(atan (y/x)*180./PI)))*2.*sgin(rad (phi/
2.)) *

(y/sin((atan(y/x))));

/*printf ("delx: %1f\n dely:
$1f\n", delx, dely);*

x1l =
X2 =
x3 =

2.5;
4 +
2
yl = 3;
2
2
3

delx;

y2 =
y3 =
y4 = 3;
r = 0.5;

iSeed
nfail
error

wnn
o O 1
.o~

strcat ("data", "1l.txt");
data = fopen("data", "w");

printf ("Enter number of
loops\n") ;
scanf ("%d", &nloop);

for (i=1; i<=nloop; i++)

{

/* generate random deviates */
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x4 = gasdev(&iSeed) * 0.3 +

printf ("x4:%1f\n", x4);

errorl = nr(0.);
error += fabs(errorl) ;

}

/* output scalar AF values */

printf ("nfail = %d\n", nfail);

fprintf (data,"nfail = %d\n",
nfail) ;

printf ("error average =
$1f\n", error/(nloop-nfail)) ;

fprintf (data, "error average =
$1f\n", error/(nloop-nfail)) ;

fclose (data) ;

}

/* ________________________________
NR routine

_*/

double nr (double angle)

{

int i, j, nRow, nCol, nB, nVar,
count, pvt[MAX ROWS];

double a[MAX ROWS] [MAX COLS],
b [MAX ROWS], det;

double d[MAX ROWS],
f1[MAX_ROWS], f[MAX ROWS],
totalResid;

double error, xdl, xd2, ydl,
yd2, ul, base, x left, x right;

double y left, y right, theta,
wanted angle, anglel, angle2;

double dxold, dyold, xp, yp.
length side, length bottom;

/* initialize d */

nvar = 2;
d[0] = angle;
d[i] = 2.;

/* call functions */
func(d, £) ;

/* compute residuals */
totalResid = resid(f,nVar) ;

/* enter main loop */
count = 0;

while (fabs(totalResid) > EPS)
{
count++;
/*printf ("Residuals %1f\n",
totalResid) ; */



/* Evaluate the Jacobian */
for (i=0; i<nVar; i++)

{

/* perturb x */
d[i] = d[i] + PERTURB;
func(d, £f1);

j<nVar;

for J++)

{

(3 = 0;

aljl[i]l = (£1[31-£031) /

PERTURB;

}

alil =

}

/* printf
for (i=0;

{

d[i] - PERTURB;

("matrix a:\n");
i<nVar; i++)

for

{

(j=0; j<nVar; j++)

printf ("$1f ", alil [§]1);
printf ("\n") ;
printf ("\n"); */

/* Make sure the functions are

current */

func(d, £f);

/* load b vector */

for (i=0; i<nVar; i++)
{
bl[i] = -f[i];
1
/*printf ("vector b:\n");
for (i=0; i<nVar; i++)
{
printf ("$1f ", bl[il);

printf ("\n"); */

/* call LU DECOMPOSITION

routine */

nVar, pvt);
b, pvt);

det = LUDecomp (a,
LUSolve (a, nVar,

/* print out matrix a */
/* printf ("matrix a:\n");
for (i=0; i<nVar; i++)
{

for (j=0;

{
}

printf ("\n") ;
}ox/

j<nVar; j++)

printf ("$1f ", alil []);

/* print out vector b */
/*printf ("delta x:\n");
for (i=0; i<nVar; i++)
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*/

{
}

printf ("\n") ;

printf ("$1f ", b[i]);

*/

/* compute new value for x

for (i=0; i<nVar; i++)
d[i] = d[i] + bIlil;
}
/* print new d */
/*printf ("new d:\n");
for (i=0; i<nVar; i++)
{
printf ("$1f ", d4dl[i]l);

printf ("\n"); */

/* evaluate the function's

residuals */
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func(d, £);
totalResid = resid(f, nVar);
if (count > 15)

{
nfail +=1;
printf ("Failure in NR\n") ;

break;
!
}
while(d[0] > 360 || d4[0] < -
)
{
if(d[0] >= 0)
{
d[0] = 360 - d[0];
if (d[o] < 0)
d[0] = 360 + d[0];

(count <= 15)

dxold=2;

Yp =



length side = + y4*cos(rad(270.)) +

sgrt (pow (dxold, 2) +pow (dyold, 2) ) ; x4*cos (rad(180.)) ;
length bottom =
tan(rad(theta)) *length side; f[1] = x1*sin(rad(0.)) +
yl*sin(rad(90.))+r*sin(rad(270.+d[
anglel=atan (dyold/dxold) *180/PI; 01))
angle2=(180-theta) /2; + y2*sin(rad(270.+d[0]))
wanted angle = 180- + x3*sin(rad(180.+d[0]))
(theta+anglel+angle2) ; + x2*sin(rad(d[0])) +
y3*sin(rad(90.+d[0]))
x left = xp + +
cos (rad (wanted_angle)) * d[1l]*sin(rad(d[0] +phi)) +
length bottom; r*sin(rad(90.+d[0] +phi))
y left = yp - + y4*sin(rad(270.)) +
sin(rad(wanted_angle)) * x4*sin(rad(180.));
length bottom; }

x right = x left + base *

cos (rad(theta)) ; [
y right = y left + base * RESIDUALS
sin(rad(theta)); mmmme e
_*/
error = pow ( (xp-
x_left),2)+pow ( (yp- double resid(double f[], int nVar)
y_left),2)+pow ( ( ( (xp+base) - {
x_right)),2) int 1i;
+pow ( (yp- double tot;
y_right),2);
error = ggrt(error) ; tot = 0;
for (i=0; i<nVar; i++)
/*printf ("x left: %1f {
y_left: $1f\n x_right: $1f vy right: tot = tot + f£[i]*f[i];
$1f\n angle: }
$1f\n", x left, y left, return (sgrt(tot));
x_right, y right, theta);* }
printf ("ul: $1f angle: A
$1f\n", d[1], theta); RADIANS/DEGREES CONVERSION
_*/
/*printf ("Simulation number
$d, Error: %1f\n", count, error);* double rad(double deg)
{
return (error) ; return (deg*PI1/180.) ;
} }
}
/* ________________________________
GASDEV routine (for monte carlo)
JH o m e e DLM = === == == mmmmmmmm e
Equations -%/
________________________________ */
float gasdev(int *idum)
void func(double d[], double £[]) {
static int iset=0;
f[0] = xl*cos(rad(0.)) + static float gset;
yl*cos (rad(90.))+r*cos (rad(270.+d[0]) float fac, r, vl, v2;
) float ranl () ;
+ y2*cos (rad(270.+d[0])) +
x3*cos (rad (180.+d[0])) if (iset == 0)
+ x2%cos (rad (d[0])) + {
y3*cos (rad (90.+d[0])) do
+ d[1]*cos(rad(d[0]+phi)) + {

r*cos (rad (90.+d[0] +phi))
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vl = 2.0 * ranl(idum) - 1.0; static double r[98];
v2 = 2.0 * ranl(idum) - 1.0; double temp;
r =v1l * vl + v2 * v2; static int iff=0;
} int j;
while(r >= 1.0 || r == 0);
fac = sgrt(-2.0*log(r)/r); if (*¥idum < 0 || 1iff == 0)
gset = vl * fac; {
iset = 1; iff = 1;
return v2 * fac; ixl = (IC1l-(*idum)) % M1;
} ixl = (IAl*ix1+IC1l) % M1;
else ix2 = ixl % M2;
{ ixl = (IAl*ix1+IC1l) % M1;
iset = 0; ix3 = ix1l % M3;
return gset; for (j=1; j<=97; Jj++)
} {
} ixl = (IAl*ix1+ICl) % M1;
ix2 = (IA2*ix2+IC2) % M2;
r[j] = (ix1+ix2+RM2)*
K m o m oo RM1;
RAN1 routine
________________________________ */ }
*idum=1;
#define M1 259200 }
#define IA1l 7141 ixl = (IA1*ix1+IC1l) %M1;
#define IC1 54773 ix2 = (IA2*ix2+IC2) %M2;
#define RM1 (1.0/M1) ix3 = (IA3*1x3+IC3) %M3;
#tdefine M2 134456 j = 1+((97*ix3) /M3) ;
#define IA2 8121 if (§>97 || j<1) printf ("RANL:
#define IC2 28411 This cannot happen\n") ;
#define RM2 (1.0/M2) r[j] = (ix1+ix2*RM2)*RM1;
#define M3 24300 temp = r[j];
#define IA3 4561
#define IC3 51349 /*printf ("the ranl: %4 %d\n",
ix1l, ix2);*/
float ranl (int *idum)
{ return temp;
static long ix1l, ix2, ix3; }

The formulas used in the spreadsheet

x_1=25
x_2= =E23
X 3=2
x_4=6.5
y 1=3

y 2=2

y 3==E24
y 4=3

r 1=0.5
phi= =E12

theta= -9.0174693536082E-11

ul=2
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xold=
yold=

x1=
yl=
thetal=

h=

rotated slot=
half rot slot=
1/2 I=

theta2=
thetanew=

del x=
del y=

X_2=
y_3=

dxold=
dyold=

length r-0=
length bot=
angle 1=
angle 2=

angle want=

x_left=

y_left=

base=

X_right
y_right

To find the x_2 and y_3 information

4
2

2
0.5
=ATAN(Y1/X1)*180/PI()

=Y1/SIN(thetal*P1()/180)

45

=0.5*rotated slot

=SIN(half rotated slot*PI()/180)*h
=2*%1/2%|

=(180-rotated slot)/2
=theta2-thetal

=COS(thetanew*PI1()/180)*|
=SIN(thetanew*P1()/180)*|

=xold+delx
=yold-dely

To find the x_leftand y_left
2
2.5

=SQRT(dxold"2+dyold"2)
=TAN(theta*PI1()/180)*(lengthr-0)
=ATAN(dyold/dxold)*180/PI()
=(180-theta)/2
=180-(theta+anglel+angle2)

=0.5+COS(wanted_angle*PI()/180)*bottom_length
=0.5-SIN(wanted_angle*PI()/180)*bottom_length

To find x_right and y_right
9

=x_left+base*COS(theta*PI()/180)
=y left+base*SIN(theta*PI()/180)
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hx =
=x_1*COS(0*PI()/180)+y_1*COS(90*PI()/180)+r_1*COS(270*PI()/180+theta*PI()/180)+y
_2*COS(270*PI()/180+theta*PI()/180)+x_3*COS(180*PI()/180+theta*PI()/180)+x_2*COS
(theta*P1()/180)+y_3*COS(90*PI()/180+theta*PI()/180)+u_1*COS(theta*PI()/180+phi*PI(
)/180)+r_1*COS(theta*P1()/180+phi*PI()/180+90*PI()/180)+y 4*COS(270*PI()/180)+x_4*
COS(180*PI1()/180)

hy=
=x_1*SIN(0*PI()/180)+y_1*SIN(90*PI()/180)+r_1*SIN(270*PI()/180+theta*P1()/180)+y_2*
SIN(270*P1()/180+theta*P1()/180)+x_3*SIN(180*P1()/180+theta*PI()/180)+x_2*SIN(theta*
P1()/180)+y_3*SIN(90*PI()/180+theta*PI()/180)+u_1*SIN(theta*PI()/180+phi*PI()/180)+r_
1*SIN(theta*PI()/180+phi*PI1()/180+90*PI()/180)+y_4*SIN(270*PI1()/180)+x_4*SIN(180*PI
()/180)

htheta= =0+90+180+theta+0-90-180+90-phi+90+180-theta-phi-90-180

phi = =(90-htheta)/2

Error
overall=  =(0.5-x_left)*"2+(0.5-y_left)*2+((0.5+9)-x_right)*2+(0.5-y_right)"2
sqrt= =SQRT/(overall)

244



hx=
hy=
htheta=
phi=

Error
overall=
sqrt=

Example results from the spreadsheet above

2.5
4.939339828
2

6.5

3

2
0.732233047
3

0.5

45
-9.01747E-11

2

0
-6.29461E-12

0
45

1.62243E-22
1.27375E-11

To find the x_2 and y_3 information

xold=
yold=

x1=
yl=
thetal=

h=

rotated slot=
half rot slot=
1/2 1=

theta2=
thetanew=

del x=
del y=

X_2=
y_3=

4
2

2
0.5
14.03624347

2.061552813

45

22.5
0.788922106
1.577844213

67.5
53.46375653

0.939339828
1.267766953

4.939339828
0.732233047

To find the x_left and y_left

dxold=
dyold=

length r-0=
length bot=
angle 1=
angle 2=

angle want=

X_left=
y_left=

2
2.5

3.201562119
-5.03876E-12
51.34019175
90

38.65980825

0.5
0.5

To find x_right and y_right

base=

X_right
y_right
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Background to the slotted block problem

Inindustry, it iscommon to use slots in order to accommodate variation in a
design. Some slots can be considered as passive smart assemblies because they absorb
variation in dimensions. However, it is possible that a slot can over-constrain the
problem, and perhaps lead to detrimental results. To show the effects of exact constraint

VS. over-constraint on an assembly, the following design will be used.

This assembly is composed of abase block with two pinsrigidly connected. The
top plate has a hole on the left side manufactured so as to aways be able to fit over the
pin. Thetolerance variation of the hole is not under consideration in this problem. On
theright of the plateisadlot. Again, the pin can fit perfectly between the edges of the
dot if the part assembles. The variation in the size or width of the slot is not under

consideration.

If the Slot is at 0° (its nominal position), the assembly is exactly constrained. It is

synonymous to the figure below.
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However, if the dot is at 90°, as shown in the figure below, the assembly is now over-
constrained in the x-direction and under-constrained in rotation. In other words, there

may be some play in the block.

The assembly at 90° is synonymous with the figure below.
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In this problem, the right pin in the slotted block is allowed to vary its position in
the x-direction. The angle of the slot (user-defined) is allowed to vary between 0° and
90°. A Monte Carlo simulation will be run to determine if the block can assemble given

the position of the right pin and the angle of the slot.

Development of the problem

In order to determine if the block will assemble, the vector loop equations will be
used. The assembly with the vector loops is shown below. The slot has been rotated 45°,

and the plate is allowed to rotate in order to assemble.

Notice thereisonly oneloop. It isassumed for this problem that there are 2 parts:
the block and the plate. There are 2 joints, one revolute joint from the pin fitting in the
hole, and one cylindrical joint where the pin touches only one side of the slot (with
almost no clearance on the other side). Thus, according to the equation L =J—-P + 1,

there should only be one loop.
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The vector loop equations that result from this setup are given below.

hx= %1 cos(0) + y; cos(90) + r cos(270 + 6) + y, cos(270 + O)+ x3c0s(180 + ) + X,
cos(6) + y3c0s(90 + @) + uy cos(G+ @) + 1 cos(6+ ¢+ 90) + y,c0S(270) + X4
cos(180)
hy= x18in(0) + y1Sin(90) + r Sin(270 + 6) + y,siN(270 + &)+ X3sin(180 + 6) +
X2 SiN(6) +y3Sin(90 + &) + up Sin(G+ @) + r sin(G+ ¢+ 90) + y,SiN(270) + X4
sin(180)

hy=0+90+180+ 8+0-90-180+90— ¢+ 90 + 180 — &— ¢—90— 180

Where @is the angle between the top plate and the base, and ¢ isthe angle of the dlot.

The unknowns for this problem are u; and 6. Most of the other dimensions
necessary for a solution are easily pulled from a CAD model of the assembly. However,
in order to find x, and ys, some calculations need to be performed based on the angle of

the dot.

Finding x, and ys

In order to proceed with an analysis of this slotted assembly, x, and y3 must be
found. This can be done using geometries, and the derivation will be shown with the help

of the following figure.
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In this figure, the dot is shown in both the 0° position and the 45° position. To
find both x, and ys, the location of the bottom left corner must be found for both slots.
The bottom left corner for the slot at 0° is simply pulled from the CAD drawing. It isthe
distance from the left corner of the plate to the left bottom corner of the slot. Thus, for

the slot at 0°, X2 is4, and ysis 2.

However, to find these values for the 45° dot requires some calculation. The next
figure helpsto show that through the rules of aright triangle, the length of the upper sides

of the bolded triangle can be found.
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It is known that the distance from the center of the slot to the left edge is 2.0 in the
x-direction and 0.5 in the y-direction. Thus, the hypotenuse of this upper triangle, which

represents the side length of the bolded triangle, is simply

hypotenuse = +/2° + 0.5 = 2.06155

Thislength is aso the length of the opposite side of the bolded triangle, relating
the center of the slots to the corner on the 45° slot. Now, the angle marked as ¢; must be

found for future use. Again, from the geometry,

2
=tan!| = |=75.96°
P (o.sj

Now, consider the following figure. Because the slot has been rotated 45°, 6,

must be 45°.
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The 6,'s are the same angle, due to the nature of thetriangle. They are simply

computed, as shown below.

_ 180-45 _675°

0,

To find the third side of the bolded triangle requires the next figure. The bolded
triangle has been divided into two. Each of the known dimensionsislisted in the figure.

To find half the length of the side in question requires a ssmple calculation, shown below

the figure.
Ay
%I =sin(22.5°)* 2.06155 = 0.7889
| =1.5778
Tofind @3,
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@, =180—-75.96 - 67.5=36.54°

The change in the x and y-direction can now be found:

Ay = cos(36.54° | 1.57784 = 1.2677
Ax = sin(36.54° )+ 1.57784 = 0.9393

To now find x, and ys, smply add each change to the nominal positions. The

following table shows all values for the independent variables.

Variable | vaue
X1 2.5
X2 4+AX
X3 2.0
X4 variable
Y1 3.0
Y2 2.0
Y3 2-Ay
Ya 3.0
r 0.5

Error

One fina consideration before the Monte Carlo simulationisrun isthe error. The
assembly is considered to have no error if the bases of the block and the plate are parall€l.
If there is any angle between them, the error is cal culated as the square root sum of the
sguares of this difference between the nominal positions of the corners of the plate and

the new positions of the corners of the plate.
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Consider the following figure. The error isthe square root of the sum of the

squares for the difference in the x and y-positions of each corner.
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APPENDIX F 3D JOINTSIN ASSEMBLIES

While assembliesin 3D will not be treated in thisthesis, it isimportant to note
that Waldron and Kinzel [1999] demonstrate two types of 3D joints: lower pair joints and
higher pair joints. Lower pair joints are those joints that keep all points of the mating
surfaces of the links in contact. Higher pair joints only keep contact on isolated points or
along line segments. They also suggest that there are six distinct lower pair joints, and an

infinite number of higher pair joints (Fig. F.1).

\@)‘D [ |
@
Revolute Prismatic joint Screw joint
Hinge Slider Helical joint
Turning Pair Sliding pair Helical pair
~[ Tl
2&
I

Cylindric joint Spherical joint Planar joint
Cylindric pair Ball joint Planar pair

Spherical pair

FigureF.1—Six lower pair jointsfor 3D assemblies (after Waldron and Kinzel
[1999]). Thearrowsrepresent the allowable degrees of freedom.
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APPENDIX G RECIPROCAL RELATIONSHIP FOR FIG. 5.12

Table G.1 — Relationship between the equations of equilibrium and the DLM for
the block with three constraints.

C (Equilibrium)

B (DLM)

More unknowns than equations

5 equations Over-constrained Under-constrained
6 unknowns

M ore equations than unknowns
5 unknowns Under-constrained Over-constrained
6 equations

Equal number of equations and
unknowns
5/6 equations
5/6 unknowns

Exactly constrained
OR

Exactly constrained
OR

Over-constrained:
columns are linearly
dependent
OR

Under-constrained:
column goes to zero
columns are linearly

dependent
OR

Under-constrained:
row goesto zero
column goes to zero

Over-constrained:
row goesto zero
rows are linearly

dependent
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