
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2003-12-22

Establishing A Quantitative Foundation for Exactly Constrained Establishing A Quantitative Foundation for Exactly Constrained

Design Design

Alisha M. Hammond
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Mechanical Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Hammond, Alisha M., "Establishing A Quantitative Foundation for Exactly Constrained Design" (2003).
Theses and Dissertations. 115.
https://scholarsarchive.byu.edu/etd/115

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/115?utm_source=scholarsarchive.byu.edu%2Fetd%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

ESTABLISHING A QUANTITATIVE FOUNDATION FOR

EXACTLY CONSTRAINED DESIGN

by

Alisha M. Hammond

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical Engineering

Brigham Young University

April 2004

Copyright © 2004 Alisha M. Hammond

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Alisha M. Hammond

This thesis has been read by each member of the following graduate committee and by
majority vote has been found to be satisfactory.

________________________ __________________________________
Date Alan R. Parkinson, Chair

________________________ __________________________________
Date Kenneth W. Chase

________________________ __________________________________
Date Carl D. Sorensen

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Alisha M.
Hammond in its final form and have found that (1) its format, citations, and
bibliographical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts are in
place; and (3) the final manuscript is satisfactory to the graduate committee and is ready
for submission to the university library.

_______________________ ___
Date Alan R. Parkinson
 Chair, Graduate Committee

Accepted for the Department

 Brent L. Adams
 Graduate Coordinator

Accepted for the College

 __
 Douglas M. Chabries
 Dean, College of Engineering and Technology

ABSTRACT

ESTABLISHING A QUANTITATIVE FOUNDATION FOR EXACTLY

CONSTRAINED DESIGN

Alisha M. Hammond

Department of Mechanical Engineering

Master of Science

Exactly constrained (EC) design is a robust design method which can be used for

mechanical assemblies. It entails using the minimum number of constraints to eliminate

all desired motion.

While found by some engineers in industry to have many benefits (including

robust assembly, no binding or play, ease of assembly, and the ability to tolerate the wear

of parts), EC designs remain somewhat unrecognized by academia. One reason for this

minimal exposure may be the lack of a quantitative foundation for such designs. This

thesis describes the history and current background for EC designs, and it also begins to

develop a quantitative foundation for EC design based on several mathematical methods.

 EC designs can be analyzed quite simply by understanding that they are statically

determinate. Because of this, the equations of equilibrium can be used to validate the

rules and the nesting force window that have been defined by Blanding [1999]. In

addition, a generalized method using the equations of equilibrium has been developed in

this thesis to analyze an EC design based on the locations of the constraints and to find

the nesting force window.

 The direct linearization method (DLM) is another mathematical method used to

quantify information in an EC design. While EC designs provide many advantages, some

EC assemblies may be “better” than others. A quantitative measure of goodness is

developed in this thesis using the DLM. The goodness value assigned to each design

through this process can either be used to make a decision on an individual design, or it

can be used to compare similar EC designs.

 Finally, the robust nature of EC design is examined using a Monte Carlo

simulation. In general, the results show that EC designs have a higher rate of assembly

than similar designs that are over-constrained. They are more robust. In addition, EC

designs have lower assembly error than the similarly over-constrained assemblies.

ACKNOWLEDGMENTS

 This thesis would certainly not be complete without formally acknowledging

everyone who made it possible. I offer my deepest gratitude to Dr. Alan Parkinson for

his constant patience and attention to detail throughout this work. He spent countless

hours helping to revise and improve various sections of the thesis, and for that I am

grateful. I would also like to acknowledge Dr. Kenneth Chase and Dr. Carl Sorensen

who provided key insights and direction at pivotal moments throughout the research.

Also, much of the research was made possible through NSF grant DMI 0084880.

 I would like to acknowledge my family, and specifically my parents, Michael and

Martha Hammond, for their constant support throughout the entire process of this thesis.

Because of their wise counsel and experience, I have accomplished many of the goals I

set. In addition, countless friends and associates, of which there are too many to name

here, must be acknowledged for their constant support and interest.

Finally, I am most grateful for the unique mission of BYU to combine learning

“even by study and also by faith.” I am grateful that a wise Father in Heaven has offered

such a great opportunity for learning; and without Him and the guidance of the Spirit, this

thesis never would have been completed.

 viii

TABLE OF CONTENTS

LIST OF TABLES ...xv

LIST OF FIGURES ..xvi

CHAPTER 1 MOTIVATION FOR ESTABLISHING A QUANTITATIVE
FOUNDATION FOR EXACTLY CONSTRAINED DESIGN...........1

1.1 INTRODUCTION ..1

1.2 MOTIVATION FOR THE RESEARCH ..2

1.3 EXACTLY CONSTRAINED DESIGN..4

1.4 ADVANTAGES OF EXACTLY CONSTRAINED DESIGN..................6

1.5 ADVOCATES FOR EXACTLY CONSTRAINED DESIGN7

1.6 CURRENT PRACTICES..8

1.7 OBJECTIVES OF THE THESIS ..9

1.8 DELIMITATIONS..10

1.9 THESIS OVERVIEW ...10

CHAPTER 2 BACKGROUND AND LITERATURE REVIEW FOR
EXACTLY CONSTRAINED DESIGN ..11

2.1 INTRODUCTION ..11

2.2 EXACTLY CONSTRAINED DESIGN AS A ROBUST

DESIGN METHOD ..11

2.3 HISTORY OF EXACTLY CONSTRAINED DESIGN..........................12

2.4 BACKGROUND FOR EXACTLY CONSTRAINED DESIGN16

2.5 CURRENT METHODS TO ANALYZE EXACTLY

CONSTRAINED DESIGN ...19

2.5.1 DEFINING THE CONSTRAINTS..19

 ix

2.5.2 DEFINING THE NESTING FORCE ..20

2.6 ALTERNATE DESIGNS ...27

2.6.1 OVER-CONSTRAINED DESIGN..28

2.6.2 UNDER-CONSTRAINED DESIGN...30

2.7 EXAMPLES OF EXACTLY CONSTRAINED DESIGN......................31

2.7.1 KELVIN’S KINEMATIC CLAMP ...31

2.7.2 BLANDING’S 2D BODY ON TWO PINS EXAMPLE...........32

2.7.3 KRIEGEL’S COPY MACHINE EXAMPLE............................33

2.8 USING SCREW THEORY FOR CONSTRAINT ANALYSIS..............38

2.9 THE DIRECT LINEARIZATION METHOD USED FOR

VARIATION ANALYSIS OF EC DESIGNS ..41

2.9.1 CREATE AN ASSEMBLY GRAPH...43

2.9.2 LOCATE THE DATUM REFERENCE FRAME FOR
EACH PART..43

2.9.3 LOCATE KINEMATIC JOINTS AND CREATE
DATUM PATHS ...43

2.9.4 CREATE VECTOR LOOPS..44

2.9.5 GENERATE ASSEMBLY EQUATIONS FROM
VECTOR LOOPS..45

2.9.6 CALCULATE DERIVATIVES AND FORM MATRIX
EQUATIONS...46

2.9.7 SOLVE FOR ASSEMBLY SENSITIVITIES46

2.10 CONCLUSIONS...47

CHAPTER 3 VALIDATION OF THE CURRENT RULES AND
METHODS FOR EXACTLY CONSTRAINED DESIGN
USING A QUANTITATIVE FOUNDATION....................................49

3.1 INTRODUCTION ..49

3.2 STATICALLY DETERMINATE ASSEMBLIES..................................50

3.2.1 TWO-FORCE MEMBERS..51

3.2.2 THREE-FORCE MEMBERS ..52

 x

3.2.3 FOUR FORCES IN A SYSTEM...53

3.2.4 FIVE OR MORE FORCES IN A SYSTEM..............................54

3.3 VALIDATING THE RULES FOR EXACTLY CONSTRAINED

DESIGN ..55

3.3.1 NO TWO CONSTRAINTS SHOULD BE CO-LINEAR..........55

3.3.2 NO FOUR CONSTRAINTS ARE IN A SINGLE
PLANE...58

3.3.3 NO THREE CONSTRAINTS ARE PARALLEL59

3.3.4 NO THREE CONSTRAINTS SHOULD INTERSECT
AT A POINT..61

3.3.5 SUMMARY OF THE RULES...63

3.4 NESTING FORCE WINDOW..64

3.4.1 QUANTITATIVE APPPROACH TO FIND THE
NESTING FORCE WINDOW ..64

3.4.2 COMPARISON BETWEEN GRAPHICAL AND
QUANTITATIVE APPROACHES...67

3.5 CONCLUSIONS...70

CHAPTER 4 GENERALIZED METHOD TO USE THE EQUATIONS
OF EQUILIBRIUM IN EXACTLY CONSTRAINED
DESIGN ...71

4.1 INTRODUCTION ..71

4.2 INITIALIZING THE ANALYSIS FOR EC DESIGN72

4.3 GENERALIZED METHOD TO FIND THE NESTING FORCE

WINDOW ...75

4.3.1 DEFINITION OF TRANSITION POINTS75

4.3.2 PRESENTATION OF THE GENERALIZED METHOD78

4.4 GENERALIZED METHOD TO QUANTITATIVELY

ANALYZE EC DESIGN ..89

4.4.1 GENERAL METHOD TO INSPECT EC DESIGN..................89

4.4.2 SINGULARITY OF THE [C] MATRIX...................................95

4.4.2.1 A ROW OF ZEROS..95

 xi

4.4.2.2 A COLUMN OF ZEROS..96

4.4.2.3 LINEAR DEPENDENCE...97

4.4.3 GENERAL METHOD TO DESIGN AND MAKE
PREDICTIONS FOR EC ASSEMBLIES98

4.4.4 MORE SIMPLE EXAMPLES...102

4.5 TRADEOFF BETWEEN THE REACTION FORCES AND THE

NESTING FORCE WINDOW..110

CHAPTER 5 A QUANTITATIVE MEASURE OF “GOODNESS” IN AN
EXACTLY CONSTRAINED DESIGN ..115

5.1 INTRODUCTION ..115

5.2 THE GOODNESS OF AN EXACTLY CONSTRAINED

DESIGN ..116

5.3 USING SCREW THEORY TO QUANTITATIVELY

MEASURE GOODNESS ...118

5.4 USING THE DIRECT LINEARIZATION METHOD (DLM) TO

PROVIDE A QUANTITATIVE GOODNESS CRITERIA..................120

5.4.1 SIGNIFICANCE OF PARTIAL DERIVATIVES IN
THE DLM..122

5.4.2 [B] MATRIX CONTRIBUTIONS ..128

5.4.2.1 A ROW OF ZEROS..129

5.4.2.2 A COLUMN OF ZEROS..131

5.4.2.3 LINEAR DEPENDENCE...131

5.4.2.4 USING THE [B] MATRIX AS A MEASURE
OF GOODNESS ...137

5.4.3 USING ASSEMBLY SENSITIVITIES TO QUANTIFY
GOODNESS ..138

5.4.4 USING THE GOODNESS VALUES FOUND IN THE
DLM...141

5.4.5 A RETURN TO THE SLOTTED BLOCK EXAMPLE..........144

5.5 THE [B] MATRIX FROM THE DLM AND THE [C] MATRIX

FROM THE EQUATIONS OF EQUILIBRIUM149

5.6 CONCLUSIONS...152

 xii

CHAPTER 6 USING EXACTLY CONSTRAINED DESIGN AS A
ROBUST DESIGN METHOD...153

6.1 INTRODUCTION ..153

6.2 MONTE CARLO SIMULATION TO SHOW THE ROBUST

NATURE OF EC DESIGN ...154

6.2.1 WILL THE DESIGN ASSEMBLE?..155

6.2.2 WHAT IS THE OVERALL ERROR?.....................................155

6.3 EXAMPLES..157

6.3.1 EC BLOCK WITH THREE CONSTRAINTS157

6.3.2 NON-EC BLOCK WITH THREE CONSTRAINTS160

6.3.3 OC BLOCK WITH FOUR CONSTRAINTS..........................161

6.3.4 SUMMARY OF THE BLOCK ASSEMBLIES WITH
THREE OR FOUR CONSTRAINTS166

6.3.5 SLOTTED BLOCK ASSEMBLY ...167

6.3.5.1 SLOT ANGLE: 0o..169

6.3.5.2 SLOT ANGLE: 90o..169

6.3.5.3 SLOT ANGLE: VARIED..170

6.4 CONCLUSIONS...172

CHAPTER 7 CONTRIBUTIONS, CONCLUSIONS, AND
RECOMMENDATIONS..173

7.1 CONTRIBUTIONS OF THIS THESIS...173

7.2 CONCLUSIONS OF THIS THESIS...175

7.3 RECOMMENDATIONS FOR FUTURE WORK176

APPENDIX A CONSTRAINT ANALYSIS USING SCREW THEORY181

A.1 FIND THE TRANSFORMATION MATRIX.......................................181

A.2 FIND THE TWISTMATRIX FOR EACH FEATURE.........................183

A.3 DETERMINE IF THE ASSEMBLY IS UNDER-
CONSTRAINED ..185

 xiii

STEP 1: RECIPROCAL OPERATION APPLIED TO EACH
TWIST ...185

STEP 2: UNIONIZE THE MATRICES ..185

STEP 3: ROW REDUCED ECHELON FORM185

STEP 4: RECIPROCAL OPERATION APPLIED TO THE
WRENCH ..186

MATLAB® AUTOMATION OF THE PROCESS...............................186

A.4 DETERMINE IF THE ASSEMBLY IS OVER-CONSTRAINED188

STEP 1: UNIONIZE THE TWISTMATRICES188

STEP 2: ROW REDUCED ECHELON FORM188

STEP 3: RECIPROCAL OPERATION APPLIED TO THE
TWIST ...188

MATLAB® AUTOMATION OF THE PROCESS...............................189

A.5 DETAILED EXAMPLES FROM CHAPTER 5190

SLOT AT 450 ..191

SLOT AT 700 ..192

SLOT AT 89.90 ...193

SLOT AT 90o ..194

APPENDIX B EXCEL® ANALYSIS FOR EXAMPLES USING THE
EQUATIONS OF EQUILIBRIUM...197

B.1 NO TWO CONSTRAINTS SHOULD BE CO-LINEAR

ANALYSIS (FIG. 3.3) ..197

B.2 NO THREE CONSTRAINTS SHOULD INTERSECT AT A

POINT ANALYSIS (FIG. 3.10)..199

B.3 NESTING FORCE WINDOW USING THE EQUATIONS OF

EQUILIBRIUM (SECTION 3.4.2) ...202

APPENDIX C COMPARING THE GRAPHICAL NESTING FORCE
WINDOW TO THE QUANTITATIVE NESTING FORCE
WINDOW ..207

C.1 BRIEF DESCRIPTION AND BASELINE RESULTS.........................207

C.2 FIRST METHOD: EQUATIONS OF EQUILIBRIUM208

 xiv

C.3 SECOND METHOD: EQUATION OF A LINE TO FIND

INTERSECTION/TRANSITION POINTS ..213

APPENDIX D DETAILED ANALYSIS USING THE EQUATIONS OF
EQUILIBRIUM FOR FIGURE 4.19...217

D.1 FORMULAS USED IN EXCEL®
 FOR FIG. 4.19217

D.2 THE RESULTS FOR FIG. 4.19 ..218

APPENDIX E DETAILS FOR THE MONTE CARLO SIMULATION
EXAMPLES IN CHAPTER 6..221

E.1 ALL BLOCKS WITH THREE CONSTRAINTS (SECTIONS

6.3.1 AND 6.3.2) ...221

E.2 BLOCK WITH FOUR CONSTRAINTS (SECTION 6.3.3)230

E.3 SLOTTED BLOCK ASSEMBLY (SECTION 6.3.4)238

APPENDIX F 3D JOINTS IN ASSEMBLIES ..255

APPENDIX G RECIPROCAL RELATIONSHIP FOR FIG. 5.12..........................257

BIBLIOGRAPHY ...259

 xv

LIST OF TABLES

Table 3.1 – Summary of the results for the rules...63

Table 4.1 – Transition points along each side of the assembly106

Table 6.1 – Block assembly with different starting points for the constraints160

Table 6.2 – Several over-constrained examples ..165

Table 6.3 – Table of Monte Carlo results for various slot angles....................................170

Table G.1 – Relationship between the equations of equilibrium and the DLM for

the block with three constraints..257

 xvi

LIST OF FIGURES

Figure 1.1 – Block resting on a table. (a) Front view (b) Top view5

Figure 1.2 – Constraints and nesting forces to make the box immobile..............................5

Figure 2.1 – Examples of kinematic clamps (a) Maxwell’s 3 V’s example (b) Lord

Kelvin’s clamp (after Evans [1989])...14

Figure 2.2 – 2D object with three degrees of freedom. The object can translate

along the x and y-axes, and it can rotate about the z-axis.............................16

Figure 2.3 – 3D object with six degrees of freedom. The object can translate

along and rotate about the x, y, and z-axes. ..17

Figure 2.4 – Six kinematic joints for 2D assemblies. The arrows represent the

allowable degrees of freedom (after Chase [1999])......................................18

Figure 2.5 – Triangle with three constraints ...21

Figure 2.6 – Triangle with constraint lines drawn and instant centers defined22

Figure 2.7 – Finding rotation on the left instant center..23

Figure 2.8 – Finding rotation on the top right instant center ...23

Figure 2.9 – Direction of all necessary rotations on each instant center24

Figure 2.10 – Test to see if the nesting force is permitted to pass through the

highlighted line. ..25

Figure 2.11 – Testing a segment in the nesting force window ..26

Figure 2.12 – The allowable nesting force window...27

 xvii

Figure 2.13 – Slotted block OC and EC design (a) Over-constrained assembly

(b) Exactly constrained assembly ...29

Figure 2.14 – Four bar mechanism. ...30

Figure 2.15 – Exactly constrained design. ...31

Figure 2.16 – Kelvin’s kinematic clamp (after Evans [1989]) ..31

Figure 2.17 – 2D body located by two pins (after Blanding [1999]).................................33

Figure 2.18 – Industrial example using the assembly presented in Fig. 2.17

(after Savoie, MIT) ...33

Figure 2.19 – Initial baffle design (after Kriegel [1994]) ..34

Figure 2.20 – Baffle with angle-iron channels (after Kriegel [1994])...............................35

Figure 2.21 – Baffle with an additional stiffening brace (after Kriegel [1994])................35

Figure 2.22 – Fastener for the baffle (after Kriegel [1994]) ..36

Figure 2.23 – Final design for the baffle (after Kriegel [1994]). The double slot

absorbs variation in the design without affecting the assembly along

the z-axis. ..37

Figure 2.24 – Slotted block example for Screw Theory ..39

Figure 2.25 – Sample assembly to show variation analysis method..................................42

Figure 2.26 – Assembly graph ...43

Figure 2.27 – Datum paths...44

Figure 2.28 – Vector loop for the assembly...45

Figure 3.1 – Two-force member ..52

Figure 3.2 – Three-force member ..53

Figure 3.3 – Statically determinate block ..54

 xviii

Figure 3.4 – Block with three constraints ..56

Figure 3.5 – Reaction force on C3 required to keep the block immobile...........................57

Figure 3.6 – Block with four constraints ...58

Figure 3.7 – Block assembly with three parallel constraints ...60

Figure 3.8 – Similar block assembly with three parallel constraints60

Figure 3.9 – Adding an x-constraint to the block ..61

Figure 3.10 – Triangle assembly with three constraints ..62

Figure 3.11 – Reaction force on C3 required to keep the block immobile.........................62

Figure 3.12 – Triangle assembly example used to find the nesting force window............65

Figure 3.13 – Nesting force window according to the equations of equilibrium67

Figure 3.14 – Finding the nesting force window using the graphical method...................68

Figure 3.15 – Nesting force window comparison..69

Figure 4.1 – Block with 3 constraints to be used for generalized method.........................73

Figure 4.2 – Transition points marked on the triangle assembly from Fig. 3.13...............76

Figure 4.3 – Transition points shown in a force analysis ..77

Figure 4.4 – Finding transition points for the bottom surface ...80

Figure 4.5 – Transition point found along the base ...82

Figure 4.6 – Finding the transition points for the top surface..83

Figure 4.7 – Transition points along the top and bottom surfaces.....................................84

Figure 4.8 – Finding the transition points for the right surface ...85

Figure 4.9 – The block assembly with all transition points ...86

Figure 4.10 – The nesting force window on the bottom surface. The bolded

portion of the line is the unacceptable region. ..87

 xix

Figure 4.11 – The nesting force window for the block assembly. The bolded

portion is the unacceptable region of the window.88

Figure 4.12 – Placing the nesting force (a) Initial set-up for the block example,

Fig. 4.1 (b) Nesting force window, Fig. 4.11...93

Figure 4.13 – Acceptable design for the block assembly ..94

Figure 4.14 – Triangular assembly for the inspection method ..102

Figure 4.15 – Nesting force window for the triangle assembly. The bolded lines

are the points where the nesting force is not allowed.106

Figure 4.16 – Acceptable EC design for the triangle assembly.......................................107

Figure 4.17 – Triangular assembly for the design method ..108

Figure 4.18 – Configuration that makes the assembly no longer exactly

constrained ..109

Figure 4.19 – Various configurations of the same block assembly111

Figure 5.1 – Results of the Screw Theory Analysis. EC means that the design is

exactly constrained..119

Figure 5.2 – All vectors associated with θ1 in a vector loop sample125

Figure 5.3 – Components of each vector for the example in Fig. 5.2..............................126

Figure 5.4 – Resultant vectors representing the values of
1θ∂

∂ xh
 and

1θ∂
∂ yh

........................127

Figure 5.5 – Example showing when the B matrix would have linear dependence

in the columns ...133

Figure 5.6 – Example showing when the B matrix would have linear dependence

in the rows (a) EC design (b) Over-constrained in the y-direction.............134

 xx

Figure 5.7 – Example assembly to show how to use the B matrix to predict why a

design did not assemble ..136

Figure 5.8 – DLM for the slotted block example...144

Figure 5.9 – Slotted block with the slot at 45o...146

Figure 5.10 – Slotted block with the slot at 89o...147

Figure 5.11 – Slotted block with slot at 90o...148

Figure 5.12 – Exactly constrained block with three constraints150

Figure 6.1 – Example calculation for the error of an assembly157

Figure 6.2 – Block assembly with three constraints ..158

Figure 6.3 – Block assembly with constraints at varying positions from the

nominal ...158

Figure 6.4 – Over/Under-constrained block assembly with three constraints161

Figure 6.5 – Block assembly with four constraints..162

Figure 6.6 – Three possible assembly cases for the over-constrained block163

Figure 6.7 – Alternate configuration for the over-constrained block164

Figure 6.8 – Slotted block example ...167

Figure 6.9 – Slotted block assembly with the slot at 75o ...168

Figure 6.10 – Assembly with the slot angle at 90o ..169

Figure 6.11 – Chart of results for slotted block assembly showing % assembled

and error ..171

Figure F.1 – Six lower pair joints for 3D assemblies (after Waldron and Kinzel

[1999]). The arrows represent the allowable degrees of freedom.255

 1

CHAPTER 1 MOTIVATION FOR ESTABLISHING A QUANTITATIVE

FOUNDATION FOR EXACTLY CONSTRAINED DESIGN

1.1 INTRODUCTION

An increasingly competitive marketplace has sparked the demand to find more

effective design methods that produce higher quality, cost-competitive mechanical

assemblies. Yet, quality and cost often become competing objectives in many

manufacturing processes because of unanticipated variability.

Unanticipated variability can adversely affect mechanical assemblies. Examples

of unanticipated variability may include worn tools, varying dimensions among similar

parts, varying job skills among technicians, or changing environments (such as

temperature or load changes). Ultimately, variability leads to designs that do not always

properly assemble as desired.

Avoiding the effects of variability can lead to higher quality, cost-competitive

assemblies. Therefore, a prominent need has surfaced to find design methods that allow

parts to correctly assemble, even when subjected to variation.

 2

1.2 MOTIVATION FOR THE RESEARCH

Recent design methods have focused on eliminating the effects of variability.

Collectively called “robust design”, they are intended to reduce the effects of variability

without necessarily eliminating the causes.

For example, smart assemblies have recently been recommended as a robust

design method. Smart assemblies include “features, not otherwise required by the

function of the design, which allow the design to absorb or cancel out the effects of

variation” [Downey et. al. 2002]. Some examples of smart assemblies include adjustable

screws, springs that absorb variation, and slotted holes [Downey 2001]. The smart

features can adjust as needed to allow the assembly to be used under a wide range of

conditions.

Traditionally, however, robust designs get overlooked in favor of the more

familiar methods of problem solving in manufacturing. These traditional methods

include tightening tolerances on parts, re-design, and brute-force.

Designers tighten tolerances to try to control variability in an assembly. It seems

logical that if parts will not come together in an assembly, those parts must be re-

manufactured with dimensions closer to the nominal position. To avoid any future re-

work, the parts are assigned tighter tolerances. However, assemblies that require high

accuracy can have tolerances so tight that certain parts are almost without tolerances,

leading to very costly designs. Perfect parts are high expectations from imperfect

manufacturing processes and environments.

 3

Another popular method to deal with variability in assemblies is to redesign parts

mid-process until everything comes together as desired. Shapes change; different

materials are explored; designs are altered; and the new design is progressively

implemented. Problematic variability is simply eliminated through design changes made

over time that seem to work. Re-design is a very real, very popular, and often very costly

solution in industry.

Often, the most popular or common method employed to fix the effects of

variability does not involve much thought about tolerances or the various properties of

the parts. Instead, sheer brute force, often leading to deformations or dysfunctional

assemblies, becomes the solution of choice.

However, the recent work of engineers, especially at the Eastman Kodak

Company, has suggested that the solution may be more basic or fundamental than

currently practiced or understood. Faulty assemblies may not be the effect of

dimensions, tolerances, shapes, or material. The problem may well be with the total

number of constraints found in an assembly. If a design does not behave as intended, it

could be due to not enough or too many constraints in the assembly. This thesis will

explore another robust design method called exactly constrained design that absorbs

variability through minimizing the total number of constraints in an assembly, while still

eliminating all necessary motion.

 4

1.3 EXACTLY CONSTRAINED DESIGN

For any unconstrained part in 3D, six directions of motion are allowed:

translation in the x, y, and z directions, and rotation about the x, y, and z axes. Likewise,

for 2D parts, translation in the x and y-directions and rotation about the z-axis is possible.

There are no limitations on motion if there are no constraints.

As parts come together to form an assembly, the joints formed by mating parts

introduce constraints into the system. The constraints limit the allowable motion of the

assembly.

Exactly constrained (EC) design uses a minimum number of constraints to

eliminate undesired motion. In addition, each constraint must have a complementary

force applied (called a nesting force) that keeps the part and the constraint in contact.

Strategic placement of the minimum number of constraints coupled with the nesting force

constitutes an EC design.

As a simple example, consider Fig. 1.1, which is a block resting on a table. In this

case, the block must not be allowed to move. Currently, however, this block can slide in

the x and y directions, and it can rotate about z.

 5

x

z

x

y

 (a) (b)

Figure 1.1 – Block resting on a table. (a) Front view (b) Top view

To inhibit the motion currently allowed, constraints must be added (Fig. 1.2). To

constrain translation in the x-direction, a peg (C1) is placed to the right of the block. To

constrain y-translation, a peg (marked C2) is placed at the top of the block. In order to

inhibit rotation, a final peg (marked C3) is added to the bottom left of the block. As

mentioned earlier, it is necessary to have a nesting force for each constraint (Fig. 1.2a),

but these forces may be combined to find one resultant nesting force for the design (Fig.

1.2b).

x

y

C1

C2

C3

x

y

(a) (b)

Figure 1.2 – Constraints and nesting forces to make the box immobile
(a) Individual nesting forces (b) Resultant nesting force

 6

A simple comparison of two common assemblies may further help to understand

EC design. Imagine a three-legged stool versus a normal table chair with four legs. Both

assemblies need to stay flat on the ground for optimal convenience. When just one leg is

attached to the seat of the stool or chair, each assembly can still rotate in all three

directions. When two legs are attached, each assembly can still rotate about the line

formed by the two points where the legs rest. When a third leg is added, all three legs sit

flat on the ground. There is no rotation or translation. All the legs will rest squarely on

the ground regardless of incline or roughness. Adding a fourth leg now makes the chair

over-constrained. In order for all four legs to sit squarely on the ground (and thus allow

no “wobble”), the ground must be perfect and the legs must be the same height.

Otherwise, there must either be deformation between the ground and the legs so the chair

sits flat, or the user must have a tolerance for “wobble.” The fourth leg makes a

difference. The exactly constrained stool has more flexibility for use than the four-legged

chair, although the four-legged chair has greater stability (and hence the reason four-

legged chairs are used more often).

1.4 ADVANTAGES OF EXACTLY CONSTRAINED DESIGN

Exactly constrained design yields some highly desirable advantages. As will be

discussed throughout this thesis, EC designs will assemble under a wide range of

conditions with no looseness or binding. In fact, EC assemblies will not just assemble

under a wide variety of conditions, but they will operate under a wide variety of

conditions as well. For example, changes in material due to temperature often become a

non-issue. This kind of robust design methodology means that assemblies can be

produced with lower priced, less accurate parts.

 7

Additional advantages include other benefits as well. Assemblies can be

assembled and reassembled with very little overall change to the function of the system.

Tolerances can be looser. Costs are often reduced due to less re-work. Less time and/or

resources are spent in re-design or problem solving to fix an EC assembly.

1.5 ADVOCATES FOR EXACTLY CONSTRAINED DESIGN

Exactly constrained design is unusual because the greatest advocates have come

not from academia, but from industry. Lawrence Kamm [1993], who refers to EC design

as “MinCD”, states the benefits of such a design.

When you do minimum constraint design (MinCD), you support

and guide each body only at points, and at as few points as possible to get

the desired performance. If you do so, you will achieve zero looseness

and zero binding of moving parts; you will achieve assembly of fixed parts

without strains or rework; and you will do so despite loose manufacturing

tolerances and semiskilled assembly labor. You will minimize the

manufacturing cost of your mechanism, you will make it more reliable,

you will make it easier to disassemble and reassemble, and you will make

it easier to maintain.

Douglass L. Blanding [1999] of the Eastman Kodak Company, and one of the

leaders in defining principles related to EC design, explains some of the advantages he

has found in his experience with EC design.

The use of these [EC design] principles, collectively called Exact

Constraint Design principles, provides the designer with a better

understanding of a machine’s behavior. This understanding allows the

 8

designer to easily create new designs which are both low in cost and high

in performance.

… Among the benefits to be attained in following these principles

are extreme precision, predictable performance, and infinitesimal

distortion of the component parts.

Jon Kriegel [1994], also of the Eastman Kodak company, made a plea to include

EC design as part of the engineering curriculum.

Based on…an unending list of…examples, it is suggested that

these problems represent a major weakness in the undergraduate

engineering educational system. The objective…is to solicit the support

of academicians in including Exact Constraint Design as a basic topic in

Machine Design classes and textbooks. This involves vocabulary,

concepts, and examples or case-studies, (the author could personally

supply 30), and deserves an independent chapter heading.

Michael French, who has included EC design in his textbooks Form, Structure

and Mechanism [1992] and Conceptual Design for Engineers [1998], writes, “It must not

be used blindly or invariably…, but it is perhaps the most useful principle in machine

design.”

1.6 CURRENT PRACTICES

Current techniques to analyze and use EC design have primarily centered on

intuition and graphical methods. They often rely on the designers’ experience to make

decisions on where to place constraints.

 9

For example, Blanding [1999] has developed a system where all constraints are

schematically the same (essentially pin joints) thus leading to a 6 Rs interpretation—

where any translation is really just a rotation at infinity. He observes that the type of

constraint is not as important as where it is placed. As will be shown in Chapter 2, rules

primarily based on experience have been developed by him to find a location for the

constraints in an assembly. Included in his method is a graphical approach, which shows

“windows” where nesting forces may sit to keep the assembly properly seated.

1.7 OBJECTIVES OF THE THESIS

The purpose of this thesis is to build a solid quantitative foundation for exactly

constrained design. This foundation will be built upon two primary concepts. First, it

has been observed that EC designs are statically determinate. This observation allows

equilibrium equations to be used to compute forces. Second, EC designs can be analyzed

using the direct linearization method (DLM). The vector loops in the DLM are utilized to

show the effects of variation on EC designs.

The concepts stated above will be used to build a quantitative foundation for

exactly constrained design by:

• Developing a solid definition of exactly constrained design based on

quantitative principles

• Developing quantitative methods for analyzing locations of constraints

• Developing quantitative methods for analyzing the nesting force window

 10

• Developing a quantitative method to determine the “goodness” of an EC

design

• Examining the effects of variation in exactly constrained designs vs. over-

constrained designs

1.8 DELIMITATIONS

The thesis presented will primarily treat 2D assemblies. The results found for 2D

assemblies can be generalized for 3D assemblies.

Also, mechanisms are not included in this thesis. Only immobile assemblies are

presented as examples.

1.9 THESIS OVERVIEW

The remainder of the thesis will proceed in logical fashion. Chapter 2 will give

much more detail and further background for exactly constrained design. Chapter 3 will

define and use mathematical or quantitative principles to validate many of the heuristic

rules developed over time for EC design. Chapter 4 will expand the work of Chapter 3

by presenting a general method to analyze the placement of constraints in an EC design.

Chapter 5 builds upon the work in Chapter 4 by showing a procedure to find a measure of

“goodness” between several configurations of an EC design. Chapter 6 will then show

how EC designs are more robust than similarly over-constrained designs. Finally,

Chapter 7 will state all contributions, conclusions, and recommendations related to this

thesis.

 11

CHAPTER 2 BACKGROUND AND LITERATURE REVIEW FOR EXACTLY

CONSTRAINED DESIGN

2.1 INTRODUCTION

As mentioned in Chapter 1, exactly constrained (EC) design can be a useful tool

in the engineering world. Chapter 2 will discuss the background, history, and current

analysis methods for EC design.

EC design is a robust design method for mechanical assemblies with a history

dating back to at least the early 1840’s. The history, background, and current methods of

analysis will be followed by an explanation of the antitheses to EC design: over-

constrained and under-constrained design. Examples of EC design will be followed by

the explanation of several tools that will help to ultimately develop the quantitative

foundation presented in this thesis.

2.2 EXACTLY CONSTRAINED DESIGN AS A ROBUST DESIGN METHOD

 Parkinson [1995] has defined robust design as “a design that works properly even

when subjected to variation, which may be introduced by manufacturing processes, by

the environment, by the end user, or by parts provided by outside suppliers.” Although

applicable to assemblies, robust design also pertains to all types of design models.

 12

 As will be illustrated in Chapter 6, EC designs fall into the category of robust

design because they can appropriately assemble and reassemble even when subjected to

variation. As will be explained in Section 2.4, EC designs do so by using the minimum

number of constraints to hold an assembly in place.

 Before the technical details are presented for such a robust design, however, the

history of the method will be reviewed. The purpose in reviewing the history is best

explained by Chris Evans [1989] in Precision Engineering as a way to “show the present

to itself by revealing its origin.” The history shows that the basic principles were

understood and preserved by a handful of followers in the generations that followed the

original pioneers.

2.3 HISTORY OF EXACTLY CONSTRAINED DESIGN

 One of the earliest leaders in EC design was Robert Willis, who extensively

lectured and published his Principles of Mechanism beginning around 1841. Presumably

as a result of Willis’ work, William Thomson (Lord Kelvin) and James Clerk Maxwell

carried on the principles known in that day as “geometric” or “kinematic” design.

In 1876, James Clerk Maxwell [Niven 1890] clearly described the basic ideas

relating to what was often referred to as “kinematic design”.

Each solid piece of the instrument is intended to be either fixed or

movable, and to have a certain definite shape. It is acted on by its own

weight, and other forces, but it ought not to be subjected to unnecessary

stresses, for these not only diminish its strength, but (what for scientific

 13

purposes may be more injurious), they alter its figure, and may, by their

unexpected changes during the course of an experiment, produce

disturbance or confusion in the observations we have to make.

We have, therefore, to consider the methods of relieving the

pieces of an instrument from unnecessary strain, of securing for the fixed

parts a determinate position, and of ensuring that the movable parts shall

move freely, yet without shake.

This we may do by attending to the well-known fact in

kinematics—‘A RIGID BODY HAS SIX DEGREES OF FREEDOM’.

A rigid body is one whose form does not vary. The pieces of our

instrument are solid, but not rigid. They are liable to change of form

under stress, but such change of form is not desirable, except in certain

special parts, such as springs.

Hence if a solid piece is constrained in more than six ways it will

be subject to internal stress, and will become strained and distorted, and

this in a manner which, without the most exact micrometrical

measurements, it would be impossible to specify.

In instruments which are exposed to rough usage it may

sometimes be advisable to secure a piece from becoming loose, even at

the risk of jamming it; but in apparatus for accurate work it is essential

that the bearings for every piece should be properly defined, both in

number and in position (emphasis added).

 Thus, Maxwell described that any solid piece must not be constrained in more

than six ways; otherwise, the part will become strained and disfigured. He continued by

 14

illustrating “[m]ethods of placing an instrument in a definite position”. His example

explains the three V’s method for a geometrical or kinematic clamp (Fig. 2.1a), which he

compares to Kelvin’s kinematic clamp (which uses a trihedral hole, a V-groove, and the

horizontal plane of the base to constrain motion). While more specific details will be

discussed in Section 2.4, the six degrees of freedom are constrained by three joints to

allow no motion between parts in both clamps.

(a) (b)

Figure 2.1 – Examples of kinematic clamps (a) Maxwell’s 3 V’s example (b) Lord
Kelvin’s clamp (after Evans [1989])

 In 1937 and again in 1954, T. N. Whitehead published his Design and Use of

Instruments and Accurate Mechanism which is based on the principles described by

Maxwell. It resurrected and developed the ideas promoted by the previous experts, and it

formed the basis for what is today called exactly constrained design.

Kinematic design, as that term is frequently used, implies a design

whereby the various links of each element, forming an instrument, are

 15

constrained by the theoretically minimum number of point contacts, given

the degrees of constraint required.

 Lawrence Kamm [1993] developed an entire career based on the principles as

outlined in Whitehead’s book. In his book, Designing Cost-Efficient Mechanisms, Kamm

follows Whitehead’s approach in presenting “a book of ideas and not of calculations.”

He offers a basic description and many ideas on designing mechanisms based on the

number and placement of constraints.

Several other industrial leaders also built their careers on principles as defined in

the work of Whitehead. Most notably, engineers from the Eastman Kodak Company

used EC design for over 20 years to solve many problems. John McLeod (who coined

the term “exact constraint design”) and John E. Morse (“Exact Jack” Morse) used the EC

principles for designs ranging from structures to conveyor belts to flexure mechanisms.

 The design principles of EC design were more fully described by another member

of the Eastman Kodak Company, Douglass L. Blanding, author of Exact Constraint:

Machine Design Using Kinematic Principles. He had the benefit of working with and

learning from Jack Morse for about two years. This mentoring helped him establish and

further define many basic principles in EC design. Blanding’s work is the basis for many

of the EC designs in use today.

Before a detailed overview can be presented for the current methods developed by

Blanding and others on how to use the principles of EC design, the underlying concepts

 16

must be discussed. A brief background for EC design will be followed by the methods

currently in use.

2.4 BACKGROUND FOR EXACTLY CONSTRAINED DESIGN

An assembly is comprised of smaller, interconnecting parts. It can be immobile,

such as a stool is an assembly made of a seat and legs, or it can have motion, such as a

robot.

Each part in an assembly connects to another part by way of a joint. Each time

parts are joined together, the degrees of freedom are affected.

The degrees of freedom define the motion that is allowed. It is well known that

for 2D solids with no constraints (Fig. 2.2), there are three degrees of freedom: x-

translation, y-translation, and rotation about the z-axis.

x

y

Figure 2.2 – 2D object with three degrees of freedom. The object can translate
along the x and y-axes, and it can rotate about the z-axis.

 17

For 3D solids with no constraints (Fig. 2.3), there are six degrees of freedom.

There will be x, y, and z translation, as well as rotation about the x, y, and z-axes.

y

x

z

Figure 2.3 – 3D object with six degrees of freedom. The object can translate along

and rotate about the x, y, and z-axes.

When parts assemble together and form joints, the degrees of freedom change.

Each type of joint in the assembly constrains motion in one or more directions, but the

joint may also continue to allow motion in other directions. For each direction inhibited

by a joint, one degree of freedom is lost, thus adding one degree of constraint to the

assembly. The types and number of joints used ultimately determine the degrees of

freedom in an assembly.

Chase [1999] has suggested that all mating parts in 2D assemblies can be

described by the six kinematic joint types in Fig. 2.4 (a similar graphic for 3D assemblies

is found in Appendix F). The rigid joint provides three constraints. A planar joint

provides two constraints. An edge slider joint provides one constraint, and so on.

 18

Rigid Planar Edge
slider

Cylinder
slider

Revolute Parallel
cylinders

Figure 2.4 – Six kinematic joints for 2D assemblies. The arrows represent the
allowable degrees of freedom (after Chase [1999]).

It should be noted that while Blanding [1999] has chosen to limit his designs to

the cylinder slider type joint, any of the joints presented in Fig. 2.4 can be used in an EC

design. Figure 2.24, for example, shows a block assembly which uses a revolute joint to

constrain two degrees of freedom.

 With a basic understanding of assemblies and their constraints, EC design can be

easily described. An EC design entails assigning a minimal number of constraints to

eliminate each necessary degree of freedom in an assembly. Constraints are achieved

through joints, and the appropriate type and number of joints to use depends on which

degree(s) of freedom should be constrained. The 2D joints shown earlier (Fig. 2.4) can

provide one, two, or three constraints per joint, depending on the type of joint chosen.

Placing a constraint includes more than just finding a location for a joint. If the

constraint does not stay in constant contact with its mating part in an assembly, it is as if

 19

no constraint exists and unexpected motion results. Therefore, every constraint must also

have a nesting force to guarantee constant contact with the part.

If there are three constraints, the assembly must then also have three nesting

forces. However, these three nesting forces can be combined into one resultant nesting

force that would properly seat the assembly. It is important to emphasize that to properly

seat the assembly, the nesting force must be applied so as to provide force in all

necessary directions; thus, there must be a nesting force that provides seating in both the

x and y-directions.

Examples of nesting forces may be the weight of an assembly, an applied force,

friction, and smart features that absorb variability. Pearce [2003] gives a method to

design nesting forces using smart features.

2.5 CURRENT METHODS TO ANALYZE EXACTLY CONSTRAINED DESIGN

The basic background to EC design naturally leads to a discussion on the current

methods used by the experts. EC design requires several major considerations. First,

how many constraints will be required to exactly constrain the assembly as necessary,

and where should those constraints be placed in an assembly? Then, where should the

nesting force(s) be placed?

2.5.1 DEFINING THE CONSTRAINTS

 As mentioned earlier, the type and number of constraints depend on the required

motion of the assembly. However, certain rules have been described by Blanding to help

 20

correctly place constraints for EC design. Those rules are presented as summarized by

Skakoon [2000].

2D rules for exactly constrained design

1. No two constraints are co-linear.

2. No four constraints are in a single plane.

3. No three constraints are parallel.

4. No three constraints intersect at a point.

3D rules for exactly constrained design

1. No four constraints are parallel.

2. No four constraints intersect at a point.

3. No four constraints are in the same plane.

2.5.2 DEFINING THE NESTING FORCE

Blanding describes a graphical method to find a proper position for the nesting

force. His method finds a “window”, and the nesting force can be placed in this region

without causing motion or instability in the assembly. His method can be summarized, as

follows.

 21

1. Draw constraint lines to find the instant centers between constraints.

2. Remove the constraints one at a time to find the effects on the assembly.

3. Determine the proper rotation of the block with respect to the pertinent instant

center to enable the constraint to restore contact with the assembly.

4. Determine which line segments of the constraint lines drawn allow a force to

cross it and still maintain the proper rotation for each instant center.

5. If the conditions in step 4 are met, the segment is allowed into the nesting

force window.

This method can be better understood with an example. Therefore, consider the

constrained triangle given in Fig. 2.5.

Figure 2.5 – Triangle with three constraints

The resultant nesting force must sit within a certain window in order to be

effective. To find that window, “constraint lines” must first be drawn. They are

infinitely long lines normal to the object’s surface at the point of contact. The

intersection of each of these lines is called an instant center (Fig. 2.6).

 22

IC IC

IC

Figure 2.6 – Triangle with constraint lines drawn and instant centers defined

Next, each constraint must be moved away from the triangle, one at a time, to

determine the effects on the assembly. What would need to happen for the object to

restore contact with the constraints? As an example, if the top constraint were moved as

shown in Fig. 2.7a, the triangle would need to pivot counterclockwise about the instant

center of the two remaining constraints in order to restore contact with the top constraint.

Therefore, a counterclockwise arrow is drawn around that instant center to show what

would need to happen to restore contact between the part and the constraint (Fig. 2.7b).

 23

(a) (b)

Figure 2.7 – Finding rotation on the left instant center (a) Moving the top constraint
(b) Direction of necessary rotation at the instant center to restore contact between

the constraint and the triangle

Next, the constraint on the hypotenuse is moved away from the triangle (Fig.

2.8a). In order to re-establish the contact between the constraint and the object, it will

again be necessary to rotate the triangle counterclockwise about the instant center for the

two remaining constraints (Fig. 2.8b).

(a) (b)

Figure 2.8 – Finding rotation on the top right instant center (a) Moving the
constraint on the hypotenuse (b) Direction of necessary rotation to

restore contact between the constraint and the triangle

 24

After moving the left side constraint away from the triangle, the final rotation can

be found. The object would need counterclockwise rotation about the remaining instant

center to maintain its current position (Fig. 2.9).

Figure 2.9 – Direction of all necessary rotations on each instant center

After finding the proper rotations on each instant center, each segment of each

constraint line is individually evaluated to determine if it is allowed in the nesting force

window. Certain conditions must be met for a line segment to qualify to be in the

window.

1. The line of action for the nesting force must intersect the segment, AND

2. The direction of the force must cause correct rotation about each of the instant

centers related to the segment of the constraint line that is being evaluated.

 25

If the conditions are met, the segment is part of the allowable region of the nesting

force window. If the conditions are not met, a thick, bolded line is imposed on the

drawing to show which segments the nesting force line of action cannot cross.

To continue the example presented earlier, consider the line highlighted in Fig.

2.10 below, with a force crossing the segment (only the rotations for the relevant instant

centers are shown). The force causes counterclockwise rotation about the instant center

for the top left instant center, as well as the bottom instant center. Thus, the line of action

for a nesting force would be allowed to cross this segment, and it is an acceptable region

of the nesting force window.

Figure 2.10 – Test to see if the nesting force is permitted to pass through the
highlighted line.

Now, consider the highlighted line segment in Fig. 2.11a, which has a force

passing through it. The force allows correct rotation for the lower instant center, but the

rotation is incorrect for the top instant center. Therefore, this line segment is not allowed,

 26

and the highlighted line is blackened to show that the line of action for the nesting force

cannot pass through this line segment (Fig. 2.11b).

(a) (b)

Figure 2.11 – Testing a segment in the nesting force window (a) Testing a line
segment to determine if it is in the nesting force window (b) Bolded line to

show the line segment is not allowed in the nesting force window

Each segment of each constraint line in turn can be tested. Fig. 2.12a shows the

nesting force window after all line segments have been checked. Again, the bolded lines

show where the line of action for the nesting force cannot cross. Also, a resultant nesting

force is shown on the assembly.

The nesting force window can be more easily understood if it is projected onto the

surface of the assembly. While specific details showing how to project the graphical

nesting force window onto the boundary of the assembly have never been seen in

publication, this projection is easily accomplished by placing a nesting force along each

segment of the boundary. If the nesting force passes through the unacceptable region of

 27

Fig. 2.12a, that portion of the boundary is bolded. If it does not pass through the

unacceptable region, all constraint line segments through which the line of action for the

nesting force passes must be re-tested to ensure proper rotation at the instant centers.

Figure 2.12b shows the nesting force window projected onto each surface.

 (a) (b)

Figure 2.12 – The allowable nesting force window. The bolded lines show the
segments through which the nesting force line of action cannot go (a) The

line of action of the nesting force cannot pass through the bolded region (b)
A perpendicular nesting force cannot be placed in any bolded portion of the

assembly.

Thus, the graphical method used by Blanding finds the nesting force window

based on the position of the constraints and the intersection of the constraint lines. The

nesting force itself can be placed anywhere in the acceptable region of the window.

2.6 ALTERNATE DESIGNS

With such a powerful tool in engineering, one may wonder why EC design is not

used more frequently. As the principles of EC design are not generally taught in school,

 28

engineers are not usually familiar with, or they simply do not have an appreciation for the

method. They tend to have more experience with two other modes of design: over-

constrained design and under-constrained design.

2.6.1 OVER-CONSTRAINED DESIGN

 It is not fair to say that all designs must be exactly constrained, although there are

indeed many advantages to making a design exactly constrained. For example, lower

cost, inaccurate parts can be assembled and reassembled with a very high level of

precision (meaning that the results can be consistently reproduced in the same assembly).

However, sometimes higher stability, or greater load sharing is desired. One alternative

is to over-constrain the design, at a higher cost (and often lower quality) to the

manufacturer.

An over-constrained (OC) design simply uses more constraints than the minimum

number necessary, and it is very common in design today. Two or more of the

constraints compete to hinder the same degree of freedom.

 As a very simple example, consider the block assembly in Fig. 2.13a below. The

base plate of the assembly has two rigidly-connected pegs. They fit through the two

drilled holes of the top plate.

 29

 (a) (b)

Figure 2.13 – Slotted block OC and EC design (a) Over-constrained assembly
(b) Exactly constrained assembly

The left peg constrains the assembly in the x and y-directions. Only one more constraint

is needed—something to eliminate rotation; however, the right peg not only eliminates

rotation, but it also competes to constrain the block in the translational x-direction. If the

location of either peg is manufactured with any variability in the x-direction, this block

will not assemble. A similar design that is exactly constrained is shown in Fig. 2.13b.

This new assembly could absorb variation in the x-direction.

Over-constrained assemblies often happen without the designer realizing what is

causing the assembly problems in a design. Designers have learned to tighten tolerances,

develop manufacturing methods with higher precision, expect higher accuracy from

intermediate parts, and just force something to work when they do not understand that the

design is over-constrained. Valuable resources are used in redesign, and time is lost

when things do not work correctly. In all of the redesign, very rarely does an engineer

turn to the root of the problem—the design is not properly constrained to allow for

flexibility in an assembly.

x

y

 30

In the case of over-constrained designs, the designer must determine if the

advantages of over-constraint outweigh the advantages of an EC design. Symptoms of

over-constraint include binding or loose fitting parts, built-up stresses in assemblies, and

the need for tighter tolerances.

2.6.2 UNDER-CONSTRAINED DESIGN

 An under-constrained design is a design that should not have motion in a

particular direction, but motion still occurs. There is insufficient constraint or insufficient

nesting force to inhibit the motion.

 An example of an under-constrained design can be found in a simple four bar

mechanism.

Figure 2.14 – Four bar mechanism.

Under most circumstances, a designer would want one degree of freedom in the four bar

mechanism. However, sometimes designers use the four bar for immobile designs, such

as fences or platforms. If not properly constrained, the design will fail. An exactly

constrained immobile design is shown in Fig. 2.15.

 31

Figure 2.15 – Exactly constrained design.

2.7 EXAMPLES OF EXACTLY CONSTRAINED DESIGN

Now that the background has been presented, several examples will be offered to

show just how effective EC design can be. Kelvin’s kinematic clamp will first be

revisited, followed by an example from Blanding. Finally, an industrial example will be

given to show how EC design improved a copy machine component.

2.7.1 KELVIN’S KINEMATIC CLAMP

 Lord Kelvin’s [Evans 1989] kinematic clamp example from Fig. 2.1 (shown

below as Fig. 2.16) provides a simple case in which to see the strength of EC design.

Three simple joints will provide six constraints which eliminate all six degrees of

freedom to provide a repeatable assembly.

Figure 2.16 – Kelvin’s kinematic clamp (after Evans [1989])

 32

To begin, imagine the triangular top piece with three pegs, and the circular fixed

base without any notches. If the two pieces are assembled, the design would obviously

not be immobile. Rather, three points from the triangular part would slide along the face

of the base. The assembly would be partially constrained, allowing two directions of

translation and one direction of rotation.

After adding the trihedral notch (on the left), three degrees of freedom are

eliminated (x, y, and z positions have been set) because the trihedral has three points of

contact with its mating peg. The trough shape eliminates two more degrees of freedom

(two rotations) after two points of the right-back peg make contact with it. The top piece

can now only rotate about the line formed between the trihedral notch and the trough.

That leaves one degree of freedom, and thus the third peg contacts the face of the base,

which eliminates the remaining rotation. In this example, the weight of the clamp is the

nesting force. Notice that this clamp shows high precision because it can be assembled

and reassembled with no change to the overall function of the clamp. Also, the

tolerances on any of the parts would not have much effect on the function of the

assembly. Inaccurate parts can be used with similar results.

2.7.2 BLANDING’S 2D BODY ON TWO PINS EXAMPLE

Douglass Blanding [1999] shows the example depicted in Fig. 2.17. This 2D

assembly has the body situated on two pins. The left pin provides two constraints for the

assembly, which leaves the body to rotate. The right pin provides the constraint against

rotation.

 33

Figure 2.17 – 2D body located by two pins (after Blanding [1999])

 Figure 2.18 shows an industrial example in 3D based on the same principles. It is

called the MicronWorm, and it is used in optical research. Notice at the base of the

machine that two rollers move along a shaft, while to the bottom right of the design a

roller moves along the base.

Figure 2.18 – Industrial example using the assembly presented in Fig. 2.17
(after Savoie, MIT)

2.7.3 KRIEGEL’S COPY MACHINE EXAMPLE

Kriegel [1994] used the theory of EC design to resolve over-constraint in an

office copier machine. The copier machine had two large foam rolls mounted inside the

part in question, called a baffle. The rollers inside the baffle feed paper around a turn,

 34

and they send it on to the staple hopper. The initial baffle design (Fig. 2.19) had four

mounting screws holding the part in place between the side plates of a major frame.

Unless the baffle was nearly perfect when manufactured, there was some clearance

between the baffle and the side plates. As the screws were tightened, the side plates

deflected inward, and that in turn inhibited other parts of the machine from performing

properly.

Y

XZ

Figure 2.19 – Initial baffle design (after Kriegel [1994])

In an attempt to stop the side plates from deflecting, an engineer added angle-iron

channels to be welded onto the side frames (Fig. 2.20). This step indeed stopped the

deflection of the side plates; but when the screws were tightened, the baffle arched in

such a manner that there was a gap in the foam rolls, and the paper-drive was lost.

 35

Figure 2.20 – Baffle with angle-iron channels (after Kriegel [1994])

In response, the engineer added an additional stiffening brace to the baffle (Fig.

2.21) to eliminate the possibility of the rolls losing their function. Hence, when the

screws were tightened, the ears fractured, and they tore off the baffle.

Figure 2.21 – Baffle with an additional stiffening brace (after Kriegel [1994])

 36

A designer began to focus on the source of the problem instead of just the

symptoms of the problem. To counter the latest issue, two relatively expensive fasteners

were designed into the system to be used at whichever end had the screws tightened last

(Fig. 2.22). The fastener could now be adjusted at the time of assembly to set a specific

gap for each baffle.

Figure 2.22 – Fastener for the baffle (after Kriegel [1994])

Kriegel explained that the solution to this problem was to be found in the number

of constraints controlling the baffle. Once the first two screws were tightened on one end

of the baffle, the final position of the baffle along the z-axis (see Fig. 2.19) was already

decided. Trying to tighten the screws on the other side of the baffle competed with the

already established position of the screws on the first side. In fact, the first two screws

fixed all degrees of freedom for the assembly except rotation about the line connecting

the two screws.

Thus, on the free end, a pin may be inserted through one, but not both of the

remaining ears. To ensure that the baffle would not rattle (which may result with just one

 37

pin inserted), a single straight tab through the frame allowed for a natural clamp without

applying a load along the z-axis (Fig. 2.23). As Kriegel states, “Slots in both parts,

arranged at 90o to each other, allow loose tolerances and low cost with no compromise to

positional accuracy.”

Y

XZ

ear from the baffle
with a horizontal slot

frame bent back
with a vertical slot

Figure 2.23 – Final design for the baffle (after Kriegel [1994]). The double slot
absorbs variation in the design without affecting the assembly along the z-

axis.

Thus, EC design provided Kriegel, Blanding, and Kelvin simple, inexpensive

solutions to some very complicated problems. They all showed that controlling the

constraints in a system can be beneficial and productive.

As illustrated in the examples, a designer does not always realize a design is over-

constrained (or perhaps under-constrained) until it is too late. Methods have been

 38

developed to help determine the constraint status of an assembly. For example, Adams

[1998] has developed a tool to find the constraint status of a design. This method will be

discussed in the next section.

2.8 USING SCREW THEORY FOR CONSTRAINT ANALYSIS

 It is not the aim of this thesis to redevelop the concepts behind screw theory as a

method for constraint analysis. A detailed description of the method can be understood

by reading Adams [1998]. In short, screw theory [Ball 1900] can be used to find whether

an assembly is under-constrained through an analysis in “twist” space or over-constrained

through an analysis in “wrench” space. If the assembly is not shown through screw

theory to fall into either of these cases, the design is exactly constrained.

 To find whether a design is under-constrained, the designer must develop a twist

matrix for each joint in an assembly. In the twist matrix, each row represents one degree

of freedom allowed by the joint. A reciprocal operation (which is a series of matrix

operations described in Appendix A) transforms each twist matrix into a wrench matrix.

All the wrenches are unionized (combined into the same matrix), and the reciprocal

operation is again applied to transform the matrix into a resultant twist matrix. From this

twist matrix, any under-constraint can be detected.

 To find whether a design is over-constrained, the designer must develop a twist

matrix for each joint in the assembly (these are the same twist matrices as found above

for the under-constrained analysis—they are not the resultant twist matrix). They are

initially unionized, and then the reciprocal operation is applied. The resulting wrench

 39

matrix shows the over-constraint that is present. Additional explanation can be found in

Adams [1998], Adams and Whitney [2001], Whitney et. al [1999], Phillips (1984), Roth

(1984), Waldron (1966), Konkar (1993), and Konkar and Cutkosky (1995).

 As an example of Adams’ constraint analysis method, consider the 2D assembly

in Fig. 2.24. Similar examples are outlined in several documents [Adams 1998, 2001].

The assembly has a base block with two rigidly connected pegs. A top plate has two

features machined out such that the left peg fits exactly into the left hole of the plate. The

right peg fits in the slot. The dimensions of the hole and slot are not under consideration;

however, the angle of the slot is allowed to vary from assembly to assembly. Note that

the specific details and calculations for this example can be found in Appendix A.

x

y

x

y

x

y

2.5 4.0

3.0

Figure 2.24 – Slotted block example for Screw Theory

 40

To determine if this assembly is exactly constrained, twist matrices must be

found. To do so, a transformation matrix relates each feature to the parts in the assembly.

 From these transformation matrices, a twist matrix can be found. Each twist

matrix will have a row for each possible degree of freedom allowed by the joint. For

brevity, only the twist matrices are shown here. More detail on how to find the twist

matrix can be found in Appendix A.

[]05.23100Twistleft −=








 −
=

001000

05.63100
Twist right

 A motion analysis is performed to learn if the assembly is under-constrained.

This entails applying the reciprocal operation (Appendix A) to each twist to form wrench

matrices. These wrenches are combined into the same matrix by a union, and the

reciprocal operation is applied to the unionized wrench matrix, leading to a resultant twist

matrix. For Fig. 2.24, the resultant twist matrix is empty, as shown below.

[]000000

zy x

=Twist

θθθ zyx

Thus, for the given setup, this assembly is not under-constrained. All degrees of freedom

are constrained, and there will be no unanticipated motion.

 41

 A force analysis is performed to learn if the assembly is over-constrained. This

time, the twist matrices are unionized at the beginning. Then, the reciprocal operation is

applied. The first three columns in the resulting wrench matrix show translation in the x,

y, and z directions. The last three columns show rotation in x, y, and z, respectively. For

this example, the wrench matrix shown below illustrates that this assembly is not over-

constrained. Based on the description above, there is no translation in x or y, and there is

no rotation about z. As this example is only in 2D, the over-constrained directions shown

in the wrench matrix (z-translation and x and y-rotation) do not apply.
















=

010000

001000

000100

Wrench

zyx x zy θθθ

2.9 THE DIRECT LINEARIZATION METHOD USED FOR VARIATION
ANALYSIS OF EC DESIGNS

The direct linearization method [DLM] is a tolerance analysis method for

assemblies [Chase, 1999]. The analysis shows the effects that tolerances from various

parts have on the overall assembly. Understanding how the tolerances propagate through

an assembly can help the designer choose good tolerances on dimensions for the parts.

The method applied to tolerance analysis by the DLM can be adjusted to perform a

“variation analysis” for EC design.

One of the major issues in manufacturing and assemblies is variability in

dimensions from part to part. As has been suggested earlier and in literature, variability

 42

is much less of an issue for EC design. The effects of dimensional variation on EC

assemblies versus over-constrained (OC) assemblies will be explored (Chapter 6) using

the vector loops from the DLM.

Several steps from the DLM can be used to find the effects of variation in

assemblies. They are listed here, and each is briefly described.

1. Create an assembly graph.

2. Locate the datum reference frame for each part.

3. Locate the kinematic joints and create datum paths.

4. Create vector loops.

5. Generate vector loop equations.

6. Calculate derivatives and form matrix equations.

7. Solve for assembly sensitivities.

The general method will be illustrated with the simple assembly shown in Fig. 2.25.

Figure 2.25 – Sample assembly to show variation analysis method

 43

2.9.1 CREATE AN ASSEMBLY GRAPH

The assembly graph is a diagram representing connectivity relationships in an

assembly. For the given example, the diagram looks like Fig. 2.26. The assembly graph

shows that there will be one vector loop for this example.

The number of vector loops can also be determined by using a simple equation.

Loops (L) = # joints (J) - # parts (P) + 1

Thus, for the example in Fig. 2.26, J = 3, P = 3, and L = 1.

Block

Circle Triangle

Figure 2.26 – Assembly graph

2.9.2 LOCATE THE DATUM REFERENCE FRAME FOR EACH PART

The datum reference frame (DRF) is a local coordinate system for each part. The

datum reference frames for each part in Fig. 2.25 are illustrated as black solid shapes on

Fig. 2.27.

2.9.3 LOCATE KINEMATIC JOINTS AND CREATE DATUM PATHS

The next step is to relate all the joints to the datum reference frames established in

Section 2.9.2 through vectors that form what is called a datum path. The kinematic joints

are the contact points between parts. A datum path is a chain of vectors that link a joint

 44

to all relevant datum reference frames. The chain starts at a joint and goes to all the

related datum reference frames for that joint.

Figure 2.27 shows an example of the datum paths. The arrows represent the

datum path vectors.

Figure 2.27 – Datum paths

2.9.4 CREATE VECTOR LOOPS

The vector loops are formed from the datum paths. The loops are formed by rules

established in Chase [1999].

1. Enter through a joint.

2. Follow the datum paths.

3. Follow a second datum path leading to another joint.

4. Exit to the next adjacent part in the assembly.

 45

In short, vector loops are created by linking together datum paths tip-to-tail

passing through all the joints, but not passing through any part or joint twice. The vector

loop for Fig. 2.25 is shown in Fig. 2.28.

x1

x2
u1

y1

u2

y2

r

y2 = r + height

Figure 2.28 – Vector loop for the assembly

2.9.5 GENERATE ASSEMBLY EQUATIONS FROM VECTOR LOOPS

 Three assembly equations per vector loop can be derived by summing all the

vectors in the x and y-directions and by finding the overall sum of the rotations of all

vectors in the loop. The vector loops for Fig. 2.28 are shown below. A non-linear

equation solver can be used to find the unknowns.

() () () () () ()
()180cos

270cos90cos90cos180cos90cos0cos

1

22211

u

yruxyxhx

+
++++++= θ

() () () () () ()
()180sin

270sin90sin90sin180sin90sin0sin

1

22211

u

yruxyxhy

+

++++++= θ

180901809090900 +−−++−++= θθθh

 46

2.9.6 CALCULATE DERIVATIVES AND FORM MATRIX EQUATIONS

In the case of tolerance analysis, only small changes in the components are of

interest. Finding the unknowns as stated in Section 2.9.5 is not the final goal.

Finding small changes is easily done by linearizing the vector loop equations by a

first-order Taylor series expansion. The linearized equation for hx is shown below. All

the equations can be linearized in similar fashion.

2
2

1
1

2
2

2
2

1
1

1
1

u
u

h
u

u

hh
r

r

h
y

y

h
x

x

h
y

y

h
x

x

h
h xxxxxxxx

x δδδθ
θ

δδδδδδ
∂
∂+

∂
∂+

∂
∂+

∂
∂+

∂
∂+

∂
∂+

∂
∂+

∂
∂=

 The linearized loop equations are written in matrix form. If the partial derivatives

of all known variables are placed in a matrix called [A], and the partial derivatives of the

unknown variables are placed in a matrix called [B], the vector loops are given by the

matrix equation below.

[]{ } []{ } { }0=+ UBXA δδ

2.9.7 SOLVE FOR ASSEMBLY SENSITIVITIES

 The matrix equation can be solved to find the assembly sensitivities, as shown

below.

{ } []{ }XABU δδ 1−−=

The matrix [B-1A] is the matrix of assembly sensitivities. It is a key matrix in tolerance

analysis of assemblies because it represents how the dependent variables change with

 47

small variations in the independent variables. It will be used and further explained in

Chapter 5.

2.10 CONCLUSIONS

This chapter showed the history and background of EC design to better

familiarize the reader with the long history of this method. It also described over-

constrained and under-constrained designs. Examples were presented that helped to

illustrate some of the benefits of EC design when properly used.

Rules for the placement of constraints in an EC design and a method to find the

nesting force window were presented in this chapter. Chapter 3 will take this information

and validate it through a quantitative means. Chapter 4 will continue to build upon that

foundation by presenting a generalized method to analyze EC design.

Screw theory was applied in this chapter to determine the constraint status of a

design. It will be revisited in Chapter 5 during the formulation of a method to find a

measure of “goodness” for EC designs.

Finally, the background and steps for the DLM were presented in preparation for

Chapters 5 and 6. In Chapter 5, it will be used to help establish a method to find the

“goodness” of EC designs. In Chapter 6, it will be used to help validate the claim that EC

designs are more robust than over-constrained designs.

 48

 49

CHAPTER 3 VALIDATION OF THE CURRENT RULES AND METHODS FOR

EXACTLY CONSTRAINED DESIGN USING A QUANTITATIVE
FOUNDATION

3.1 INTRODUCTION

Chapter 2 presented the fundamental concepts and current methods that exist for

generating exactly constrained (EC) designs. In addition, examples were given which

illustrated the advantages allowed by EC design.

Kriegel’s baffle example [1994] especially showed the efficiency and strength of

EC design. The final solution was more robust than previous versions, and the tolerances

did not control the overall design and function of the baffle. In addition, the threat of

binding or tearing of key parts disappeared.

However, considering the strength of the methodology, relatively few designs use

the principles of EC design. And, despite pleas to include some of the basic principles of

EC design in engineering curriculum [Kriegel, 1994], the material is largely unknown to

the engineering community. One reason for the apparent oversight may be the lack of a

solid quantitative foundation for the rules, principles, and design methods already in

practice for EC design.

 50

If this is the case, EC design need not be so unfamiliar to the engineering world.

The reason is that the mathematical premise for EC design rests in basic engineering

principles. It has been independently observed by the author and others (Hammond and

Parkinson [2003], Kamm [1993]) that EC designs can be analyzed quantitatively based

on the following principle:

Exactly constrained designs are statically determinate.

 With this definition in hand, the heuristic rules established by Blanding can be

validated based on the equations of equilibrium. A review of the basic rules governing

the application of the equations of equilibrium will be followed by several sections

validating the rules and guidelines established through years of experience for EC design.

3.2 STATICALLY DETERMINATE ASSEMBLIES

Forces acting on an assembly come in two forms: applied forces and reaction

forces. An applied force is an external force which pushes or pulls on the assembly, such

as a nesting force. A reaction force is the resulting force at any joint or constraint of the

assembly.

If an assembly is statically determinate, it means that the equations of equilibrium

can be used to find all the unknown (reaction) forces in a system. It is commonly known

that the sum of the forces must equal zero for a system in static equilibrium. If all of the

 51

forces are not pointing in the same direction, they must be broken down into their

directional components before they can be summed together.

ΣF = 0

OR

ΣFx = 0

ΣFy = 0

ΣM = 0

Because EC designs are statically determinate, the equations of equilibrium can

be used to analyze them. Later in this chapter, the equilibrium equations will be used to

validate the rules that have been established for EC assemblies.

First, however, recall from Chapter 2 that no two constraints should be co-linear.

Nevertheless, there are some situations where the equations of equilibrium require co-

linear constraints. Therefore, a brief discussion will first explore the various force

systems (two force, three force, four force, etc.) that can be analyzed using the equations

of equilibrium, and this discussion will show which kinds of force systems qualify as an

EC design.

3.2.1 TWO-FORCE MEMBERS

Recall that Newton’s laws require that the sum of the forces for a system in

equilibrium must equal zero. If only two forces act on a system, those forces must then

 52

be equal in magnitude, opposite in direction, and co-linear in placement. Otherwise, the

forces would not properly balance, and some motion would occur. Figure 3.1 shows an

example of a two-force member.

Figure 3.1 – Two-force member

 While the two-force member will not rotate as long as the forces are co-linear, the

member itself is not constrained from motion. Any applied force will cause this system

to no longer be in equilibrium. Therefore, a two-force member cannot be exactly

constrained.

3.2.2 THREE-FORCE MEMBERS

Again, for any system in equilibrium, the forces must balance and sum to zero.

Therefore, if only three forces are acting on a system, the lines of action for the forces

must intersect at a point. Otherwise, the force whose line of action does not intersect the

other two lines at the same point would cause a resultant moment about the instant center

of the other two forces. It should be noted that none of the constraints have to be co-

linear, only that all three forces must be concurrent at the same point. Figure 3.2 shows

an example of a three-force member.

 53

Figure 3.2 – Three-force member

 As in the two-force member, there is nothing actually constraining this three-force

member. It is in equilibrium as long as no outside forces displace or cause the member to

rotate. It is not an EC design.

3.2.3 FOUR FORCES IN A SYSTEM

Especially in 2D space, a four-force assembly provides more design flexibility

than the two or three force systems because the attributes (direction, magnitude, and point

of contact) of each force no longer must follow such rigid restrictions to maintain

equilibrium. Equilibrium can be maintained with many different configurations of the

forces. All attributes for each force can vary according to the needs or limitations of the

design.

If the four forces in the system are all reaction forces, the system is statically

indeterminate, and the equations of equilibrium cannot be used. If there are at most three

reaction forces, which would make the final force an applied force, the system is

statically determinate and the equations of equilibrium can be applied.

 54

An EC design can be a four-force system if there are at most three reaction forces

(constraints) and one applied force (a resultant nesting force). The three reaction forces

must be placed in such a manner as to constrain the motion in each direction only once.

The nesting force is required to keep the assembly seated.

3.2.4 FIVE OR MORE FORCES IN A SYSTEM

An assembly with five or more forces can only be statically determinate if there

are no more than three reaction forces that constrain three different degrees of freedom.

All remaining forces must be applied forces.

This condition could exist, for example, as in Fig. 3.3. In this EC design, there

are three reaction forces (one at each constraint), and one nesting force perpendicular to

the block in each necessary direction. This EC assembly is statically determinate.

Fn2

C1

C2

C3

M12
x

y

Fn1

Figure 3.3 – Statically determinate block

 55

Again, four or more reaction forces leave the assembly statically indeterminate. It

also makes the design over-constrained.

3.3 VALIDATING THE RULES FOR EXACTLY CONSTRAINED DESIGN

With this explanation of forces in a system, two main considerations for EC

design can be validated using the equations of equilibrium. First, the rules established by

Blanding [1999] will be quantitatively validated by using the equations of equilibrium.

Then, the nesting force window will be constructed using the equations of equilibrium,

and the results will be compared to the nesting force window found by the graphical

approach.

This section will validate the rules for 2D EC assemblies using simple examples

in conjunction with the equations of equilibrium. As mentioned in Chapter 2, Blanding’s

rules for 2D assemblies can be summarized in four points [Skakoon, 2000].

1. No two constraints should be co-linear.

2. No four constraints are in a single plane.

3. No three constraints are parallel.

4. No three constraints should intersect at a point.

3.3.1 NO TWO CONSTRAINTS SHOULD BE CO-LINEAR

The equations of equilibrium validate the rule that no two constraints should be

co-linear in an EC design. Remember that there are at least four forces in an EC design:

 56

three reaction forces and one or more nesting forces. In general, if any two of the three

reaction forces become co-linear, they will not be able to resist a moment, and motion

(such as “wobble”) may result. The equations of equilibrium make it easy to understand

this general result: the two reaction forces of the co-linear constraints can no longer act as

a force couple and resist a moment applied by the nesting force.

As an example, Fig. 3.4 shows a block with three edge slider constraints. The

dimensions can be found in the figure. Constraints 1 and 2 do not move during the

analysis; however, constraint 3 is allowed to slide along the top of the block in the x-

direction. Note that while the nesting forces to seat an assembly in the translational

directions are usually applied perpendicular to the surface of an assembly, for simplicity,

one resultant nesting force is here placed at a 45o angle to the side of the block to provide

the necessary seating in the x and y-directions.

Fn

C1

C2

C3

M12x

y

height = 6.667 units
width = 10 units
Fn = 1 unit

Figure 3.4 – Block with three constraints

 57

To mathematically see what happens when constraints 1 and 3 line up, a moment

is taken about M12 (which is the instant center between constraints 1 and 2, thus allowing

R1 and R2 to fall out of this stage of the analysis) to find the reaction force on constraint 3

as it moves along the top of the block. The values for R3 are plotted on a graph to see the

results.

Figure 3.5 shows the results of the moment analysis in Excel®. (Please note that

while the overall results are presented here, the detailed analysis may be found in

Appendix B.) When constraints 1 and 3 line up, the reaction force R3 (constraint 3)

necessary to keep the block immobile goes to infinity!

R3 as C3 moves along the top of the block

-6

-4

-2

0

2

4

6

0 2 4 6 8 10

x3

R
3/

F
n

Figure 3.5 – Reaction force on C3 required to keep the block immobile

As noted earlier, the co-linear reaction forces on constraints 1 and 3 cannot resist

the moment caused by the nesting force. As will be described in more detail later in this

thesis, the block becomes over-constrained in the y-direction, and under-constrained in

rotation.

 58

This simple example quantitatively demonstrates the information presented in the

first paragraph of this section. Although only one simple example has been presented,

the result is general. No two constraints should be co-linear.

It should also be noted that this example violates another rule when two constraint

lines become co-linear: no three constraint lines should intersect at a point. These two

rules are simultaneously violated because of the use of the edge slider joints to constrain

the assembly. The rule that no three constraint lines should intersect at a point will be

investigated later in this chapter.

3.3.2 NO FOUR CONSTRAINTS ARE IN A SINGLE PLANE

Figure 3.6 shows a similar block to Fig. 3.4, only now there are four constraints

instead of just three. A quick glance at the number of reaction forces shows that this

block has four unknowns. The equations of equilibrium only provide three equations for

three unknowns, and thus the block is statically indeterminate.

Fn

C1

C2

C3

M12

C4

x

y

height = 6.667 units
width = 10 units
Fn = 1 unit

Figure 3.6 – Block with four constraints

 59

A brief look at the constrained degrees of freedom can also show the over-

constraint that is present. Constraint 1 eliminates translation in the y-direction.

Constraint 2 eliminates translation in the x-direction. Adding constraint 3 now eliminates

any rotation. The nesting force ensures that contact is maintained with each constraint.

Thus, constraint 4 is simply competing with constraint 2 to eliminate translation in the x-

direction, and this block is over-constrained. Skakoon states, “Since there are only three

constraints required or possible in one plane, four would be over-constrained” [2002].

In general, if there are more unknowns than equations of equilibrium, the

assembly is statically indeterminate and over-constrained. Additional information would

be required to find all the reaction forces.

In order for this part to correctly assemble, either some type of deformation to the

block would be required for all four constraints to be touching it, or the tolerances would

have to be very tight to ensure a perfect fit. Regardless, no four constraints are allowed

in a single plane for an EC design.

3.3.3 NO THREE CONSTRAINTS ARE PARALLEL

Figures 3.7 and 3.8 show equivalent assemblies. Each assembly has three parallel

constraint lines. A simple look at the degrees of freedom shows the block is over-

constrained in the y-direction, and under-constrained in the x-direction.

 60

When trying to apply the equations of equilibrium to these assemblies, the force

equation in the x-direction disappears. It will not sum to zero if the nesting force is

applied in any way to the x-direction. Regardless, there remain three reaction forces to

be found by two equations (one equation to sum the forces in the y-direction and one

moment equation), and the assembly is again statically indeterminate.

C1

C2

M12
x

y

height = 6.667 units
width = 10 units
Fn = 1 unit

C3

Figure 3.7 – Block assembly with three parallel constraints

C1

M12
x

y

height = 6.667 units
width = 10 units
Fn = 1 unit

C3C2

Figure 3.8 – Similar block assembly with three parallel constraints

 61

Suppose another constraint is added, as in Fig. 3.9, to inhibit motion in the x-

direction. The over-constraint in the y-direction does not go away.

C1

C2

M12
x

y

C3

C4

Figure 3.9 – Adding an x-constraint to the block

3.3.4 NO THREE CONSTRAINTS SHOULD INTERSECT AT A POINT

Figure 3.10 shows a simple triangle with three constraints. Constraint 3 is

allowed to move along the right side of the part, while constraint 1, constraint 2, and the

nesting force remain fixed in the positions shown. The reaction forces are found using

the equations of equilibrium, and the baseline results for R3 are shown in Fig. 3.11.

Again, the detailed results can be found in Appendix B.

 62

C1

C2

C3

height = 6 units
base = 6 units
x12 = 3 units

y12 = 2 units

IC
12 Fn

Figure 3.10 – Triangle assembly with three constraints

R3 as C3 moves along the right side of the triangle

-10

-8

-6

-4

-2

0

2

4

6

8

10

3 3.5 4 4.5 5 5.5 6

x3

R
3
/F

n

Figure 3.11 – Reaction force on C3 required to keep the block immobile

As in the case with two co-linear constraints, when all three constraint lines

intersect at a point, the assembly cannot resist a moment caused by the nesting force.

This fact is shown in Fig. 3.11 where R3 goes to infinity when the three constraint lines

 63

intersect. The equations of equilibrium thus show that no three constraints should ever

intersect at a point for an EC design.

Although shown here through a simple example, this result is general for all 2D

EC assemblies when three constraint lines intersect at a point. In this case, the equations

of equilibrium show that the moment equation goes to zero on the left hand side (all

reaction forces go to zero because the sum of the moments about the point of

intersection—IC12—leaves no reaction forces); however, when the nesting force is

applied, the right hand side of the moment equation is no longer zero. The assembly

cannot resist the moment caused by the nesting force, and the equilibrium conditions are

not satisfied.

3.3.5 SUMMARY OF THE RULES

Table 3.1 gives a summary of the results outlined above. While each rule was

only illustrated with one simple example, these rules are general and hold for all EC

assemblies.

Table 3.1 – Summary of the results for the rules

Rule Why it will not work for EC design
No two constraints should be co-linear Moment equation will not sum to zero
No four constraints are in a single plane Statically indeterminate

No three constraints are parallel Statically indeterminate
No three constraints should intersect at a point Moment equation will not sum to zero

 64

3.4 NESTING FORCE WINDOW

One of the most important considerations in EC design relates to the placement of

the nesting force. As mentioned in Chapter 2, there is a “window” that shows the

appropriate locations where a nesting force may be applied.

This section will use the equations of equilibrium to illustrate how to find the

window in a quantitative fashion. This quantitative approach will then be compared to

the graphical approach presented in Chapter 2.

3.4.1 QUANTITATIVE APPPROACH TO FIND THE NESTING FORCE
WINDOW

The equations of equilibrium provide a straightforward, quantitative approach to

find the nesting force window. For this thesis, each constraint is represented as a reaction

force in compression on the block. The nesting force is an applied force, also in

compression. All of the forces are summed in the x and y-directions, and a moment is

taken about some point on the assembly. Solving these equations will find the reaction

forces, given a determinate system of constraints.

If any of the reaction forces are in tension (recognized as a negative value from

the equations) for a given placement of the nesting force, that point on the assembly is

not allowed in the window. Conversely, for any point along the assembly where all

reaction forces meet the compression criteria (all forces are positive), that position is a

valid point in the nesting force window.

 65

Figure 3.12 will now be used to show how the nesting force window can be found

using the equations of equilibrium. All the constraints remain fixed in the given

positions, and the nesting force is allowed to slide along each edge of the assembly. The

reaction forces are calculated for several points along the path of the nesting force in

order to determine the allowable window. Only one nesting force is applied, and it is

always perpendicular to the surface/edge of the assembly. Note than only one nesting

force is necessary because, coupled with the directions of the reaction forces, it provides

the necessary directions of force to seat the assembly.

C1

C2

C3 height = 6 units
width = 6 units

x1 = 3.0 units y1 = 0.0 units

x2 = 1.5 units y2 = 3.0 units

x3 = 3.56 units y3 = 4.875 units

x

y

IC
12

IC
13

IC
23

F
n

Figure 3.12 – Triangle assembly example used to find the nesting force window

To begin, a moment is taken about point IC12, and the appropriate equations for

R3 are developed. Note that in this example, “left” refers to when the nesting force

moves along the left edge of the assembly, “right” refers to when the nesting force moves

 66

along the right edge of the assembly, and “base” refers to when the nesting force moves

along the base edge of the assembly.

() () () ()
() () () ()123123

1212
LEFT-3 cossin

sinFcosF
R

yyxx

xxyy nnnn

−∗−−∗
−∗+−∗

=
θθ

θθ

() () () ()
() () () ()123123

1212
RIGHT-3 cossin

sinFcosF
R

yyxx

xxyy nnnn

−∗−−∗
−∗−−∗

=
θθ

θθ

()
() () () ()123123

12
BASE-3 cossin

F
R

yyxx

xxnn

−∗−−∗
−

=
θθ

To find the window for the whole system, the other two reaction forces must also

be found. Thus, forces are summed in the x-direction to find R2. And finally, the forces

are summed in the y-direction to find R1.

() ()
()θ

θθ
cos

coscosF
R 3

LEFT-2 −
−

=
Rn

() ()
()θ

θθ
cos

coscosF
R 3

RIGHT-2

Rn +
=

3BASE-2R R=

() () ()θθθ sinsinsinFR 32LEFT-1 RRn ++=

() () ()θθθ sinsinsinFR 32RIGHT-1 RRn ++=

() ()θθ sinsinFR 32BASE-1 RRn ++−=

 67

 For simplicity, Fig. 3.13 shows the results of the equations in a graphical

representation based on the detailed calculations shown in Appendix B. The bolded lines

in Fig. 3.13 show the points along the figure where the nesting force is NOT allowed

because the reaction forces as found in the equations of equilibrium do not all stay

positive. All other points on the assembly are valid positions for the nesting force

because the reaction forces show that the constraints stay in contact with the part.

C1

F
n

Figure 3.13 – Nesting force window according to the equations of equilibrium

3.4.2 COMPARISON BETWEEN GRAPHICAL AND QUANTITATIVE
APPROACHES

Recall from Chapter 2 that Blanding uses a graphical method to find the nesting

force window based on instant centers, constraint lines, proper rotations, etc. Figure 3.14

shows the window as found by the graphical method for the triangle assembly example.

 68

C1

C2

C3

 C1

C2

C3

IC
12

IC
13

IC
23

(a) (b)

C1

C2

C3

IC
12

IC
13

IC
23

C1

C2

C3

IC
12

IC
13

IC
23

(c) (d)

Figure 3.14 – Finding the nesting force window using the graphical method (a) An

assembly with three constraints (b) Finding instant centers for the constraints
(c) Removing constraint C3 to find the rotation the nesting force must exert on
the part to restore contact with the constraint. (d) The nesting force window—

neither the nesting force nor the line of action of the nesting force can pass
through the darkened triangle.

How does the window found by the equations of equilibrium compare to that

found by the graphical method? Before this question can be answered, Fig. 3.14d must

 69

be transformed to match the representation of Fig. 3.13. This transformation is simply

accomplished by applying a force to each segment of the assembly. If the force

maintains the proper rotation through all necessary instant centers, that segment of the

assembly boundary is allowed. Figure 3.15 shows a comparison of the two methods, and

it appears that the two methods match.

C1

C2

C3

F
n

 C1

F
n

 (a) (b)

Figure 3.15 – Nesting force window comparison (a) The graphical method
transformed (b) The window found with the equations of equilibrium

In order to determine just how similar the windows are to each other, the point at

which the window transitions from the acceptable to unacceptable region was found for

the graphical method and compared to the point of transition found from the equations of

equilibrium. The detailed explanation and results of this analysis can be found in

Appendix C. From the analysis, the results show that the nesting force windows are the

same, within round-off error.

 70

 Thus, the nesting force window can effectively be found using the equations

equilibrium. They in fact provide a more fundamentally basic approach to find the

window because they show the designer when and why the design will or will not work

according to the position of the nesting force.

3.5 CONCLUSIONS

 In conclusion, the equations of equilibrium become a very simple yet powerful

tool by which to analyze EC design. Both the rules established through years of

experience and the nesting force window were validated using these basic equations.

However, looking at every point along the surface of the assembly is rather

cumbersome and tedious. Chapter 4 will present a generalized method using the

equations of equilibrium to more efficiently find both the nesting force window and the

configuration(s) when assemblies violate EC design rules.

 71

CHAPTER 4 GENERALIZED METHOD TO USE THE EQUATIONS OF
EQUILIBRIUM IN EXACTLY CONSTRAINED DESIGN

4.1 INTRODUCTION

Chapter 3 provided a quantitative validation for exactly constrained (EC) design

based on the equations of equilibrium for the rules governing the placement of constraints

and the nesting force window. Various simple examples illustrated how the rules

established through heuristics and years of experience agree with the results from the

equations of equilibrium.

Chapter 3 also identified two main design considerations for EC design. First, the

location of the constraints must not violate any EC rules. Second, the nesting force can

only be placed in a certain region, denoted as the “nesting force window.” With the

equations of equilibrium, both these considerations may be analyzed and predicted.

The work in Chapter 3 applied the equations of equilibrium from point-to-point

along every surface in an assembly to find the resultant reaction forces given a certain

nesting force. Validating the rules with simple examples adds strength and integrity to

the existing methods, and it begins to lay the quantitative foundation for EC design.

 72

However, it is quite inefficient to analyze each point along the surface of an

assembly to determine whether the design meets the criteria for EC design. A stronger

foundation could be built by generalizing the method to analyze EC design. Rather than

look at each point along the surface of the assembly, a more efficient method utilizes the

equations of equilibrium to inspect or predict the behavior of a design.

Chapter 4 presents a generalized method to quantitatively analyze an EC design.

First, the equations of equilibrium are set up in a general matrix form, Cr = b, based on

the initial locations of the constraints in the design. Then, a general method will be

introduced to find the nesting force window, followed by a general approach to either

inspect or predict the behavior of an EC design.

4.2 INITIALIZING THE ANALYSIS FOR EC DESIGN

The first step to generalize the quantitative method to analyze EC design is to set

up the equations of equilibrium in matrix form, Cr=b. To initialize the set-up of the

matrix, all necessary information for each reaction and nesting force must be known or

assumed.

Each force is defined by three attributes: a magnitude, a direction, and a point of

contact. The magnitudes of the reaction forces are unknown, but they can be found by

solving the equations of equilibrium, given the nesting force(s). For the examples

presented in this chapter, the positive direction for the reaction and nesting forces are

assumed to be in compression. The point of contact for each reaction force may be

known or assumed. Initially, the point of contact for the nesting force must be assumed,

 73

but a method to find an acceptable point of contact will be presented in Section 4.3, and it

will be more fully utilized in Section 4.4.

With the initial information defined, the generalized process can begin by

formulating the equations of equilibrium and setting them up in matrix form to find the

reaction forces. Figure 4.1 introduces an example that will be used throughout the

chapter to illustrate each step in the general process.

Fn2

C1

C2

C3

M12
x

y

height = 6.667 units
width = 10.0 units
Fn1 = 1 unit

Fn2 = 1 unit

Fn1

x1 = 2.0 units y1 = 0.0 units
x2 = 0.0 units y2 = 2.5 units
x3 = 8.0 units y3 = 6.667 units
xn1 = 5.0 units yn1 = 0.0 units
xn2 = 10.0 units yn2 = 3.5 units

Figure 4.1 – Block with 3 constraints to be used for generalized method

This assembly uses two nesting forces, thus allowing them to be perpendicular to

the block, while still seating the assembly in both the x and y-directions. Remember that

the positions of the nesting forces are assumed. It would be just as reasonable to assume

that the vertical nesting force, denoted Fn1, could be along the top of the block.

 74

From the information provided in Fig. 4.1, the equations of equilibrium are set up

in matrix form, Cr = b. The moment equation is summed about the point M12, which

corresponds to the coordinate values for x1 and y2. After forming the matrix equation, it

can be solved to find the reaction forces.

+ ∑M12=0 () () () 0122212111233 =−+−+−− yyFxxFxxR nnnn

+ ∑Fx=0 022 =− nFR

+ ∑Fy=0 0131 =+− nFRR

() () ()

















−

−−−−
=

































−

−−

1

2

12221211

3

2

1123

101

010

00

n

n

nnnn

F

F

yyFxxF

R

R

Rxx

() () ()

















−

−+−−

















−

−
=
















−

1

2

21221211

1

312

3

2

1

101

010

00

n

n

nnnn

F

F

yyFxxFxx

R

R

R

 The information from Fig. 4.1 can be plugged into the matrix equation above to

find the numerical values for the reaction forces. They are shown below.















−
=

















667.0

1

333.0

3

2

1

R

R

R

 75

 While setting up the equations of equilibrium as a system of linear equations is

not new, it is a very important step in generalizing the design method. Using this basic

process to find the reaction forces, an efficient method to find the nesting force window

can be presented.

4.3 GENERALIZED METHOD TO FIND THE NESTING FORCE WINDOW

An applied nesting force can only sit within a specific range of the assembly. It

will be shown later on that the nesting force window depends upon the location of the

constraints. However, for a given placement of the constraints, the nesting force window

can be found.

Recall in Chapter 3 that the nesting force window was found by analyzing many

points along each side of the assembly. However, here, a more general approach is

presented where the nesting force window is generated based on transition points.

4.3.1 DEFINITION OF TRANSITION POINTS

To begin generalizing the method to find the nesting force window requires the

understanding of one significant term: a transition point. The transition point is any point

on an assembly at which the unacceptable portion of the nesting force window transitions

to an acceptable region of the window. Figure 4.2 shows the transition points found in

Fig. 3.13.

 76

C1

C2

C3Transition point

Transition point

Transition point

Figure 4.2 – Transition points marked on the triangle assembly from Fig. 3.13

The acceptable region of the nesting force window shows the possible locations

for the nesting force that make all reaction forces greater than zero. This definition

physically means that all constraints would be in compression on the part.

The unacceptable region of the nesting force window shows the possible

locations for the nesting force that make any one or more of the reaction forces negative.

This definition physically means that one or more of the constraints would need to be in

tension, instead of compression, for equilibrium.

The point at which the acceptable region and the unacceptable region come

together is the transition point. To further clarify, a portion of the point-by-point force

analysis from Chapter 3 is shown in Fig. 4.3. This section of the force analysis

corresponds to the transition point located along the left surface of the assembly in Fig.

 77

4.2. Notice in Fig. 4.3 that R1 and R3 turn positive when the x-coordinate of the nesting

force, xn, is about 1.45 units. However, R2 is still negative. R2 does not transition out of

the negative region until xn is at 2.4375 units. Based on the requirement defined earlier

for this thesis that all reaction forces must stay in compression to the main part, the

transition point does not happen until all reaction forces have turned positive; therefore,

the transition point in this case is at (2.4375, 4.875). Notice that the value of R2 at the

transition point is zero; therefore, the transition point itself is technically in the infeasible

region.

xn yn R3 R2 R1

1.3 2.6 -0.14959 -1.149592 -0.14959
1.4 2.8 -0.04853 -1.048529 -0.04853
1.45 2.9 0.002003 -0.997997 0.002003
1.5 3 0.052534 -0.947466 0.052534
1.6 3.2 0.153597 -0.846403 0.153597
1.7 3.4 0.25466 -0.74534 0.25466
1.8 3.6 0.355723 -0.644277 0.355723
1.9 3.8 0.456786 -0.543214 0.456786
2 4 0.557849 -0.442151 0.557849

2.1 4.2 0.658912 -0.341088 0.658912
2.2 4.4 0.759975 -0.240025 0.759975
2.3 4.6 0.861038 -0.138962 0.861038
2.4 4.8 0.962101 -0.037899 0.962101

2.4375 4.875 1 0 1
2.5 5 1.063164 0.0631644 1.063164
2.6 5.2 1.164227 0.1642274 1.164227
2.7 5.4 1.26529 0.2652905 1.26529
2.8 5.6 1.366353 0.3663535 1.366353
2.9 5.8 1.467417 0.4674165 1.467417
3 6 1.56848 0.5684795 1.56848

Reaction Force values:
R3 and R1 are along the same line

-1.5

-1

-0.5

0

0.5

1

1.5

2

1.3 1.5 1.7 1.9 2.1 2.3 2.5

xn

R
E

A
C

T
IO

N
 F

O
R

C
E

 V
A

L
U

E
S

R3 R2 R1 Transition points

Figure 4.3 – Transition points shown in a force analysis

 78

To quickly find the nesting force window, the x and y-coordinates of the

transition points on each surface must be found. It is now possible to present a simple,

yet powerful method to efficiently find the nesting force window.

4.3.2 PRESENTATION OF THE GENERALIZED METHOD

By understanding the transition points, the nesting force window is generated

through a series of simple steps.

1. Find all possible transition points from the equations of equilibrium.

2. Determine which side of the transition point is allowed and which is not.

3. If desirable, draw the window on a sketch of the assembly.

STEP 1: FIND THE TRANSITION POINTS

The first step to efficiently define the nesting force window is to find the

transition points. Recall from Fig. 4.3 that the transition point is simply where one

reaction force has gone to zero, and the other reaction forces are positive. Therefore,

rather than evaluate every point on the surface of the assembly, it is only necessary to

find if and where each reaction force goes to zero along each surface.

To find the transition point, therefore, first requires that the equations of

equilibrium be set-up in matrix form as outlined in Section 4.2. After formulating the

matrix equations for each possible surface where the nesting force may be placed, any

simple iteration routine may be used to find the transition point.

 79

For this thesis, a simple and well defined optimization routine called the

generalized reduced gradient (GRG) method (as found in Microsoft Excel’s Solver®) will

be used to find the transition points. As the equations of equilibrium represent a system

of linear equations, the GRG algorithm will easily converge to the transition points.

As with any optimization routine, the design variables and design functions

(optimization constraints and design objective) must be defined. The design variables are

the x and/or y-coordinates of the nesting force. Remember that an initial point of contact

for the nesting force is assumed in the set-up. That initial guess gives the optimization

routine somewhere to begin. In many cases, once the x-coordinate has been chosen, the

y-coordinate is set based on the geometry of the surface; therefore, an optimization

constraint may define any relationship between the x and y-coordinates of the assembly

surface. Three additional optimization constraints are defined to require the reaction

forces to stay greater than or equal to zero. The objective function is to make each

reaction force go to zero on each surface of the assembly. Thus, the optimization routine

will be run three times per surface to find all possible transition points.

It is worthy to note that the objective function is not defined in the traditional

sense. Usually, the objective function would be “maximized” or “minimized”. However,

using the capabilities of Excel®, it is possible to drive the reaction force to a specific

target value. As the transition points will happen when one reaction force is at a value of

zero, the objective function for this routine will be to drive each reaction force to a target

value of zero.

 80

The transition points will now be found for the assembly in Fig. 4.1. Because

there are two nesting forces, the nesting force window analysis will be performed in two

steps. The transition points related to the vertical nesting force will be found first. Then,

the horizontal nesting force will be added to the assembly to find its transition points.

This method is a form of superposition, and it can be shown to work the same as having

both nesting forces applied from the start and iterating through locations until the

transition points can be found. This approach will be used to maintain clarity and

simplicity.

Figure 4.4 shows the assembly as it will be analyzed to find the transition points

along the base. Applying the values shown in Fig. 4.1 generates the matrix equation to

be used for this optimization routine.

C1

C2

C3

M12

Fn1

transition points?

Find xn1
Subject to constraints:
R1>=0
R2>=0
R3>=0

When R1 = 0
Then R2 = 0
Then R3 = 0

Figure 4.4 – Finding transition points for the bottom surface

 81

bCr =

















−

−
=

































−

−

1

0

3.0

101

010

6.000

3

2

1

R

R

R

bCr 1

3

2

1

5.0

0

5.0

1

0

3.0

0067.1

010

1067.1

−=















−
=

















−

−

















−

−
=

















R

R

R

Notice that R1 is negative. The negative sign gives the indication that the initial

placement of the nesting force (xn1 = 5.0 units) is not in the nesting force window. The

initial guess happens to be in the infeasible region.

Using Excel’s Solver® to find the transition points, the first objective function

(called the target) will be R1. It must equal a value of 0.0. The design variable (changing

cell) will be xn1 (which currently sits at 5.0 units). The only optimization constraints

defined will be that each reaction force must be greater than or equal to zero (R1 ≥ 0, R2

≥ 0, R3 ≥ 0). Solving the routine finds where the nesting force resides when R1 goes to

zero.
















=

















1

0

0

3

2

1

R

R

R

 when xn1 = 8.0 units, yn1 = 0.0 units

As all reaction forces are greater than or equal to zero, there is a transition point along the

base of the block at (8.0, 0.0).

 82

Note that because the horizontal nesting force has not yet been added onto the

problem, R2 will always be zero. It is not necessary to investigate it as an objective

function at this point.

Thus, the next optimization routine for the base surface of this assembly will be to

find when R3 equals a value of 0.0. However, because of the optimization constraints (all

reaction forces must be greater than or equal to zero), the routine finds that there are no

transition points for when R3 is driven to zero along the base. Thus, only one transition

point is found along the base of the block, as shown in Fig. 4.5.

C1

C2

C3

M12

transition point

Figure 4.5 – Transition point found along the base

Next, the transition points along the top of the block will be found. Figure 4.6

shows the assembly with the problem definition for the nesting force window along the

top of the block.

 83

C1

C2

C3

M12

Fn1

transition points?

Find xn1
Subject to constraints:
R1>=0
R2>=0

R3>=0

When R1 = 0
Then R2 = 0
Then R3 = 0

Figure 4.6 – Finding the transition points for the top surface

Equations are reformulated based on the nesting force’s current position. The

initial coordinates of the nesting force on the top surface are xn1 = 5.0 units and yn1 = 6.67

units.

bCr =
















=

































−

−

1

0

3.0

101

010

6.000

3

2

1

R

R

R

bCr 1

3

2

1

5.0

0

5.0

1

0

3.0

0067.1

010

1067.1

−=

















−
=

































−

−
=

















R

R

R

The transition points can now be found. R1 will be driven to a value of zero

(objective function) as xn1 is allowed to translate along the top surface. However, as R1

 84

drives to zero, the optimization constraints cannot be satisfied. There are no transition

points found from this optimization run.

Now, the other two reaction forces must be driven to zero. Again, R2 will always

equal zero for the given configuration because there is no horizontal nesting force

assumed on the block yet. Therefore, only R3 is left to be driven to zero in order to find

any transition points.
















=

















0

0

1

3

2

1

R

R

R

 when xn1 = 2.0 units, yn1 = 6.67 units

All reaction forces are greater than or equal to zero, and this point is a transition

point for the nesting force window. Figure 4.7 shows all the transition points currently

found.

C1

C2

C3

M12

transition point

transition point

Figure 4.7 – Transition points along the top and bottom surfaces

 85

Now that the transition points for Fn1 have been found, the horizontal nesting

force, Fn2, will be added to the assembly. Notice that Fn2 cannot be placed on the left side

of the block because it would cause the block to displace in the x-direction. Figure 4.8

shows the problem definition to find any transition points associated with the right

surface of the block.

Fn2

C1

C2

C3

M12

Fn1

transition points?

Find yn2
Subject to constraints:
R1>=0

R2>=0

R3>=0

When R1 = 0
Then R2 = 0
Then R3 = 0

Figure 4.8 – Finding the transition points for the right surface

After substituting in the coordinate values as shown in Fig. 4.1 (except now Fn1 is

placed at xn1 = 8.0 and yn1 = 0.0), the reaction forces are found (see below). Notice that

they are positive, and the initial guess for Fn2 lies in the feasible region.

bCr =

















−

−
=

































−

−

1

1

7

101

010

600

3

2

1

R

R

R

 86

bCr 1

3

2

1

167.1

1

167.0

1

1

7

00167.0

010

10167.0

−=
















=

















−

−

















−

−
=

















R

R

R

The optimization routine can now find the transition points on the right surface.

First, yn2 will be allowed to change as R1 goes to zero.
















=

















1

1

0

3

2

1

R

R

R

 when xn2 = 10 units, yn2 = 2.5 units

All values are greater than or equal to zero, and thus (10, 2.5) is a transition point. Note

that R2 cannot have any other value than 1.0 because the forces must balance. Finally,

running the routine to find the value of yn2 when R3 goes to zero shows that R3 never goes

to zero. Thus, only one transition point is found. Figure 4.9 shows the assembly with all

the transition points.

C1

C2

C3

M12

transition point

transition point

transition point

Figure 4.9 – The block assembly with all transition points

 87

With all possible transition points found, the next stage in the process is to find

which side of each transition point is acceptable and which is not. That process will now

be explained.

STEP 2: DETERMINE WHICH SIDE OF THE TRANSITION
POINT IS ALLOWED AND WHICH SIDE IS NOT

To find the acceptable side of each transition point requires an examination of the

reaction forces for some other point along each surface. A good point to use would be

the initial guess from step 1 for the location of the nesting force.

For example, recall that while finding the transition point for the base of the

block, the initial nesting force position (xn1=5.0 units) led to a negative reaction force.

Therefore, the nesting force is not allowed to the left of the transition point on the base

surface. Figure 4.10 illustrates this unacceptable region as a thick, bold line. Hence, the

region to the right of the transition point is allowed in the window.

C1

C2

C3

M12

Figure 4.10 – The nesting force window on the bottom surface. The bolded portion
of the line is the unacceptable region.

 88

The same procedure can be done for the other two transition points. For the top

surface, the initial guess of xn1 = 5.0 units led to a negative reaction force. Therefore, all

points to the right of the transition point along the top surface are not allowed. When yn2

was 3.5 units, the reaction forces were all positive. Thus, everything above the transition

point on the right surface is allowed in the nesting force window.

STEP 3: IF DESIRED, DRAW THE NESTING FORCE
WINDOW ON A SKETCH OF THE ASSEMBLY

It is often easier to visualize the nesting force window if it is drawn on a sketch of

the assembly. Figure 4.11 shows the block assembly with the nesting force window

drawn. The thick, bolded lines represent the unacceptable locations for the nesting force.

It is easily seen that the nesting force window found using the general quantitative

method matches the window found by the graphical method outlined by Blanding [1999].

C1

C2

C3

M12

Figure 4.11 – The nesting force window for the block assembly. The bolded portion
is the unacceptable region of the window.

 89

Thus, the nesting force window can easily be found using the equations of

equilibrium to locate transition points. This simple procedure will now be used as part of

the generalized method to quantitatively analyze EC design.

4.4 GENERALIZED METHOD TO QUANTITATIVELY ANALYZE EC DESIGN

Chapter 3 showed how the equations of equilibrium can be used to analyze an

assembly from point-to-point. Now, all the information presented in this chapter will be

brought together to show a general, more efficient method to quantitatively analyze EC

designs.

There are two primary reasons to analyze any EC design: to inspect the design to

make sure all criteria are met for an EC assembly, or to make predictions about the

behavior of the design. First, a general method will be presented in Section 4.4.1 to

inspect an EC design. A very similar method will be presented in Section 4.4.3 that

predicts unwanted and avoidable behavior of an EC assembly for design purposes.

4.4.1 GENERAL METHOD TO INSPECT EC DESIGN

It is the purpose of this section to present a general method using the equations of

equilibrium to verify that an assembly complies with the rules for EC design. It is a

useful method when the designer simply wants to inspect or check an assembly. (Section

4.4.3 will show a general method that will predict when an assembly violates EC rules so

unwanted configurations can be avoided.) Four steps define the procedure.

 90

1. Find the reaction forces using the method outlined in Section 4.2.

2. Verify that the reaction forces meet EC design rules.

3. If necessary, determine the appropriate changes to bring the assembly into

compliance.

4. Find the nesting force window to appropriately place the nesting force.

Each step will be explained. Figure 4.1 will continue to be used to illustrate how

the method works.

STEP 1: FIND THE REACTION FORCES

Section 4.2 shows how to find the reaction forces for an EC design when the

equations of equilibrium are set up in matrix form. The matrix equation associated with

the given assembly in Fig. 4.1 yields the following reaction forces.















−
=

















667.0

1

333.0

3

2

1

R

R

R

STEP 2: VERIFY THAT THE REACTION FORCES MEET EC
DESIGN CRITERIA

The next step is to verify that the reaction forces meet EC design criteria. There

are two criteria in particular which must be monitored: (1) The magnitude(s) of the

reaction forces must not approach infinity, and (2) The signs on the reaction forces must

be positive (according to the definition presented earlier in this thesis).

 91

Recall from Chapter 3 that reaction forces go to infinity when the rules of EC

design are violated. If any of the reaction force magnitudes approach infinity (i.e. very

large in comparison to the applied force), it is an indication that the design is close to

violating the rules in Chapter 3. Therefore, in quantitative terms, this step means that the

magnitudes of the reaction forces are not approaching infinity.

 In Fig. 4.1, the reaction forces are on the same order of magnitude as the nesting

forces. They are in no way approaching infinity. Therefore, the locations chosen for the

constraints do not violate the rules for EC design.

Notice, however, that R1 is negative. Clearly, by the end of the analysis, the sign

on R1 must be positive. However, the signs on the reaction forces are determined by the

location of the nesting force(s). That discrepancy will be remedied in the fourth step

when the proper nesting force window has been found.

STEP 3: DETERMINE THE APPROPRIATE CHANGES TO
BRING THE ASSEMBLY INTO COMPLIANCE

 If any of the reaction forces are approaching infinity, it will be necessary to

change the location (point of contact) of one or more of the constraints. To determine

which one to move, choose the constraint associated with a reaction force that has a large

magnitude. The equations of equilibrium are then re-solved. Continue to move the

constraints until all magnitudes are acceptable.

 If any of the reaction forces are negative, the nesting force must be moved into the

acceptable region. To do so, the nesting force window is found. Then, the nesting force

 92

is moved into the acceptable region. The matrix equation is re-solved to ensure that the

signs are correct on each reaction force.

STEP 4: FIND THE NESTING FORCE WINDOW

 The next step is to find the nesting force window. The details to do this are found

in Section 4.3.2, and they will not be repeated here.

Once the window has been found, the nesting force can be placed within the

allowable region. The equations of equilibrium are again solved based on the new

location for the nesting force. With the nesting force in an appropriate location, all

criteria should be met for an EC design. The reaction forces should not be approaching

infinity, and they must be positive.

Returning to Fig. 4.1 (shown below as Fig. 4.12a), this final step can be

illustrated. Recall from step 2 that the magnitudes of the reaction forces were acceptable,

but the directions were not. The wrong sign on R1 shows that the nesting force is not in

the acceptable window. Also recall that the nesting force window was found earlier for

this example (Section 4.3.2), and it is shown as Fig. 4.12b.

 93

Fn2

C1

C2

C3

M12
x

y

Fn1

(a)

C1

C2

C3

M12

(a) (b)

Figure 4.12 – Placing the nesting force (a) Initial set-up for the block example, Fig.
4.1 (b) Nesting force window, Fig. 4.11

Comparing the information in Fig. 4.12, the initial assignment for the location of

Fn1 is not in the allowable nesting force window. Moving the nesting force to where xn1

rests at 9.0 units changes the values for the reaction forces.
















=

















33.1

1

33.0

3

2

1

R

R

R

 All magnitudes and directions are now appropriate. Figure 4.13 shows the

acceptable design.

 94

Fn2

C1

C2

C3

M12
x

y

Fn1

Figure 4.13 – Acceptable design for the block assembly

This generalized method inspects an assembly to determine if it meets all

quantitative criteria to be exactly constrained. It shows when changes must be made to

find an acceptable design. The major benefit of using the generalized method shown here

is that it is no longer necessary to check every point on the assembly to ensure that the

design is exactly constrained.

 In some instances, however, it may be desirable to use the equations of

equilibrium to design for the locations of the constraints (and not just inspect them). The

process shown above can be slightly modified to accommodate this desire.

However, before the method is presented to show how to predict and design an

assembly based on the equations of equilibrium, it will be important to more fully

understand when and why EC rules are violated from a mathematical perspective.

Therefore, a brief discussion about when the C matrix becomes singular will be followed

by the presentation of a generalized method to predict and design for EC assemblies.

 95

4.4.2 SINGULARITY OF THE [C] MATRIX

 When reaction forces have gone to infinity, it is because the C matrix is singular.

In turn, the singular C matrix yields a determinant of zero.

Any matrix becomes singular due to one of three reasons. When the reaction

forces go to infinity, any of these three reasons could be the contributor. In addition, at

the point where the C matrix becomes singular, the EC assembly has become over and/or

under constrained, as can be seen in the matrix. In order to learn what caused the

singular results in the C matrix, each one of these cases must be checked.

1. A row is zero

2. A column is zero

3. Linear dependence

4.4.2.1 A ROW OF ZEROS

 Each row in the C matrix represents either the sum of a moment or the sum of the

forces in a particular direction. When a row in the C matrix has gone to zero, it

mathematically shows that there is no resistance to motion in that direction, and the

assembly is under-constrained.

 Consider the example when two constraints become co-linear, as was discussed in

Section 3.3.1. The C matrix for such a design shows that the sum of the moments row

has gone to zero.

 96

















−=
=
=

=

∑
∑
∑

101

010

000

0

0

0

y

x

F

F

M

C

 There is no resistive couple in the assembly, and rotation will result because of

the applied nesting force (i.e. the right hand side has not gone to zero). In physical terms,

this will be recognized as rotation in the assembly. The C matrix shows the under-

constraint in rotation for this assembly.

4.4.2.2 A COLUMN OF ZEROS

Each column in the C matrix contains coefficients from the equations of

equilibrium relating to the individual constraints. Physically, the terms in each column

show the components of direction for each constraint with respect to the main part.

In the moment equation, the coefficients show the moment arm. In the force

equations, the coefficients give the angle of each force in each respective direction. For

example, assuming that the resultant magnitude of some force is one unit, a coefficient of

one shows that the force is parallel to the direction being summed. A coefficient of zero

shows the force has no influence in the direction being summed.

If one column has gone to zero it means that one of the constraints is no longer in

contact with the part. The assembly is again under-constrained. Whichever column has

gone to zero will tell the designer which constraint is no longer in contact with the part,

and the constraint can be modified accordingly.

 97

4.4.2.3 LINEAR DEPENDENCE

In order to ensure that the assembly is exactly constrained, the equations of

equilibrium must be a system of linearly independent equations. If there is linear

dependence in the columns or rows, the assembly is no longer exactly constrained.

Linear dependence really means that one equation or constraint is a scalar

multiple of another. Thus, when columns are linearly dependent, two or more constraints

are competing to constrain the same degree of freedom. Linear dependence shows that

the assembly is over-constrained in one direction.

Using the example when two constraints become co-linear from Section 3.3.1, the

first column and the third column are linearly dependent by a factor of -1.

















−=
=
=

=

∑
∑
∑

101

010

000

0

0

0
321

y

x

F

F

M

C

RRR

The C matrix also shows which two constraints are competing. In this example,

constraints 1 and 3 are competing to constrain the y-direction, and thus the linear

dependence shows that the assembly is over-constrained in the y-direction.

 Notice that in this example, the matrix demonstrates two reasons for the

singularity. As mentioned, this matrix is linearly dependent (showing over-constraint in

 98

the y-direction). However, it also reveals the moment equation as a row of zeros

(showing under-constraint in rotation).

4.4.3 GENERAL METHOD TO DESIGN AND MAKE PREDICTIONS
FOR EC ASSEMBLIES

Now that a more thorough explanation has been given concerning why the C

matrix may become singular, the generalized method can help design for the locations of

constraints in an EC design. This method determines the locations of the constraints

where the assembly will no longer be exactly constrained, and those locations are

avoided.

The general method to predict and design the location of the constraints is very

similar to the method presented to inspect an EC design. Many steps are the same, and

they are both based on quantitative principles instead of heuristics. However, in the

method for design or prediction, the locations (contact points) where constraints violate

EC rules are found. The steps are given below.

1. Find the reaction forces using the method outlined in Section 4.2.

2. Find the constraint coordinates, such that the C matrix becomes singular.

3. Find an acceptable location for the constraints, taking note to avoid those

locations found where the C matrix goes singular.

4. Find the nesting force window to appropriately place the nesting force.

 99

STEP 1: FIND THE REACTION FORCES

Section 4.2 defined the process to find the reaction forces using the equations of

equilibrium. Recall that the matrix equation associated with Fig. 4.1 was also presented

in step 1 of the general method to inspect EC design.















−
=

















667.0

1

333.0

3

2

1

R

R

R

STEP 2: FIND THE CONSTRAINT LOCATIONS TO AVOID

Just as the transition points can easily be found using a GRG algorithm, the

locations for the constraints that violate the rules for EC design can be found using a

similar process. This time, however, instead of setting each reaction force equal to zero,

each force will be maximized.

To find the desired point of contact using the GRG algorithm, the design variables

and functions must be defined. The design variable(s) will be the x and/or y-coordinates

for the constraint under surveillance. One optimization constraint will define the

relationship between the x and y-coordinates of the constraint, if one exists. Another

optimization constraint requires that the reaction forces must again be greater than or

equal to zero. The objective function will be to maximize the desired reaction force. In

connection with this objective, another optimization constraint could set an upper limit on

the reaction force.

 100

This process will need to be repeated for each set of matrix equations developed.

There will be one set of matrix equations per surface under consideration.

Now the unacceptable contact points for C3 will be found for Fig. 4.1. First, R1

will be set as the objective function (target cell in Microsoft Excel’s Solver®) to be

maximized. The design variable (changing cell) will be x3. After solving the routine, the

reaction forces for constraints 1 and 3 go to infinity.

















∞−

∞−
=
















1

3

2

1

R

R

R

 when x3 = 2.0 units

This result shows that when constraints 1 and 3 line up, the system is no longer

exactly constrained. It agrees with all the quantitative and heuristic examples already

presented.

The C matrix shows what has happened so that this assembly is no longer exactly

constrained. It is under-constrained in rotation, as shown by the moment equation going

to zero, and it is over-constrained in the y-direction as shown by the linearly dependent

columns for R1 and R3.

















−=
=
=

=

∑
∑
∑

101

010

000

0

0

0
321

y

x

F

F

M

C

RRR

 101

Because the forces must balance, R2 will never reach infinity. Thus, for this

example, the design will remain exactly constrained as long as constraints 1 and 3 do not

become co-linear.

STEP 3: FIND AN ACCEPTABLE LOCATION FOR THE
CONSTRAINTS

This step takes the information found in Step 2 to make an informed decision on

where to place the constraints. The points found in that step should be avoided, while

still maintaining a good balance between the nesting forces and the reaction forces. In

other words, the magnitudes for the reaction forces are checked at this stage to ensure that

they are all on the same order of magnitude. High reaction forces signal problems, as

discussed earlier. This step is similar to Steps 2 and 3 of the inspection method.

For the design in Fig. 4.1, the current placement of the constraints is satisfactory.

The magnitudes are all about the same order of magnitude. No one force is controlling

the assembly. Now, the directions must be corrected, and this is done through the

placement of the nesting force.

STEP 4: FIND THE NESTING FORCE WINDOW

The details to find the nesting force window are outlined in Section 4.3.2. This

step is also found in Step 4 of the inspection method, where the current example has also

been presented and solved. Figure 4.13 shows the final design based on the nesting force

window.

 102

Figure 4.1 is an extremely oversimplified example, which has been used to

illustrate the methods in this chapter. However, it easily shows the benefits and strengths

of using a quantitative approach to analyze EC design. Additional examples will now be

presented to show how easy these methods can be implemented.

4.4.4 MORE SIMPLE EXAMPLES

Several very simple examples can be used to help further illustrate the methods

outlined in this chapter. The first example will illustrate the method for inspection, while

the second example will use the method for prediction.

EXAMPLE 1: INSPECTION METHOD

Consider the triangle shown in Fig. 4.14. The coordinates for all the constraints

and the initial placement of the nesting force along the left surface are listed.

C2C1

C3

x

y

x1 = 2.0 units y1 = 0.0 units
x2 = 4.0 units y2 = 0.0 units
x3 = 3.6 units y3 = 4.8 units
xn = 1.5 units yn = 3.0 units
Fn = 1 unit

Fn

Figure 4.14 – Triangular assembly for the inspection method

 103

This triangle is very similar to that shown in Fig. 3.12, except now there are two

constraints along the bottom, none on the left side, and one constraint on the right side.

While a visual inspection of this assembly shows that the nesting force cannot be placed

along the right side or the base of the assembly, all the matrix equations will be analyzed

to show what happens.

The first step is to set up the equations of equilibrium in matrix form. The

equations obviously differ depending on where the nesting force rests. Therefore, three

cases will need to be examined: the nesting force will move along the left surface

(denoted “left”), it will continue its path along the right surface (denoted “right”), and it

finishes its path along the base of the assembly (denoted “base”).

()
()
()

() () () ()
()
()

left

F

F

xxFyyF

R

R

Rxx

n

n

nnnn

















−

−∗−−∗−
=

































−
−

−

θ
θ

θθ

θ
θ

cos

sin

sincos

cos00

sin11

00 1313

3

2

1132

()
()
()

() () () ()
()

right

F

F

xxFyyF

R

R

Rxx

n

n

nnnn















 −∗+−∗−
=

































−
−

−
θ

θθ

θ
θ sin

sincos

cos00

sin11

00 1313

3

2

1132

()
()
()

()

base

F

xxF

R

R

Rxx

n

nn
















−

−−
=

































−
−

−

0cos00

sin11

00 13

3

2

1132

θ
θ

 104

 Applying the initial values shown in Fig. 4.14 to the matrices given above

produces the following systems of equations. The initial point of contact along each

surface for the nesting force is also listed.

units 3.0 y units 1.5 x

866.0

5.0

116.1

866.000

5.011

020

nn

3

2

1

==

















−

−
=

































−
−

left

R

R

R

units 4.344 y units 3.828 x

1

5.0

93.2

100

5.011

020

nn

3

2

1

==
















=

































−
−

right

R

R

R

units 0.0 y units 1.5 x

0

1

2

866.000

5.011

020

nn

3

2

1

==
















−
−

=
































−
−

base

R

R

R

 The next step is to solve the equation Cr = b to find the reaction forces. The

vectors below show the values for the reaction forces.

 105

left

R

R

R
















−=

















1

558.0

56.1

3

2

1

right

R

R

R

















−

−
=

















1

308.0

308.0

3

2

1

base

R

R

R















−
=

















0

25.0

25.1

3

2

1

 Now, it is necessary to make certain that the reaction forces are not approaching

infinity. A quick glance shows that indeed this assembly continues to be exactly

constrained. In addition, all the forces are about the same order of magnitude, so no one

force is carrying a disproportionate amount of the load. Note that when the nesting force

has been placed along the base of the block, R3 falls out. Only two constraints are

carrying the load. Because of this, the nesting force cannot be placed along the base.

To fix the signs on all the reaction forces, the nesting force must be moved into

the nesting force window. All of the negative signs show that the nesting force is not in

the window.

The nesting force window is created by first finding the transition points. In

Microsoft Excel’s Solver®, R1 is chosen to go to zero, and the transition point is found.

Then, R2 is forced to zero followed by R3 forced to zero. The process is repeated for each

surface. The resulting transition points are found in Table 4.1.

 106

Table 4.1 – Transition points along each side of the assembly

Side of the
assembly

Transition point
Value of Reaction

Forces

Left
xn = 2.896 units
yn = 5.792 units
















=

















1

1

0

3

2

1

R

R

R

Left
xn = 2.0 units
yn = 4.0 units
















=

















1

0

1

3

2

1

R

R

R

Right No point exists N/A
Bottom No point exists N/A

Toggling the x-coordinate a little above and below each transition point shows

which portion of the segment is allowed in the window and which portion is not allowed.

From this information, a sketch of the nesting force window is drawn (Fig. 4.15) to get a

better view of the physical dimensions. The nesting force window is comprised of a very

small portion of the overall assembly.

C2C1

C3

Figure 4.15 – Nesting force window for the triangle assembly. The bolded lines are
the points where the nesting force is not allowed.

 107

The nesting force is moved into the allowable region at xn1 = 2.5 units, and the

reaction forces are re-calculated. The method outlined in this chapter quickly found that

Fig. 4.16 is an acceptable EC design.
















=

















1

558.0

441.0

3

2

1

R

R

R

C2C1

C3

Fn

Figure 4.16 – Acceptable EC design for the triangle assembly

This short example showed how the equations of equilibrium can inspect an

assembly to ensure it is exactly constrained. In the current set-up, unless constraints 1

and 2 were placed at the same point, it would be impossible for any two of the three

constraints to become co-linear or for all three constraint lines to intersect at a point

because of the two parallel constraints along the bottom.

 108

EXAMPLE 2: METHOD FOR PREDICTION

Now, constraint 2 will be moved over to the left side of the triangular part, as in

Fig. 3.12 (and shown in Fig. 4.17). This time, the method to predict bad configurations

will be used to analyze the part.

C1

C2

C3

x1 = 3.0 units y1 = 0.0 units

x2 = 1.5 units y2 = 3.0 units

x3 = 3.6 units y3 = 4.8 units

xn = 5.5 units yn = 1.0 units

height = 6 units
width = 6 units

F
n

Figure 4.17 – Triangular assembly for the design method

First, the matrix equations must be formulated and solved to find the reaction

forces. The actual equations can be found in Appendix C. For brevity, only the analysis

will be shown for when the nesting force is along the right surface of the assembly. The

reaction forces are given below.
















=

















996.0

996.1

996.1

3

2

1

R

R

R

 109

 The next step is to find the configuration(s) of the constraints that violate the EC

design rules of Chapter 3. This step is simply accomplished through Excel’s Solver®: x3

is the design variable; y3 = -2 * x3 + 12 (the equation of the right surface); R1 ≥ 0, R2 ≥ 0,

and R3 ≥ 0 are the optimization constraints; and the objective function is to maximize R1,

R2, and R3, respectively. In this example, they all go to infinity for the same

configuration of the constraints. Figure 4.18 shows the only configuration for this

assembly that fails to be exactly constrained. This configuration violates the rule

validated earlier that no three constraint lines should intersect at a point.

C1

C2
C3

x1 = 3.0 units y1 = 0.0 units

x2 = 1.5 units y2 = 3.0 units

x3 = 4.552 units y3 = 2.896 units

xn = 5.5 units yn = 1.0 units

F
n

Figure 4.18 – Configuration that makes the assembly no longer exactly constrained

This configuration is under-constrained in rotation, as shown in the C matrix.

















−−
−

=
=
=

=

∑
∑
∑

5.05.01

866.0866.00

000

0

0

0

y

x

F

F

M

C

 110

The under-constraint means that no resistive moment exists to overcome the moment that

will be caused by the application of the nesting force.

 Keeping this information in mind, a position now needs to be found for the

constraints. The original set-up provided a good representation for the reaction forces.

None of the forces carried a disproportional amount of the load, and they were all

positive. The positive reaction forces show that the nesting force is also in a good place

(which was known from Chapter 3). Therefore, Fig. 4.17 represents a good configuration

for this assembly.

4.5 TRADEOFF BETWEEN THE REACTION FORCES AND THE NESTING
FORCE WINDOW

 Each analysis using the generalized method is based on a given placement of the

constraints. Consider Fig. 4.19, which shows Fig. 4.1 in several different configurations.

The constraints, reaction forces, and nesting force windows are all shown. The detailed

force analysis for each design may be found in Appendix D.

 111

C1

C2

C3

C1

C2

C3

C1

C2

C3

C1

C2

C3

C1

C2

C3

Fn2

Fn1

Fn2

Fn2

Fn2

Fn1

Fn1

Fn1

No nesting force allowed anywhere
else or the block will have play

R1 = 0.4
R2 = 1.0
R3 = 1.4

R1 = 0.25
R2 = 1.0
R3 = 1.25

R1 = 0.1
R2 = 1.0
R3 = 1.1

R1 = 0.33
R2 = 1.0
R3 = 1.33

R1 = -infinity
R2 = 1.0
R3 = -infinity

Fn2

Figure 4.19 – Various configurations of the same block assembly

Notice that the nesting force window changes according to the locations of the

constraints. There is a tradeoff between the location of the constraints and the size of the

nesting force window. While the tradeoff is not always negative, in this example, the

further apart the constraints are to each other, the smaller the nesting force window. The

closer the constraints are to each other, the larger the nesting force window, but the

greater the reaction forces climb until the design becomes unstable.

 112

 Recall from Chapter 2 that one of the benefits of EC design is the allowance for

greater variation in the location of the constraints. While Fig. 4.19 again validates this

benefit, it can also be seen that there are some EC designs that may be better than others.

For example, one design may have lower reaction forces, while another design may

provide a more flexible nesting force window.

 There may be additional design considerations that help decide where the

constraints should be placed.

1. Space limitations—it often happens that due to the number of parts or due to

the locations of the parts within an assembly, space is limited.

2. Geometry—the geometry of the part often limits the possible locations for the

constraints or joints in an assembly.

3. Required function of the assembly—the constraints cannot interfere with the

function of the assembly, and this stipulation may limit the possible locations

for the constraints.

4. Reaction forces exerted on the assembly—high reaction forces should be

avoided. In addition, balancing the reaction forces will not place undue stress

on the assembly.

However, sometimes the designer may simply locate constraints based on

personal preference. In that case, it would be beneficial to have a quantitative means

available to find a factor of “goodness” for each EC design to help make the decision.

 113

The equations of equilibrium show the results of the reaction forces, but this is not the

only mathematical criterion that may be useful for EC design.

Chapter 5 will explore an additional quantitative method to find the “goodness” of

an EC design. This method could be used to determine which design might provide the

most beneficial tradeoff for given conditions.

 114

 115

CHAPTER 5 A QUANTITATIVE MEASURE OF “GOODNESS” IN AN
EXACTLY CONSTRAINED DESIGN

5.1 INTRODUCTION

 Chapter 4 introduced a generalized method using the equations of equilibrium to

quantitatively analyze exactly constrained (EC) designs. Using this generalized method,

a designer can either ensure EC design compliance in an assembly, or he can predict

configurations where an assembly would no longer qualify as exactly constrained.

Another contribution of this generalized method allows for constraint analysis

when the C matrix becomes singular. Investigating where the equations of equilibrium

fail will, at least in part, show why the design no longer meets the criteria for EC design.

Chapter 4 also illustrated a natural tradeoff involving the constraints and the

allowable range for the nesting force window. The simple example in Fig. 4.19 showed

one example of this tradeoff. Configurations with more distance between constraints 1

and 3 had lower reaction forces, but they also had smaller windows for the nesting force.

However, moving the constraints closer together in the x-direction resulted in higher

reaction forces with an expanded nesting force window. The reaction forces continued to

increase until the two constraints in question became co-linear, at which point the

 116

assembly became over-constrained in the y-direction, under-constrained in rotation, and

the window disappeared for the vertical nesting force.

The discovery of this tradeoff now leads to an investigation into the goodness of

an EC design. “Goodness” refers to the fact that while many different configurations of

an assembly may constitute an acceptable EC design, there may be some configurations

that fulfill design needs better than others.

Just as the general principles of EC design were strengthened by using the

equations of equilibrium, the goodness criteria must also be founded on quantitative,

mathematical principles. Chapter 5 investigates an approach using quantitative methods

to define the goodness in an EC design.

A brief discussion defining the qualitative goodness of an EC design is followed

by a brief review of constraint analysis using screw theory. It will show an additional

need for a method that will provide a quantitative measure of goodness. Finally, using

information from the direct linearization method (DLM), a quantitative method to

determine goodness for an EC design will be presented.

5.2 THE GOODNESS OF AN EXACTLY CONSTRAINED DESIGN

One of the major benefits of EC design is the robust ability of a design to assemble

even when variation may enter into the assembly components. This benefit will be

further illustrated in Chapter 6 when variation is introduced into assemblies. However,

 117

while the part may assemble under a wide variety of conditions, Chapter 4 illustrated that

some configurations may still have certain advantages over others.

 The idea that some configurations may pose greater benefits than others will be

referred to as the “goodness” of EC design. Goodness, as referred to here, is defined by

several aspects.

1. The EC assembly is not on the verge of becoming over-constrained or under-

constrained.

2. Variation or tolerances of the parts have little to no effect on the ability of the

design to assemble.

3. The assembly offers an acceptable trade-off between the size of the nesting

force window and the distance between constraints in order to minimize the

magnitudes of the reaction forces.

4. All possible advantages of EC design are utilized and preserved.

5. The overall assembly error is at a minimum.

The qualitative goodness criteria defined above for an EC design is not enough to

determine which designs would rank higher or better. A mathematical, quantitative

method will add strength to any decision. Thus, mathematical techniques will be

investigated in this chapter as a way to quantitatively measure the goodness of a design.

 118

5.3 USING SCREW THEORY TO QUANTITATIVELY MEASURE GOODNESS

 Recall from Chapter 2 that the screw theory approach to constraint analysis

presented by Adams [1998] pinpointed where any over and under-constraint exists in an

assembly. One of the criteria defined for goodness of an EC design was that the

assembly was not on the verge of becoming over or under-constrained. What happens in

screw theory when an assembly transitions from an EC design to a non-EC design?

 In Chapter 2, the slotted block example was used to show how screw theory

performs. When the slot was at an angle of 0o to the block, screw theory found that the

assembly was exactly constrained.

Figure 5.1 shows the final results for the slotted block as the angle of the slot

changes. The detailed calculations for Fig. 5.1 can be found in Appendix A. As the

angle of the slot changes, the assembly transitions from an EC design to one of over-

constraint in the x-direction and under-constraint in rotation. More particularly, this

analysis with screw theory shows that up to and through 89.9o, this assembly is exactly

constrained. However, when the slot is rotated to 90o, the assembly suddenly becomes

over-constrained in the x-direction and under-constrained in rotation.

 119

Angle of the slot
Motion analysis:

Under-constrained
Force Analysis:

Over-constrained
EC

x

y

x

y

x

y

2.5 4.0

3.0

0o

No: empty matrix

No

















010000

001000

000100

 Yes

45o

No: empty matrix

No

















010000

001000

000100

 Yes

70o

No: empty matrix

No

















010000

001000

000100

 Yes

89.9o

No: empty matrix

No

















010000

001000

000100

 Yes

90o

Yes: rotation about the
point (2.5, 3)

[]05.23100 −

Yes: x translation

along the axis y = 3.0

















 −

010000

001000

000100

300001

No

Figure 5.1 – Results of the Screw Theory Analysis. EC means that the design is

exactly constrained.

 120

Screw theory identifies the exact point at which the assembly becomes over and

under-constrained. However, it gives no indication that the assembly is approaching such

a state. In other words, screw theory acts like a “switch.” It is either “on” or “off.”

Either the assembly is exactly constrained, or it is not.

While this method provides a powerful way to perform constraint analysis for a

given arrangement in an assembly, screw theory does not appear to provide any

indication when the assembly is approaching an over and/or under-constrained state. It

does nothing to illustrate a tradeoff between design considerations for an EC design, and

it cannot show the effects of variation. It thus shows no difference or superiority between

EC designs with differing slot angles.

5.4 USING THE DIRECT LINEARIZATION METHOD (DLM) TO PROVIDE A
QUANTITATIVE GOODNESS CRITERIA

The direct linearization method (DLM) was developed for tolerance analysis.

While it is not traditionally applied to constraint analysis, the work of Daniel Smith

[2001] found a link between it and screw theory.

 Smith found that the 3D representation of the B matrix (a matrix of first order

partial derivatives with respect to the dependent variables) from the DLM could be used

in place of the initial twist matrices for the under-constrained (motion) analysis in screw

theory. The F matrix (a matrix of first order partial derivatives with respect to the

geometric feature variables—see Chase et. al [1996]) from the DLM could be used in

place of the initial twist matrices for the over-constrained (force) analysis. Then, the

 121

same reciprocal operations and steps were applied as in screw theory to find the overall

constraint status. Smith called his method the Variation-based Constraint Analysis of

Assemblies (VCAA).

Screw theory as applied to constraint analysis and the VCAA show when and

where a design is or is not exactly constrained; however, neither of the methods provides

a quantitative measure of goodness that signals when the design may be approaching an

over or under-constrained state. The measure for goodness must do more than state if

the assembly is exactly constrained or not. It must show when a design is close to

violating the rules from Chapter 3. It must also provide a means to compare various

configurations of the same assembly to determine which configuration may best suit the

functional needs of the assembly.

The DLM provides additional information not utilized by other methods that can

provide a quantitative measure of goodness. As will be presented in this chapter, the

determinant of the B matrix can signify when a design is approaching an unstable state.

Also, the assembly sensitivities, B-1A, provide a way to quantitatively compare similar

EC designs to find which configurations are least affected by variation.

A more in-depth discussion of the variables and the partial derivatives (which are

found when the vector loop equations are linearized) must first be discussed to

understand why the two matrices of sensitivities work well as a measure for goodness.

Then, a discussion of the B matrix and its contributions to EC design goodness will be

 122

followed by a discussion on using the assembly sensitivities to find an additional

quantitative value for goodness.

5.4.1 SIGNIFICANCE OF PARTIAL DERIVATIVES IN THE DLM

 Before proceeding to find a quantitative measure of goodness for EC design, a

more comprehensive look at the variables and the partial derivatives will be presented.

This information is explored to give a solid background to the next section, B matrix

contributions.

 Each vector in a vector loop equation is composed of two or more variables,

which describe the magnitude and direction of that vector. There are two types of

variables: the length variable describes the magnitude of a vector, while the angular

variable relates to the direction of the vector in the assembly. These variables could be

either independent or dependent in the vector loop analysis.

In the DLM, the independent variables are the known (or user-defined)

dimensions in the analysis. For example, the locations of the constraints or the height

and width of parts are independent length variables; the angles of surfaces or slots are

independent angular variables. The independent length variables will be collectively

denoted as xi, while the independent angular variables will be collectively denoted as φi.

The dependent variables are the resulting dimensions based on the values of the

independent variables. They are used in the analysis to absorb changes from the

 123

independent variables to allow the vector loop equations to close. The dependent length

variables will be denoted as ui, and the dependent angular variables will be denoted as θi.

Vectors that include dependent length variables always go from an unknown position of a

joint (where a constraint connects to the main body of the assembly) to a known position

in the assembly. These vectors can change in magnitude and direction, according to the

variation present in the assembly.

The vectors in the vector loops (Section 2.9.4) are summed together in the vector

loop equations. For example, the vector loop equation hx sums together the component of

each vector in the x-direction. The magnitude of the vector is a length variable, and the

direction involves the cosine of the angular variables. Likewise, the hy equation sums

together the components of each vector in the y-direction. The hθ equation sums together

the angles of each vector relative to one another.

While it is possible to find the values of the dependent variables using a non-

linear equation solver, the DLM is more interested in quantifying the effects of small

changes (variation) in the assembly. As mentioned in Section 2.9.6, the vector loop

equations can be linearized, based on a first order Taylor series expansion. The resulting

equation takes the form,

[]{ } []{ } { }0BA =+ UX δδ (1)

 124

A contains the partial derivatives with respect to the independent variables. B

contains the partial derivatives with respect to the dependent variables.

 Variables, vectors, and vector loop equations were presented here because they

influence the first order partial derivatives. Information from the partial derivatives with

respect to each kind of variable (length or angular) will be applied later in this chapter

when the B matrix contributions are presented. However, the specific significance of the

partial derivatives with respect to the each kind of variable will first be explained.

Taking the partial derivative with respect to a length variable will leave the

component of a unit vector in a certain direction. For example, taking the partial

derivative of the hx equation with respect to a length variable will leave the component of

a unit vector in the x-direction, as illustrated in the example below (which only shows the

dependent variables from a vector loop equation).

)90cos()180cos(... 21 θθ ++++= uuhx

)180cos(
1

θ+=
∂
∂

u

hx

)90cos(
2

θ+=
∂
∂
u

hx

To further illustrate, suppose a term representing the partial derivative of hx with

respect to some length variable in the B matrix gives a value of 0.707.

 125

y

x

h

h
B

∂
∂









=

∂∂

1707.0

1707.0

u u 21

By virtue of being in the x-direction, this value is related to the cosine of an angle.

Because the partial derivatives are all unit vectors for length variables, the angle of the

vector is 45o. The value of the partial derivative taken with respect to a length variable

will always be between 0 and 1, as it is the component of a unit vector in some direction.

 However, the partial derivative for any angular variable will become the

component of a resultant vector (not a unit vector) in the opposite direction from the

vector loop equation under analysis. For example, Fig. 5.2 shows all vectors in a vector

loop associated with the variable θ1.

Figure 5.2 – All vectors associated with θ1 in a vector loop sample

The tail of vector u1 is the position of one joint connecting a constraint to the main

block of an assembly, and the tip of u2 is another joint connecting a different constraint to

the same block. The portion of the hx equation relating to these vectors is stated below,

 126

followed by the partial derivative of the equation with respect to θ1. Figure 5.3 shows the

components of each vector labeled.

)90cos()180cos(... 1211 θθ ++++= uuhx

)90sin()180sin(1211
1

θθ
θ

+−+−=
∂
∂

uu
hx

Figure 5.3 – Components of each vector for the example in Fig. 5.2

Taking the derivative with respect to θ1 shows that the partial derivative of the x-

equation with respect to θ1 will be the component of a resulting vector (of some non-unit

magnitude) in the y-direction. Using the information in Fig. 5.3, it can be seen that the

resultant vector for this example will be in the positive direction with a magnitude equal

to the y-distance between the tail of u1 and the tip of u2 (as shown in Fig. 5.4).

 127

Figure 5.4 – Resultant vectors representing the values of
1θ∂

∂ xh
 and

1θ∂
∂ yh

 In review, the partial derivatives found in the A and B matrices have meaning that

will be used later in this chapter. The partial derivative in some direction with respect to

a length variable will be the component of a unit vector in that same direction. The

partial derivative in some direction with respect to an angular variable will be the

component of a resultant vector in the opposite direction.

 The A matrix will be momentarily set aside because it will not contribute any

additional information until the assembly sensitivities are found. However, with the

previous information presented, a deeper understanding of the B matrix contributions can

begin to be used to define a measure of goodness for EC design. These contributions will

also explain why the assembly sensitivities act as a useful indicator for the goodness

criterion.

 128

5.4.2 [B] MATRIX CONTRIBUTIONS

As previously mentioned, the actual meaning of each term in the B matrix

depends on which kind of variable the derivative was taken with respect to. If the

derivative is taken with respect to ui, the value represents the component of a unit vector

in a certain direction. Because it is only the direction of a unit vector, the values for the

derivatives will always be from 0 to 1. If, however, the derivative is for θi, the value

represents the component of a resultant vector in the opposite direction of the row in

which the term resides.

In order to find the assembly sensitivities, the B matrix must be inverted and

multiplied by A. In order to invert the B matrix, it must be square and non-singular. If

the matrix is square, the number of variables equals the number of equations.

Recall that singularity means the determinant of the matrix will go to zero. This

singularity can happen due to any of three reasons.

1. A row is zero

2. A column is zero

3. Linear dependence

Just as with the C matrix for the equations of equilibrium, a careful examination of the

three criteria for a singular B matrix in the DLM shows useful information relating to EC

design constraint status. Following an explanation of what it means to an assembly when

 129

the B matrix goes singular for each case listed, a section will present how to use the B

matrix as a quantitative measure for goodness.

5.4.2.1 A ROW OF ZEROS

Each row in the B matrix represents the partial derivatives in one direction with

respect to each dependent variable. Because the dependent variables allow the vector

loop equations to sum to zero by absorbing any change from the independent variables, a

row of zeros in the B matrix shows that any variation of the independent variables will

not allow the vector loops to close. The dependent variables can no longer absorb

changes from the independent variables in the direction corresponding to the row that

went to zero. The assembly is over-constrained in the direction corresponding to the row

that went to zero. For example, the B matrix shown below illustrates an assembly is

over-constrained in the x-direction.

y

x

h

h

∂
∂








=

41

00
B

To better understand what this means, equation (1) can be rearranged.

[]{ } []{ }UX δδ BA =− (2)

For this equation to be true, each of the vector loop equations must equal zero. If any

row in B is all zeros, the independent variables in that direction cannot have any variation

or else the vector loops will not go to zero.

 130

Consider, for example, when the first row of the following B matrix has gone to

zero.

[] [] [] []

















=















































−−−−
−−−−

−

=

δθ
δ

δφ
δ
δ
δ
δ
δ
δ
δ
δ
δ

δδ

1

4

3

2

1

4

3

2

1

41

00

5.0111110000

2100001111

U B X A-

u

r

y

y

y

y

x

x

x

x

 (3)

The partial derivative of hx with respect to all dependent variables is zero. Unless there is

absolutely no change in the independent variables, the left hand side of the equation will

not go to zero. Therefore, the whole vector loop equation itself cannot sum to zero, if

there is any variation.

The row of zeros in the B matrix shows that the assembly has become over-

constrained in the x-direction. That is to say, any variation of the independent variables

in the x-direction cannot be absorbed by the dependent variables in that direction;

therefore, the vector loop equation will not sum to zero.

 131

5.4.2.2 A COLUMN OF ZEROS

Each column in the B matrix represents the partial derivatives in each direction

with respect to one dependent variable. When the derivative is taken for ui in each of the

vector loop equations, the column in the B matrix shows the components of a unit vector

pointing in the x and y-directions. Because it only involves the components of a unit

vector in some direction, a column for a ui variable can never have all zeros. The square

root of the sum of the squares for the x and y-components in the column will always be

one.

A column can only be full of zeros for a θi variable. Recall that the partial

derivatives for θi involve both a non-unit magnitude and the components of direction; in

other words, each term in a column of the B matrix for θi contains the components of a

resultant vector in the x or y-directions. A column can only be full of zeros when two

constraints that both relate to θi are placed at the same point. There is no resultant vector

between the constraints in this case. Thus, the assembly has become under-constrained.

However, this is a trivial case because it is not likely to occur often.

5.4.2.3 LINEAR DEPENDENCE

Linear dependence will also cause the determinant of the B matrix to go to zero.

If the B matrix does have linear dependence, the vector loop equations must be inspected

to determine if they all summed to zero. If the vector loops did sum to zero, there is a

constraint problem in the design. If the vector loops did not sum to zero, the design did

not assemble. Each case is now explained in further detail.

 132

If each of the vector loop equations sum to zero, the linear dependence signals a

constraint problem in the design. The constraint problem, as seen through the B matrix,

depends on whether the system is linearly dependent due to the columns or the rows.

The system is under-constrained in rotation if the columns are linearly dependent.

The linear dependence in this case will likely occur between a column representing the

partial derivatives of a length (ui) variable with respect to each vector loop equation and a

column representing the partial derivatives of an angular (θi) variable with respect to each

vector loop equation (linear dependence between two length columns is a trivial case as it

will not occur if there is more than one vector loop or if there is any resultant rotation of

the part).

For example, the B matrix listed below (and used earlier) shows linear

dependence in the columns.

y

x

h

h

∂
∂








=

∂∂

41

00
B

 u 11 θ

In this case, the columns show that this assembly will have under-constraint in rotation

because the physical joint that provides the constraint associated with u1, which once

eliminated rotation in its nominal position, has moved in such a manner that it provides

no constraint against rotation.

 133

A physical example that would result in the B matrix given above is found in Fig.

5.5. The revolute joint provides the translational constraints and the cylinder slider

provides the rotational constraint in Fig. 5.5a. However, the slider joint has moved in

Fig. 5.5b, and there is no longer constraint against rotation. Linear dependence between

columns signals under-constraint in rotation.

(a)

(b)

Figure 5.5 – Example showing when the B matrix would have linear dependence in
the columns (a) EC design (b) Under-constrained in rotation according to the B

matrix

 134

 If rows are linearly dependent in the B matrix, the system is over-constrained in

the direction relating to the dependent rows. The linear dependence signals that two

constraints are competing to constrain the same direction, as shown by the vector loop

equations. For example, Fig. 5.6a shows an exactly constrained design that becomes

over-constrained (Fig. 5.6b) in the y-direction when the two constraints along the base

are located at the same point. The B matrix shows this over-constraint by the linear

dependence in the second and fourth rows. Linear dependence between rows in the B

matrix signals over-constraint.

12

3 3

constraints 1 and 2

(a) (b)

2

2

1

1

1321

2-010

2.5-1-00

2-010

2.5-001-

 B

 u u u

y

x

y

x

h

h

h

h

∂
∂
∂
∂



















=

∂∂∂∂ θ

Figure 5.6 – Example showing when the B matrix would have linear dependence in
the rows (a) EC design (b) Over-constrained in the y-direction

 135

If any one of the vector loop equations do not sum to zero, the linear dependence

signals that the design did not assemble. An important piece of predictive information

can be gained from the B matrix when this happens.

An interesting physical interpretation from terms in the B matrix can be used to

determine why a design will not assemble. Recall that the partial derivatives associated

with the θi variables represent the component of a resultant vector in a specified direction.

As illustrated in Section 5.4.1, the partial derivative of hx with respect to θi will be the y-

distance between the tip and tail of the string of vectors associated with that variable.

Each end of this string of vectors will be at either a DRF or a constraint. If the tip is at

one constraint and the tail is at another constraint (as was discussed in Fig. 5.2), the term

in the B matrix for the partial derivative of hx with respect to θi will be equivalent to the

y-distance between the constraints. Likewise, the partial derivative for θi relating to hy

will be the x-distance between the constraints. It should be noted that while this

information was independently discovered by the author, it has been more fully described

in Gao et. al [1998].

This physical interpretation can now be applied to discover why a design did not

assemble (as shown when at least one vector loop equation does not sum to zero). When

solving the vector loop equations with an optimization routine or an equation solver such

as Excel’s Solver®, the last iteration before the routine terminates will show the minimum

distance required between the constraints (or between the constraint and DRF, as the case

 136

may be) for the design to assemble. For example, the B matrix shown below relates to

Fig. 5.7, which shows a variation of the slotted block example from Fig. 5.1.

u1 theta

-0 0 hx determinant= -0

1 4 hy

B =

2.5 3.5

3.0

4.0

Figure 5.7 – Example assembly to show how to use the B matrix to predict why a
design did not assemble

 In order for this design to assemble, the two constraints must be 4 units apart in

the x-direction (as shown by the term in the B matrix for the partial derivative of hy with

respect to θ); however, they are only 3.5 units apart. For the design to assemble, the

constraints would have to be moved apart another 0.5 units, or the dysfunctional part

would have to be re-manufactured to fit the dimensional needs found in the analysis.

 137

5.4.2.4 USING THE [B] MATRIX AS A MEASURE OF
GOODNESS

 Using the determinant of B proves useful for EC design. When the determinant

for the B matrix goes to zero, the assembly has become over-constrained, under-

constrained, or it does not assemble. The reason the assembly does not perform as an EC

design can be inferred from the cause of the singularity in the B matrix.

One of the criteria for goodness is that the design is not approaching an over

and/or under-constrained state. A quick inspection of the determinant of the B matrix is

one measurement of goodness because information from the B matrix can detect stability

of the assembly. When the matrix is singular, the determinant is zero. As the assembly

approaches a state of over and/or under-constraint, the determinant gets smaller. Very

small values for the determinant show that the design is approaching an undesired state.

The next task is to define “small values of the determinant.” Obviously the

determinant depends upon the values found in the B matrix. Recall that all partial

derivatives with respect to length variables have values between zero and one. However,

the angular variables have partial derivative values that could be of any magnitude,

depending on the dimensions of parts and locations of joints in the assembly. Therefore,

the determinant could have many orders of magnitude, or it could have very few. A

“small value”, therefore, ranges in orders of magnitude according to the dimensions of

the assembly.

 138

 A general guideline can be followed to determine what a small value is for a

given design. If the highest dimension involved in any vector loop is a value between

one and ten, the designer can begin to be wary when the determinant is below an absolute

value of one. If the highest dimension involved in any vector loop is between 0.1 and 1,

the absolute value of the determinant should not go below 0.1. If the highest dimension

in the assembly is on the order of 10 (such as 21), the determinant should not go below

10. The same general pattern can be applied to any given order of magnitude. This

guideline shows where the assembly is beginning to approach an unstable state. It has

not yet reached the over and/or under-constrained state, but the determinant warns that

the assembly is approaching that status. The constraints should be altered to avoid a

determinant that approaches zero, if possible.

With a square and non-singular B matrix, the assembly is exactly constrained. In

that case, the sensitivities can also be used to quantify the goodness of similar designs.

5.4.3 USING ASSEMBLY SENSITIVITIES TO QUANTIFY GOODNESS

Now the discussion will return to the DLM procedure to find the assembly

sensitivities. Once the A and B matrices have been found, the equation can be solved to

find the sensitivities of the dependent variables with respect to the independent variables.

{ } []{ }XU δδ AB-1−= (3)

The matrix B-1A is the matrix of assembly sensitivities. They show what effect small

changes of the independent variables will have on all the dependent variables in the

assembly.

 139

The effects of change are very important in analyzing an EC design because one

of the benefits to EC design is that variation in parts or dimensions has little effect on the

overall function of the assembly. Thus, another quantitative measurement of goodness

for an EC design can be found using the assembly sensitivities.

The sensitivities show how the dependent variables will change with any change

from the independent variables. For example, a sensitivity of one shows that changing

the independent variable by some amount will change the dependent variable by the same

amount. A sensitivity of two will force the dependent variables to change twice as much

as the independent variables were changed.

The sensitivity matrix can be evaluated to ensure variation will not have a great

effect on the assembly. The sensitivities should stay low in magnitude, as it would not be

good to have the changes in dependent variables magnified when the independent

variables are changed. Any sensitivity above two should be avoided, although doubling

the changes in dependent variables compared to independent variables is still high.

If there is a high sensitivity somewhere in the matrix, the designer should avoid

any variation related to that variable, or the design may not assemble. An alternative

solution would be to change the locations of the constraints to lower the sensitivities.

Note that when the determinant of the B matrix is zero, the sensitivities on the critical

variables (the variables that cannot change because of any over-constraint) will go to

infinity.

 140

The sensitivities can also be compared between configurations for the same

assembly to determine which designs may show a better measure for goodness.

Comparing the assembly sensitivities among various configurations will give the designer

a clearer idea for which designs will absorb variation better.

In addition to minimizing the effects of variation on an assembly, another criteria

defined earlier for goodness includes a good tradeoff between the locations of the

constraints for good reaction forces, and the size of the nesting force window. The

assembly sensitivities can provide a quantitative way to show the effects of changing

constraint locations. The sensitivities will change as the constraint locations change.

Better sensitivities will lead to more robust designs. While the DLM as presented in this

thesis does not bring the actual nesting force window into the analysis, the assembly

sensitivities for various configurations of an assembly can be compared based on the

constraint placements. The configurations that yield the best goodness values can be

analyzed using the equations of equilibrium to find if the nesting force window is

acceptable. This comparison is easily done in a spreadsheet or similar tool.

Using sensitivities is not new to engineering design. For example, Wittwer

[2002] uses sensitivities from both the DLM and the force equations for micro-compliant

mechanisms. However, using the sensitivities to derive a measure of goodness for EC

design is unique.

 141

5.4.4 USING THE GOODNESS VALUES FOUND IN THE DLM

With all the information from this chapter in mind, a method can now be

presented using the DLM to find a measure of goodness. The steps themselves are no

different than performing the DLM on an assembly; however, the information within the

DLM at various stages can now be used to form a mathematical or quantitative measure

of goodness.

1. Find the A and B matrices as outlined by the DLM.

2. Examine the B matrix.

3. Find the assembly sensitivities, [B-1A].

4. Evaluate or compare the assembly sensitivities between configurations.

STEP 1: FIND THE [A] AND [B] MATRICES

Recall from the discussion in Chapter 2 that the DLM begins by creating vector

loops and formulating vector loop equations. The three vector loop equations (hx, hy, hθ)

allow for up to three unknown variables per loop.

It should be noted that in many instances the hθ equation either falls out

completely or it solves in terms of a user-defined value, allowing a substitution to

eliminate one angular variable. In such circumstances, only two unknown dimensions

can be found through the vector loop equations.

 142

Regardless, solving the vector loop equations (which ordinarily requires a non-

linear equation solver) finds the values for the unknown dimensions. While the DLM is

more interested in small changes, it is necessary to find the unknown variables, as the

values must be used to numerically evaluate the partial derivatives.

The next step in the method is to linearize the equations by taking partial

derivatives of the vector loop equations. The A and B matrices are formulated after

taking the partial derivatives of each equation with respect to each dependent and

independent variable.

STEP 2: INSPECT THE [B] MATRIX

At this stage, the B matrix must be inspected to ensure that it is both square and

non-singular. It must meet these stipulations in order to get useful information out of the

assembly sensitivities. Section 5.4.2 can be referenced to determine how the assembly

will behave for a non-singular matrix.

If a design assembles, the value of the determinant for the B matrix is assigned to

the assembly as a measure of goodness. The further away from zero the absolute value

for the determinant is, the better the design. Values approaching zero (as defined in

Section 5.4.2.4) should be avoided, if possible.

 143

If a design does not assemble, the information in the B matrix can be used to

make the appropriate changes. Then, the determinant can be evaluated once more to

establish a specific measurement for goodness.

Thus, when inspecting the B matrix for an EC design, not only will the

determinant be used as a measure of goodness, but the B matrix will also be used to

predict what changes must happen in an assembly to fix a design that did not assemble.

These two benefits alone provide a very powerful argument for using the DLM to analyze

EC designs.

 STEP 3: FIND THE ASSEMBLY SENSITIVITIES

The B-1A matrix contains the assembly sensitivities. These sensitivities show

what effect changing one independent variable will have on each of the dependent

variables.

STEP 4: EVALUATE OR COMPARE ASSEMBLY
SENSITIVITIES BETWEEN CONFIGURATIONS

Recall from an earlier discussion that part of the definition for goodness of an EC

design is that variation in the parts has little to no effect on the function of the assembly.

Assembly sensitivities show what effect small changes will have on the assembly. They

can also show which constraints and variables have the greatest influence on the

assembly. Assembly sensitivities above two should be avoided, if possible.

 144

When comparing the assembly sensitivities between configurations of a design,

the assemblies with lower sensitivities are better. The lower sensitivities show an ability

of the design to absorb variation that may enter from part to part. Thus, using the

assembly sensitivities also provides a quantitative measure for goodness of EC design.

5.4.5 A RETURN TO THE SLOTTED BLOCK EXAMPLE

The simple slotted block example shown earlier in Fig. 5.1 can be used to

illustrate the information presented in this chapter. Figure 5.8 shows the slotted block

with the vector loop used in the DLM. The vector loop equations are expressed after the

figure, and the A and B matrices are computed.

x1

x2
x3

x4

y1
y2

y3 y4

r r

u1

x1 = 2.5 units
x2 = 4.0 units
x3 = 2.0 units
x4 = 6.5 units
y1 = 3.0 units
y2 = 2.0 units
y3 = 2.0 units
y4 = 3.0 units
r = 0.5 units
angle of slot = 0

Figure 5.8 – DLM for the slotted block example

 145

() () () () () ()
() () () () () 0180cos270cos90coscos90cos

cos180cos270cos270cos90cos0cosh

4413

23211x

=++++++++
+++++++++=

xyruy

xxyryx

φθφθθ
θθθθ

() () () () () ()
() () () () () 0180sin270sin90sinsin90sin

sin180sin270sin270sin90sin0sinh

4413

23211y

=++++++++

+++++++++=

xyruy

xxyryx

φθφθθ
θθθθ

0180901809090180900180900h =−−−−++−+−−++++= φθφθθ

x1 x2 x3 x4 y1 y2 y3 y4 r phi

1 1 -1 -1 0 -0 0 -0 -0 -0.5 hx

0 -0 0 0 1 -1 1 -1 0 2 hy

A =

u1 theta

1 0 hx determinant= 4

-0 4 hy

B =

The determinant of the B matrix is four, which is greater than zero. There appear

to be no signs that the assembly is on the verge of becoming over-constrained. The

assembly is exactly constrained at 0o.

The overall sensitivities are very low (as shown below), no more than a one to one

ratio of change between the independent and dependent variables. Variation in the

dimensions can be absorbed. This set-up for the assembly will be quite robust, and it will

stay exactly constrained.

x1 x2 x3 x4 y1 y2 y3 y4 r phi

-1 -1 1 1 0 0 0 -0 0 0.5 u1

-0 0 -0 0 -0 0.25 -0.3 0.3 0 -1 theta

Sensitivities =
-(B-1A)

 146

Now, the slot will be rotated to 45o (Fig. 5.9), with the rest of the assembly

remaining at the same nominal dimensions as previously used. The same vector loop

equations apply, only the φ has changed from 0o to 45o.

x1

x2
x3

x4

y1
y2

y3

y4

r r

u1

Figure 5.9 – Slotted block with the slot at 45o

u1 theta

0.7 0 hx 2.8

0.7 4 hy

B = determinant=

x1 x2 x3 x4 y1 y2 y3 y4 r phi

-1.4 -1.4 1.4 1.41 0 0 0 -0 1 2.5 u1

0.2 0.25 -0.3 -0.2 -0 0.25 -0.3 0.3 -0.1 -1 theta

Sensitivities =
-(B-1A)

Again, for the given dimensions and configuration, the assembly stays exactly

constrained. The determinant is still greater than zero, although it is closer to zero than

the slot at 0o. The sensitivities are also higher than when the slot is at 0o. The effect of

change on the design will be greater in this set-up than in Fig 5.8, but the design will still

assemble.

 147

Figure 5.10 now shows the block at 89o. Screw theory indicates that this

assembly is exactly constrained, but it gives no indication or warning of how close the

assembly is to becoming over and under-constrained.

x1

x2
x3

x4

y1
y2

y3

y4

r r

u1

Figure 5.10 – Slotted block with the slot at 89o

u1 theta

0.017 0 hx determinant= 0.07

1 4 hy

B =

x1 x2 x3 x4 y1 y2 y3 y4 r phi

-57.3 -57.3 57.299 57.299 9E-11 0 0 -0 57.29 115.08 u1

14.32 14.322 -14.32 -14.322 -0.25 0.25 -0.3 0.25 -14.075 -28.65 theta

Sensitivities =
-(B-1A)

The determinant of this B matrix is 0.07, which is less than one. The simple

indicator of the determinant shows that while this system is indeed exactly constrained, it

is dangerously close to becoming over and/or under-constrained. If there is much

variation in the right peg, the block will not properly assemble unless there is some

deformation involved.

 148

The sensitivities are also very high. In some instances, the dependent variables

would have to change 57 times as much as the independent variables changed. The

sensitivities quickly indicate that the design cannot absorb variation from most of the

variables.

The sensitivities can be compared between configurations of this design. Based

on the effects of variation, the 0o or 45o slotted block assemblies would be chosen over

the 89o assembly because the goodness shown by the assembly sensitivities of the other

two designs are better. All three designs are exactly constrained, but the 89o design is on

the verge of not being exactly constrained.

Figure 5.11 shows the same assembly. However, this time the slot is at 90o.

x1

x2
x3

x4

y1
y2

y3

y4

r r

u1

Figure 5.11 – Slotted block with slot at 90o

 149

u1 theta

0 0 hx -0

1 4 hy

B = determinant=

x1 x2 x3 x4 y1 y2 y3 y4 r phi

5E+15 5E+15 -5E+15 -5E+15 -7831 -0.7 -1 7830 -5E+15 -1E+16 u1

-1E+15 -1E+15 1E+15 1E+15 1957 0.43 0 -1957 1E+15 2E+15 theta

Sensitivities =
-(B-1A)

The determinant of the B matrix is zero. Inspecting the matrix can show the

reason why: the x-equation in the B matrix has gone to zero, and over-constraint in the x-

direction has resulted. Also, there is linear dependence between u1 and θ, which shows

under-constraint in rotation.

The sensitivities have nearly all exploded. This assembly cannot absorb any

changes in the variables, except for y2 or y3, and still assemble.

The results from screw theory concur with these findings. Also, a visual

inspection indeed shows that the constraint lines of action do line up in the x-direction.

5.5 THE [B] MATRIX FROM THE DLM AND THE [C] MATRIX FROM THE
EQUATIONS OF EQUILIBRIUM

 Recall that screw theory begins in twist space. Reciprocal operations are

performed to take the twists into wrench space (the force domain), and then the

operations are applied again to bring the analysis back into twist space (the motion

domain) to find possible motion in the assembly. Likewise, to obtain results from the

constraint analysis, the reciprocal operations are applied to the unionized twists in order

to enter into the wrench space. From this information, the constraint status is found. In

 150

short, the motion and force domains are reciprocal to each other through the “reciprocal

operation” defined for screw theory.

 Section 4.4.2 Step 2 showed that the C matrix in the force analysis goes singular

when an assembly, which was exactly constrained given constraints at some distance

apart, became over and under-constrained when two of the constraints became co-linear.

In the force analysis, the moment equation (first row) went to zero, thus showing that the

assembly became under-constrained in rotation.

 The DLM can also be applied to this example, shown in Fig. 5.12. The vector

loop equations and B matrix follow the figure.

x1

y1

u1

u2

height

u3

x3

y3

y2

x2

Figure 5.12 – Exactly constrained block with three constraints

 151

h1 = solid line h2 = dashed line

() () () ()
() () 0270cos180cos

90cos180cos90cos0cosh

22

2111x1

=++
+++++=

yx

uuyx θθ

() () () ()
() () 0270sin180sin

90sin180sin90sin0sinh

22

2111y1

=++

+++++=

yx

uuyx θθ

09090909090900h 1 =++−+−+++= φθθ

() () () () ()
() () 0270cos180cos

cos90cos180cos90cos0cosh

33

3111x2

=++
++++++=

yx

uheightuyx θθθ

() () () () ()
() () 0270sin180sin

sin90sin180sin90sin0sinh

33

3111y2

=++

++++++=

yx

uheightuyx θθθ

09090180909090900h 2 =++−+−−+++= φθθ

u1 u2 u3 theta

-1 0 0 -2.5 hx1

0 1 0 -7.64 hy1 determinant= 0

-1 0 1 -6.67 hx2

0 0 -0 0 hy2

B=

Notice the last row of the B matrix. It shows that the assembly is over-

constrained in the y-direction for the second vector loop (the dashed vector loop). That

loop shows that the over-constraint happens between constraints 1 and 3. Upon visual

inspection and in agreement with the C matrix from the equations of equilibrium, at the

point when the two constraints line up, it is indeed the case that the assembly has become

over-constrained in the y-direction and under-constrained in rotation.

The B matrix from the DLM and the C matrix from the equations of equilibrium

simply show two sides to the same analysis. They appear to be reciprocal to each other.

 152

Appendix G gives a table showing the apparent relationship for Fig. 5.12. Thus, through

the equations of equilibrium and the DLM, the status of the assembly (exactly

constrained, over-constrained, or under-constrained) can be found.

5.6 CONCLUSIONS

This chapter showed how to use the DLM to find two measures of goodness for

an EC design. The determinant of the B matrix can help the designer understand when an

EC design is approaching an unstable condition. The rows and columns in the B matrix

can also be used for constraint analysis. The assembly sensitivities can be used to

quantify the effects of variation on an assembly. These values for goodness can help a

designer make a decision on appropriate configurations for an assembly.

However, as will be shown in Chapter 6, the DLM also provides additional

understanding for EC design, especially as it relates to variation in positioning of the

constraints. Chapter 6 will use the DLM to show any effects of variation, and it will

illustrate the robustness of an EC design vs. an over-constrained design.

 153

CHAPTER 6 USING EXACTLY CONSTRAINED DESIGN AS A ROBUST
DESIGN METHOD

6.1 INTRODUCTION

Each of the previous chapters discussed one tool that strengthens the quantitative

foundation for exactly constrained (EC) design. Chapter 3 validated the heuristic rules of

EC design using the equations of equilibrium as a foundation. Chapter 4 developed a

generalized method to use the equations of equilibrium to inspect and/or predict the

effects of different configurations for an EC assembly. Chapter 5 introduced the direct

linearization method (DLM) as a means to determine a measurement of goodness for

varying arrangements of the same design, while also providing warning signals when the

assembly is approaching an under or over-constrained status.

Each chapter thus demonstrates a quantitative evaluation for EC design, and each

method adds insight for when certain configurations approach or have become over

and/or under-constrained. Avoiding the configurations that could lead to over or under-

constrained assemblies preserves the advantages described in Chapters 1 and 2 for EC

design.

The ability of an EC design to assemble under a wide variety of conditions is one

advantage that has been referenced over and over again in this thesis. However, the mere

 154

suggestion that such an advantage exists does not substantiate the claim. Chapter 6 now

quantitatively explores the robust nature of EC design in greater detail.

This chapter begins with a brief description of the method developed to show

robustness. That explanation is followed by examples that show the robust nature of EC

design vs. similarly over-constrained (OC) designs.

6.2 MONTE CARLO SIMULATION TO SHOW THE ROBUST NATURE OF EC
DESIGN

As with all other methods presented previously in this thesis, the robust nature of

EC design must be shown through a quantitative means. This section will show how a

Monte Carlo simulation provides a quantitative method to effectively illustrate the robust

nature of EC design.

First, it must be understood that robust designs will assemble under a wide variety

of conditions, although there may still be error. They do this by absorbing the variation

allowed by the dimensional tolerances. As variation inevitably arises in real world

assembling processes, it must be included in any analysis.

A Monte Carlo simulation will be used to show the effects of variation on

assemblies. Each run of the Monte Carlo simulation will vary the position of specific

constraints to determine the effects of that variation. Following the variation, two

questions will be answered.

 155

1. Will the design assemble?

2. If it does assemble, what is the overall error?

6.2.1 WILL THE DESIGN ASSEMBLE?

The vector loop equations will be used in the Monte Carlo simulation to

determine whether the design assembles. Recall that vector loop equations must sum to

zero; and if they do, it can be stated that the vector loop equations “close.” (Physically, if

something assembles, it means that all parts make contact with each other.) If any

equation does not close, the design fails to assemble.

The simulation determines if the loops close by using a Newton-Raphson (NR)

routine. If the NR routine converges, the design assembles. The NR is considered to

have converged if the residuals for the loops fall below a value of 0.000001 in less than

15 iterations (Examples of the actual code can be found in Appendix E). Otherwise, the

NR routine fails, and the design does not assemble.

A design will be considered robust if it consistently assembles, even after

variation is introduced. Designs that assemble even when subjected to variation are more

robust than those designs that do not assemble when variation is present.

6.2.2 WHAT IS THE OVERALL ERROR?

As variation enters into the components of an assembly, the possibility of error

associated with the position arises. It is assumed that in some cases, the assembled

 156

position of the design is important. Therefore, the error found in the Monte Carlo

simulation will reflect the error in the position of the assembly.

When all of the parts in an assembly are at their nominal positions, the error in the

assembly is zero. As positions or dimensions change, error may increase in the overall

assembly. Therefore, if the Monte Carlo finds that the design assembles, the possible

error in the assembly is found.

A root-sum-squared method is used to find the error. For example, consider Fig.

6.1 below. The error in this figure is found by subtracting the resulting position of the

left bottom corner of the assembly (B) from the nominal position of the left corner (A).

Likewise, the resulting position of the right bottom corner (D) will be subtracted from the

nominal position of the right corner (C). Each term is squared, and all terms are then

added together. The square root is taken to find the overall error for each assembly.

Appendix E includes the error calculations in the C program for each example presented

in this chapter.

 157

A
D

C
B

() () () ()2222
DCDCBABA yyxxyyxxerror −+−+−+−=

Figure 6.1 – Example calculation for the error of an assembly

6.3 EXAMPLES

The Monte Carlo simulation will be used to simulate the effects of variation on

assemblies. It will show how robust an EC design can be compared to a similar over-

constrained design. During the course of each simulation, two main details are recorded:

the number of runs that assemble and the overall average error for the assembly.

Several examples will now be presented to show the effects of variability on EC

and OC designs. The first example will show the effects of variation on the block

assembly used in Chapters 3, 4, and 5. The slotted block example, from Chapters 2 and

5, follows thereafter.

6.3.1 EC BLOCK WITH THREE CONSTRAINTS

 Figure 6.2 shows the familiar block assembly used in previous chapters. For this

example, the Monte Carlo simulation varies the positions of all three constraints in the x

and y-directions. The block is allowed to rotate in order to restore contact with the three

 158

constraints. The nominal dimensions for each constraint are shown alongside the

graphic.

C1

C2

C3

height = 6.667 units
width = 10.0 units

x1 = 2.0 units y1 = 0.0 units
x2 = 0.0 units y2 = 3.35 units
x3 = 8.0 units y3 = 6.667 units

The standard deviation for all dimensions
being changed in the Monte Carlo

simulation is 0.2

Figure 6.2 – Block assembly with three constraints

Figure 6.3 shows an example for one run of the Monte Carlo simulation. All the

dimensional changes are noted in the figure. Note that the block has rotated in order to

maintain contact with the constraints.

C3

C2

C1

x1 = 2.40 units y1 = -0.08 units
x2 = -0.05 units y2 = 3.10 units
x3 = 7.50 units y3 = 7.00 units

x1 = 0.40 units y1 = -0.08 units

x2 = -0.05 units y2 = -0.25 units
x3 = -0.50 units y3 = 0.23 units

Figure 6.3 – Block assembly with constraints at varying positions from the nominal

 159

Taking into account the variation in Fig. 6.3, the block still assembles with an

error of 0.64 units. The overall angle of the block is now 4.41o. Even with the

introduction of variability, the design assembles, albeit with some error.

 After simulating 100,000 designs based on the information in Fig. 6.2, the results

show that the EC block assembles 100% of the time with an average error of 0.46 units.

The C code and Excel® spreadsheet with the DLM and error calculations used to find all

the results can be found in Appendix E.

 Recall from Chapter 5 that as the constraints are moved around, the goodness of

the design changes. The goodness of an EC design can get better or worse depending on

how the constraints are placed. One facet involved in the definition of goodness was that

the error should be kept to a minimum. Table 6.1 shows the % assembled and error

results of several configurations (different starting points) for this assembly. It also

shows the goodness values. Recall that designs with higher absolute values of goodness

were better EC designs.

 160

Table 6.1 – Block assembly with different starting points for the constraints

 Fig 6.2

Height 6.67 units 6.67 units 6.67 units 6.67 units
length 10 units 10 units 10 units 10 units
x1, y1 2.0, 0.0 units 1.0, 0.0 units 8.0, 0.0 9.0, 0.0
x2, y2 0.0, 3.35 units 0.0, 3.35 units 0.0, 2.5 0.0, 2.5
x3, y3 8.0, 6.67 units 9.0, 6.67 units 2.0, 6.67 5.0, 6.67

Standard
deviation for
all variables

0.2 0.2 0.2 0.2

% assembled 100 100 100 100

Average
error

0.46 units 0.41 units 0.46 units 0.61 units

Goodness
(B matrix

determinant)
-6 -8 6 4

From Table 6.1, the same trends for goodness exist as had been found in Chapter

5. The further apart the constraints are from each other, the better the error. As the

constraints get closer together, the error increases. However, as expected, all

configurations assembled for these EC designs.

6.3.2 NON-EC BLOCK WITH THREE CONSTRAINTS

Now, attention will turn to when the assembly from Fig. 6.2 is no longer exactly

constrained. This happens when constraints 1 and 3 line up. Several previous chapters

explained why Fig. 6.4 does not qualify as an EC assembly. From a force perspective,

there is no constraint in place that can overcome the resultant moment that would occur

when the nesting force is applied, and constraints 1 and 3 are competing to constrain the

 161

y-direction. That leaves the block with play and looseness if everything is not perfectly

assembled. From a DLM perspective, the vector loops may not close if any of the

independent variables in the y-direction change.

C1

C2

C3

height = 6.667 units
width = 10.0 units

x1 = 8.0 units y1 = 0.0 units
x2 = 0.0 units y2 = 3.35 units
x3 = 8.0 units y3 = 6.667 units

The standard deviation for all dimensions
being changed in the Monte Carlo

simulation is 0.2

Figure 6.4 – Over/Under-constrained block assembly with three constraints

100,000 runs of the Monte Carlo simulation show the effects of variation on this

non-EC design. It reveals that only 50% of the runs assembled, and they had an average

error of 3.02 units! The error is significantly higher due to the negative effects of

variation—this block must rotate significantly for even small variations in the y-direction

on constraints 1 and 3 just to maintain contact with all the parts. Over-constraining the

design in this manner significantly reduced the ability of the block to assemble, and it

significantly increased the error. It is clearly not as robust as the EC design.

6.3.3 OC BLOCK WITH FOUR CONSTRAINTS

Now, another constraint will be added along the bottom of the block (Fig. 6.5).

Note from discussions in earlier chapters that this assembly is over-constrained in several

 162

ways: there are four constraints, the two constraints to the right of the block (constraints

3 and 4) are co-linear, and constraints 2, 3, and 4 intersect at the same point.

2

1 4

3

Figure 6.5 – Block assembly with four constraints

The fourth constraint adds new complexity to the analysis of this example. Two

conditions must be tested to determine if the block assembles: the vector loop equations

must close, and the fourth constraint must not interfere with the block.

To learn if the vector loops close requires a closer look at the behavior of this

assembly. When variability enters into the assembly, only three of the four constraints

will stay in contact with the block. There are three possible arrangements (Fig. 6.6) for

the assembly if the constraints are not in the nominal position shown in Fig. 6.5. It is

uncertain which of the three options the assembly will assume. Thus, each case must be

checked in each simulation of the Monte Carlo. If any one of the three cases assembles

(the vector loops close), then the design is considered to have passed the first assembly

test.

 163

1

2

3

4case 1 1

2

3

4case 2
1

2

3

4
case 3

Figure 6.6 – Three possible assembly cases for the over-constrained block

However, after it is determined if the vector loops close, the simulation must

check to ensure the fourth constraint does not interfere with the assembly. It must stay

clear of the block. If it is out of the way of the block, the design assembles. Otherwise,

the assembly fails.

The error primarily comes from the play in the assembly due to the over-

constraint present. For each run of the Monte Carlo simulation that does assemble, the

program finds two values for the assembly error: average error and maximum error. To

find the average error, the program averages the error of all the cases that assembled.

The maximum error is found by comparing the errors of each case that assembled and

keeping the maximum value.

The reported average error is the overall average of the individual average errors

found above. The reported average maximum error is the average of all the maximum

errors found above. The maximum error is found because the worst case assembly is just

as likely as any other case to assemble. To provide a fair measure of the error, both the

average and maximum errors are reported.

 164

Including variation, the block in Fig. 6.5 will only assemble 50% of the time. The

average error is 0.67 units, and the average maximum error is 1.23 units. It is interesting

to note that when the design assembles to case 1 or case 3, the average error stands at

0.31 units. However, when the design assembles to case 2, the average error is

significantly greater at 3.12 units. These results concur with earlier examples in Sections

6.3.1 and 6.3.2.

Recall that Fig. 6.5 had three different reasons that the block was over-

constrained. If constraint 3 is moved over to the center of the block (Fig. 6.7), that

eliminates two of the reasons for the over-constraint in this assembly. Now, the block is

over-constrained only because there are four constraints.

1

2

3

4

Figure 6.7 – Alternate configuration for the over-constrained block

The design will still only assemble 50% of the time. However, the error is

considerably more reasonable. The average error is 0.54 units, and the average maximum

error is 0.74 units. Each individual case has an average error of 0.60, 0.60, and 0.41

units, respectively. Eliminating two forms of over-constraint in this block still led to 50%

 165

assembly (as has been the case for all over-constrained examples to this point), but the

error present in this example is closer to that obtained by the EC example.

The results of Fig. 6.5 and 6.7 suggest that there are also varying degrees of

goodness for over-constrained designs as well. The goodness for an over-constrained

design is beyond the scope of this thesis; however, varied configurations show that as

long as there is the fourth constraint, the EC block will always be more robust than any

OC block. Table 6.2 shows the results for various nominal configurations of the

assembly with four constraints.

Table 6.2 – Several over-constrained examples

 2

1 4

3

 1

2

3

4 1

2

3

4 1

2

3

4
 Fig. 6.5 Fig. 6.7

Height 6.67 units 6.67 units 6.67 units 6.67 units
length 10 units 10 units 10 units 10 units
x1, y1 1.0, 0.0 1.0, 0.0 1.0, 0.0 2.0, 0.0
x2, y2 0.0, 3.35 0.0, 3.35 0.0, 3.35 0.0, 2.5
x3, y3 9.0, 6.67 5.0, 6.67 9.0, 6.67 4.0, 6.67
x4, y4 9.0, 0.0 9.0, 0.0 5.0, 0.0 5.5, 0.0

Standard
deviation

for all
variables

0.2 0.2 0.2 0.2

%
assembled

50 50 99 51

Average
error

0.67 0.54 0.59 0.83

Average
maximum

error
1.23 0.74 0.66 1.16

 166

The two new examples in the far right columns of Table 6.2 move the vertical

constraints closer together. As constraints 1 and 4 move closer together (as in the fourth

column of Table 6.2), the results become very comparable to an EC design. Recall that if

any one of the three cases in Fig. 6.6 assembles, the design assembles. With the fourth

constraint placed to the inside of the third constraint, the block has a greater range for

rotation, and the extra constraint interferes less (it still interferes in some cases, but it

never interferes in all cases in any run of the simulation). Hence, the results are similar to

that of an EC design. It can be noted that when constraint 3 is at (8.0, 6.67) instead of

(9.0, 6.67) for this example, the % assembly goes down to 90%, and the average and

maximum errors increase to 0.68 and 0.75 units, respectively.

The example in the fifth column of the table shows that as constraint 3 is also

moved closer to constraints 1 and 4, the percentage of successful assemblies plummets

again, and the error escalates. Thus, although some OC designs exhibit good robustness,

the placement of the constraints is very important. OC designs cannot absorb variation as

well as EC designs, and they generally have more error.

6.3.4 SUMMARY OF THE BLOCK ASSEMBLIES WITH THREE OR
FOUR CONSTRAINTS

In summary, the exactly constrained assemblies in the previous examples have

lower error with higher overall assembly rates than similar designs that are over-

constrained. This observation, based on the results from the Monte Carlo simulation,

provides key insight into the strength of EC design.

 167

To re-emphasize, there is a very powerful benefit to EC design that is found from

the Monte Carlo simulation. In the world of manufacturing, it is generally observed that

assemblies with broader tolerances (and thus greater possibility for variation among

assemblies) will lead to higher assembly rates, although the error also increases. Here it

is shown that with an EC design, there need not be a negative tradeoff. Indeed, compared

to the over-constrained designs, EC designs have greater assembly rates with lower

overall error!

6.3.5 SLOTTED BLOCK ASSEMBLY

Figure 6.8 shows the slotted block assembly which was first introduced in

Chapter 2. The nominal dimensions are listed in the figure.

x

y

x

y

2.5 4.0

3.0

Figure 6.8 – Slotted block example

The angle of the slot is a user defined input which can vary from 0o to 90o. The variation

for this example is limited to the x-location of the right peg.

 168

Due to the variation in the right peg, the top plate may have to rotate in order to

allow the design to assemble. However, just because the top plate can rotate does not

guarantee that the design will assemble. For example, Fig. 6.9 shows possible

configurations for the slotted block when the slot has an angle of 75o and the right peg

rests at various positions. The parts would assemble in Fig. 6.9a, but they would not

assemble in 6.9b.

(a) (b)

Figure 6.9 – Slotted block assembly with the slot at 75o (a) the right peg at 7.0 units
(b) the right peg at 6.0 units

A Monte Carlo simulation will produce assembly results for the slotted block

example at various slot angles. The right peg will be varied in the x-direction for each

run of the simulation. Again, if the vector loops close after the variation has been

introduced, the block assembles. If the block assembles, the program calculates the

average error for all successful assemblies per slot angle. The error is again defined as

the RSS displacement of the bottom two corners from their nominal positions (as defined

in section 6.2.2).

 169

6.3.5.1 SLOT ANGLE: 0o

With a 0o slot angle, previous chapters showed this block assembly to be exactly

constrained. After 100,000 runs of the Monte Carlo simulation, the block assembled

100% of the time with no error. The slot absorbed the variation in the right peg, and all

possible configurations assembled.

6.3.5.2 SLOT ANGLE: 90o

Chapter 5 showed the block assembly in Fig. 6.10 to be over-constrained using

both the screw theory approach to constraint analysis and the B matrix in the DLM.

After 100,000 runs of the Monte Carlo simulation, the total number of configurations that

assembled totaled 48%, which is drastically lower than the 100% assembly rate for the

same block with the slot manufactured at 0o.

Figure 6.10 – Assembly with the slot angle at 90o

Not only is the slotted block assembly less robust at 90o, it shows significant

increases in error. The average error of this assembly is 3.27 units as compared to 0.00

units of error when the slot is at 0o.

 170

6.3.5.3 SLOT ANGLE: VARIED

Recall from Chapter 5 that screw theory considered all slotted block assemblies

exactly constrained up to and through a slot angle of 89.9o. However, the goodness factor

developed in Chapter 5 also showed that as the angle of the slot increases, the designs

tend to be more sensitive to change, as evidenced by higher sensitivities. Thus, the

goodness level decreases as the slot angle increases.

Table 6.3 and Fig. 6.11 combine to show the results of a 100,000 run Monte Carlo

simulation for each listed angle. The goodness factor listed is found from the

determinant of the B matrix in the DLM.

Table 6.3 – Table of Monte Carlo results for various slot angles

Slot angle % assembled Error Goodness
0 100 0 4
10 100 0.086 3.94
20 100 0.179 3.76
30 100 0.284 3.46
40 100 0.417 3.06
45 100 0.501 2.83
50 99.8 0.603 2.57
55 99.2 0.724 2.29
60 96.3 0.848 2
65 89.4 0.973 1.69
70 78.9 1.14 1.37
75 67.5 1.44 1.04
80 58.0 1.90 0.69
85 51.9 2.60 0.35
89 48.7 3.27 0.07
90 48.2 3.27 0

 171

Error and % Assem bled for Slotted Block

0

10
20

30

40
50
60

70

80
90

100

0 20 40 60 80

θ of s lot

%
 a

ss
em

b
le

d

0

0.5

1

1.5

2

2.5

3

3.5

er
ro

r

% assembled Error

Figure 6.11 – Chart of results for slotted block assembly showing % assembled and
error

Figure 6.11 shows that 100% of the configurations assembled up to and through a

slot angle of 45o. However, the error steadily increased for the same slot angles. The

results for this range of slot angles correspond to the results for the block with three

constraints in section 6.3.1. All configurations assemble, although those shown to have a

lower goodness value have greater error.

Beyond 45o for the slot angle, both the error and the number of failures increase.

While under screw theory these designs are called exactly constrained, it would perhaps

be more correct to use Kamm’s [1993] description for these designs: semi-MinCD or

semi-exactly constrained. This description gives the designer a more realistic idea that

while the design is not over-constrained, it really does not hold all of the benefits

associated with an EC design.

 172

6.4 CONCLUSIONS

By using a Monte Carlo simulation, EC designs are found to be more robust than

over-constrained designs. Not only do EC designs have a much greater percentage of

successful assemblies, they also have lower error. These results concur with the

constraint analysis from Chapters 3 and 4, and they strengthen the goodness findings of

Chapter 5.

 173

CHAPTER 7 CONTRIBUTIONS, CONCLUSIONS, AND RECOMMENDATIONS

The purpose of this thesis was to establish a quantitative foundation for exactly

constrained design. This chapter will explain the contributions and conclusions made in

order to establish that foundation. Finally, recommendations will be made for further

research that may be performed in this field of study.

7.1 CONTRIBUTIONS OF THIS THESIS

Exactly constrained (EC) design is a powerful and robust design method for

mechanical assemblies. While many have defined it through heuristics or experience,

this thesis begins to establish a quantitative foundation to both understand and use EC

design in mechanical assemblies.

EC designs can be defined in quantitative terms by noting that they are statically

determinate; therefore, the rules established by researchers and practitioners through

years of experience are easily validated using the equations of equilibrium. Chapter 3

shows this contribution.

In addition to validating existing rules, this thesis also presents a quantitative

method to analyze EC designs based on the location of the constraints. The equations of

equilibrium can be used to determine if a design is exactly constrained. When poor

 174

placement of the constraints leads to an over and/or under-constrained assembly, the C

matrix can be used to see what over and/or under-constraint is present. The equations can

also be used to predict which locations must be avoided so the design can stay exactly

constrained. This method is presented in Chapter 4.

Another contribution of this thesis shows how the equations of equilibrium can be

used to find the nesting force window. Through a quantitative method, the acceptable

and unacceptable regions for the nesting force can be found in a simple and concise way.

Finding the window is also presented in Chapter 4.

This work includes the development of a quantitative process to find the

“goodness” of EC designs. As all designs are not created equal, this method could help a

designer quantitatively compare similar designs to make an informed decision on which

configuration would be best. Using the DLM, assembly sensitivities can be compared

between designs, or the determinant of the B matrix can be inspected to make decisions

on designs that would best suit the needs of the designer. Also, if a design has become

unstable, the B matrix can be inspected to determine why.

By using a Monte Carlo simulation, the robust nature of EC design was clearly

demonstrated over similar designs that were over-constrained. The EC designs

consistently had 100% assembly rates with relatively low error. The OC designs had

assembly rates of approximately 50%, with greater error.

 175

7.2 CONCLUSIONS OF THIS THESIS

Exactly constrained design can effectively be described and analyzed using

quantitative means. Both the equations of equilibrium and the DLM successfully provide

ways to do so.

The equations of equilibrium can be used to validate, inspect or predict the

behavior of an assembly based on the constraints in an EC design. The locations of the

constraints can be monitored through the reaction forces. High reaction forces

(especially reaction forces leading to infinity) must be avoided. Also, the nesting force

can be appropriately placed after using the equations of equilibrium to find the window.

The C matrix (from the matrix form of the equations of equilibrium) can give a

general overview for constraint analysis. It is important that it not be singular.

Using information from the DLM provides a method whereby a quantitative

measure of goodness can be assigned to various EC designs. The determinant of the B

matrix can indicate how close a design may be to approaching an over and/or under-

constrained design. The determinant must not approach zero (a singular matrix), or the

assembly will lose the benefits of being exactly constrained (inspecting the B matrix

when it does go singular can be used for constraint analysis). The assembly sensitivities

also provide a measurement that can be compared between designs to show which design

in question may provide the best possible assembly under consideration. Lower

sensitivities generally lead to “better” EC designs.

 176

In addition to showing a measure of goodness for EC design, the DLM provides

the means to show how robust an EC design can be. By implementing the DLM into a

Monte Carlo simulation, EC designs are found to be more robust than similar OC

designs.

Throughout the thesis, edge slider, cylinder slider, and revolute joints are used to

constrain the assemblies. With a basic understanding of how degrees of freedom work,

any type of joint that will allow the assembly to properly function can be used to

constrain motion. The analysis method used to analyze the design, whether it be the

equations of equilibrium or the direct linearization method (DLM), can find the necessary

information, regardless of the type of joint used.

7.3 RECOMMENDATIONS FOR FUTURE WORK

One area that could possibly be developed further is Section 5.5. As mentioned

there, the C matrix from the equations of equilibrium and the B matrix from the DLM

appear to tell two sides to the same story. Just as screw theory found a link through the

reciprocal operation between the twist space and the wrench space, there may be a similar

link by way of matrix operations between the B and C matrices.

For example, it could be stated that variation is analogous to velocity [Faerber

1999]. Therefore, through mechanical advantage, the force and velocity are reciprocal.

 In addition to these considerations, the force analysis can be further extended to

include sensitivity. The matrix equation employed in this thesis is very basic.

 177

Cr = b

The vector b could actually be separated to make the equation more descriptive.

Cr = Df

C is still a matrix of coefficients for the reaction forces in r, and D contains the

coefficients for the nesting forces in f. If this equation is linearized (as was done for the

vector loop equations in the DLM), the equation begins to resemble the assembly

sensitivity matrix in the DLM.

{ } []{ }fDCr δδ 1−=

{ } []{ }XABU δδ 1−=

 The matrix [C-1D] now also provides a matrix of assembly sensitivities. The

method presented in Section 5.4.4 on using the goodness values could now be extended

to include two additional steps.

5. Formulate force equilibrium equations and linearize them to find C and D.

6. Examine the C determinant and the [C-1D] sensitivities.

The information from this thesis could be further implemented or linked into

CAD systems to evaluate designs for over or under-constraint. If necessary, the

automated process could fix the designs to achieve an exactly constrained assembly, and

it would further optimize the configuration (through “goodness” values).

 178

This thesis only treats 2D assemblies. Further research should extend this

information into 3D.

The definition for a quantitative measure of goodness was begun in this thesis.

Work should continue to further examine this idea for EC design. In addition, the results

for over-constrained designs suggested that there may also be a value for goodness for

OC designs as well. Research could be extended to further define these considerations.

Most of the examples in this thesis used symmetrical configurations. It may be

interesting to investigate non-symmetrical configurations of the constraints and nesting

force(s) to learn more about their error or assembly rates.

 Non-normal nesting forces should be further examined. It has been observed

throughout the research process of this thesis that the nesting force window will change

according to the number, position, and angle of the nesting force(s). It should be further

explored. In addition, nesting moments should also be explored.

Further exploration is needed to investigate the tradeoff between the locations of

constraints and the nesting force window. In particular, Pearce [2003] developed a

method to analyze the placement of the nesting force using the DLM. By generalizing

that method to find the nesting force window, it could be used in conjunction with the

current method presented in this thesis to find a value for goodness that includes the

 179

nesting force window. That investigation may show a better measure for goodness

relating to the tradeoff found in Chapter 4.

 The effects of clearance need to be investigated further. As long as a nesting

force is present to ensure that the constraint stays in contact with the main assembly,

clearance may not have any effect on the analysis. However, if the nesting force does not

provide the seating necessary, clearance may become an issue. The amount of clearance

needed in an over-constrained system is unclear.

 A few other considerations could also be investigated as they relate to EC design.

The effects of elastic deformation, such as press fit bearings, in an EC design could be

investigated further. It is important to note that an EC assembly does not have to be

comprised of parts that are exactly constrained. For example, ball bearings could be used

as a component of an EC design.

Finally, all mechanical assemblies under consideration in this thesis had no

motion. Exactly constrained designs do not have to be immobile; therefore, future work

should include extending the quantitative foundation to mechanisms that allow motion as

well.

 180

 181

APPENDIX A CONSTRAINT ANALYSIS USING SCREW THEORY

This appendix will show the details involved to use screw theory as a constraint

analysis method. The topic will be presented in outline form. All steps will be done on

the following example.

x

y

x

y

x

y

2.5 4.0

3.0

A.1 FIND THE TRANSFORMATION MATRIX

The transformation matrix simply relates each individual joint in its local

coordinate frame to the global coordinate frame. There is one transformation matrix per

joint. The transformation matrix has the same form for each joint.









=

1
 F

0

dA

 182

A is a 3x3 rotation matrix—based on direction cosines

d is a 3x1 displacement vector

0 is a 1x3 row of zeros

 The transformation matrix will be found for both joints in the example. As the

local axis is the same as the global axis, A is the identity matrix. When the slot is at 0o,

the A matrix is the identity matrix.
















=

100

010

001

 A

If the slot were at an angle of 90o to its current position, A would have to properly define

rotation between the two axes. The proper matrix for such a case is shown below.















 −
=

100

001

010

 A

 The d vector is simply the displacement from the global coordinate zero. In this

example, the left peg is 2.5 units away in the x-direction and 3.0 units in the y-direction.

The right peg is 6.5 units in the x-direction and 3.0 units in the y-direction. Thus, the

transformation matrix can be written as below.

 183



















=

1000

0100

3010

2.5001

Fleft



















=

1000

0100

3010

5.6001

 Fright

A.2 FIND THE TWISTMATRIX FOR EACH FEATURE

The information from the transformation matrix can be used to find the necessary

twists for each joint. There is one twistmatrix for each joint, and there are the same

number of rows as there are degrees of freedom allowed by a joint. For example, the

right peg’s twist matrix will have two rows because it will allow both rotation and

translation.

Translational motion is described in the twistmatrix as shown below.

[]v0=T

0 is a 1x3 vector of zeros

v is a 1x3 vector where v = (Ak)T

A is defined in the transformation matrix

k is a 3x1 vector, representing the local axis along which the joint can translate

 Rotational motion is described in the twistmatrix as shown below.

[]vω=T

 184

w is a 1x3 vector, where w = (Aw)T

A is defined in the transformation matrix

 w is a 3x1 vector, which defines the allowed joint rotation, such as (0 0 1)

v is a 1x3 vector, where v = r x w

r is the 1x3 vector dT, as defined in the transformation matrix

w is a 1x3 vector defined above

 The twistmatrix for the right peg will be shown here. It has two degrees of

freedom: one rotation and one translation. Thus, it will have two rows. The elements for

rotation will be found first. Then, the elements will be found for the translation.

[]100

1

0

0

100

010

001
T

=















































=ω

[]05.635.63
100

035.6
−=−== jiv rot

[]000=0

[]001

0

0

1

100

010

001
T

=















































=transv

 Finally, the twistmatrix for the right peg is shown below.

 185








 −
=

001000

05.63100
rightTwist

A.3 DETERMINE IF THE ASSEMBLY IS UNDER-CONSTRAINED

Now that the twistmatrices have been found, the constraint analysis can begin.

Finding whether an assembly is under-constrained begins by applying what is called a

reciprocal operation to each twist. After this stage, the matrices are unionized and the

system is row reduced. Finally, the resulting matrix is sent back through the reciprocal

operation to find if and where the assembly is under-constrained.

STEP 1: RECIPROCAL OPERATION APPLIED TO EACH TWIST

The reciprocal operation entails taking the null space of each twistmatrix, which

is easily done in Matlab®. After taking the null space, the matrix is transposed. Finally, a

flip function is applied, such that columns 1 and 4 are swapped, 2 and 5 are swapped, and

3 and 6 are swapped. Each matrix is now a wrench.

STEP 2: UNIONIZE THE MATRICES

After the reciprocal operation is applied to each twist matrix, the wrench matrices

are combined through a union. This operation simply means that all matrices are stacked

together into one matrix.

STEP 3: ROW REDUCED ECHELON FORM

The row reduced echelon form of the unionized wrench matrix is found.

 186

STEP 4: RECIPROCAL OPERATION APPLIED TO THE WRENCH

Finally, the reciprocal operation can be performed on the unionized reduced

wrench matrix. The results of the reciprocal operation will show whether there is any

under-constraint in the assembly. If the resulting twistmatrix is anything other than

empty, there is motion.

If there is under-constraint, the point of motion can also be found through a “point

algorithm” as illustrated in Adams [1998]. As this composition only relates to 2D

models, only the point algorithm for rotation about the z-axis will be given.
























−

=≠

0

v

v

rotation ofpoint then the0 if x

y

z
z

z

ω

ω

ω

MATLAB® AUTOMATION OF THE PROCESS

The whole process can be easily implemented into Matlab®, as also shown in

Adams and Whitney [2001]. The twistmatrices are found by hand, and they are entered

as T1, T2, etc. into the command window. An m-file called “run.m” finds the resultant

twistmatrix.

 187

m-file – run.m

W1=recip(T1);
W2=recip(T2);
WU=[W1;W2];
WU=rref(WU);
Twist=recip(WU)

m-file – recip.m

function R = recip(T)
p=(null(T))';
R=flip(p);

end

m-file – flip.m

function W=flip(p)

[i,j] = size(p);
if j==6
 for l=1:i
 for k=1:3
 W(l,k)=p(l,k+3);
 W(l,k+3)=p(l,k);
 end
 end

end
W;

 The example shown in the beginning of this appendix results in an empty matrix;

therefore, there is no under-constraint in the assembly.

 188

A.4 DETERMINE IF THE ASSEMBLY IS OVER-CONSTRAINED

To learn whether the assembly is over-constrained, the twistmatrices are first

unionized. Then, the row reduced echelon form of the unionized twistmatrix is found,

and that step is followed by the reciprocal operation. This leads to a wrench matrix.

STEP 1: UNIONIZE THE TWISTMATRICES

To find if there is over-constraint in an assembly requires the twistmatrices to be

unionized before they are sent through the reciprocal operation.

STEP 2: ROW REDUCED ECHELON FORM

The row reduced echelon form of the resulting unionized matrix is found.

STEP 3: RECIPROCAL OPERATION APPLIED TO THE TWIST

The reciprocal operation, as described in section A.3.1, leads to a resultant wrench

matrix which can show whether an assembly is over-constrained. The first three columns

show if the body is over-constrained in the x, y or z translational directions. The last

three columns show whether the body is over-constrained in the x, y, or z rotational

directions.

If an assembly is over-constrained, the point algorithm mentioned in section A.3.4

can again be applied to find where the over-constraint happened.

 189

MATLAB® AUTOMATION OF THE PROCESS

As before, the process can be automated in Matlab®. The same m-files can be

linked to a run file to find the over-constraint. To maximize efficiency, it is best to put

both the motion (under-constraint) and force (over-constraint) analysis in the same run

file. Only the additional information to run the over-constrained analysis is shown

below.

m-file – run.m

TU=[T1;T2];
T=rref(TU);
Wrench=recip(T)

 For the example, the resulting wrench matrix is shown below. The explanation

follows the matrix.
















=

010000

001000

000100

Wrench

 This matrix shows that the assembly is over-constrained in z-translation, x-

rotation, and y-rotation. However, as the assembly is only 2D, these can be ignored. All

possible degrees of freedom are constrained. This assembly is exactly constrained.

 190

A.5 DETAILED EXAMPLES FROM CHAPTER 5

This section will show the development of the twist matrices and the results after

running the slotted block example through the procedure described above. The slot will

change in each example. Please note that Fleft and Twistleft will always be the same in

each example.



















=

1000

0100

3010

2.5001

Fleft

[]05.23100Twist left −=

 191

SLOT AT 450

x

y

x

y

x
y

2.5 4.0

3.0









=

v0

vω
rightTwist

















 −

=

1000

0100

30707.0707.0

5.60707.0707.0

 Fright

[]100

1

0

0

100

0707.0707.0

0707.0707.0
T

=














































 −
=ω

[]05.635.63
100

035.6
−=−== jiv rot

[]000=0 []0707.0707.0

0

0

1

100

0707.0707.0

0707.0707.0
T

=














































 −
=transv








 −
=

0707.0707.0000

05.63100
rightTwist

Twist = empty matrix
















=

010000

001000

000100

Wrench

 192

SLOT AT 700

x

y

x

y
x

y

2.5 4.0

3.0









=

v0

vω
rightTwist

















 −

=

1000

0100

30342.09397.0

5.609397.0342.0

 Fright

[]100

1

0

0

100

0342.09397.0

09397.0342.0
T

=














































 −
=ω

[]05.635.63
100

035.6
−=−== jiv rot

[]000=0 []09397.0342.0

0

0

1

100

0342.09397.0

09397.0342.0
T

=














































 −
=transv








 −
=

09397.0342.0000

05.63100
rightTwist

Twist = empty matrix
















=

010000

001000

000100

Wrench

 193

SLOT AT 89.90

x

y

x

y x

y

2.5 4.0

3.0









=

v0

vω
rightTwist

















 −

=

1000

0100

3000175.0999.0

5.60999.000175.0

 Fright

[]100

1

0

0

100

000175.0999.0

0999.000175.0
T

=














































 −
=ω

[]05.635.63
100

035.6
−=−== jiv rot

[]000=0 []0999.000175.0

0

0

1

100

000175.0999.0

0999.000175.0
T

=














































 −
=transv








 −
=

0999.000175.0000

05.63100
rightTwist

Twist = empty matrix
















=

010000

001000

000100

Wrench

 194

SLOT AT 90o

x

y

x

y x

y

2.5 4.0

3.0









=

v0

vω
rightTwist

















 −

=

1000

0100

3001

5.6010

 Fright

[]100

1

0

0

100

001

010
T

=














































 −
=ω

[]05.635.63
100

035.6
−=−== jiv rot

[]000=0 []010

0

0

1

100

001

010
T

=














































 −
=transv








 −
=

010000

05.63100
rightTwist

[]05.23100Twist −=

















 −

=

010000

001000

000100

300001

Wrench

 195
















=























=
0

3

5.2

0
1

3
1

2.5

point rotation
















=























=
0

0

3

0
1

0
1

3

aint overconstr of coordinate

 196

 197

APPENDIX B EXCEL® ANALYSIS FOR EXAMPLES USING THE
EQUATIONS OF EQUILIBRIUM

B.1 NO TWO CONSTRAINTS SHOULD BE CO-LINEAR ANALYSIS (FIG. 3.3)

Fn= 1 x3 R3

x1= 2 0 -0.27471098

y1= 0 1 -0.54942197

x2= 0 1.5 -1.09884394

y2= 2.223 1.6 -1.37355492

x3= variable 1.7 -1.83140656

y3= 0.6667 1.8 -2.74710984

xn= 1 1.9 -5.49421969

yn= 4 1.95 -10.9884394

x12= 2 1.96 -13.7355492

y12= 2.223 1.97 -18.3140656

0Fn= 45 1.98 -27.4710984

1.99 -54.9421969

2 #DIV/0!

2.01 54.9421969

2.02 27.4710984

2.03 18.3140656

2.04 13.7355492

2.05 10.9884394

2.1 5.49421969

2.2 2.74710984

2.3 1.83140656

2.4 1.37355492

2.5 1.09884394

3 0.54942197

4 0.27471098

5 0.18314066

6 0.13735549

7 0.10988439

8 0.09157033

9 0.07848885

10 0.06867775

R3 as C3 moves along the top of the block

-6

-4

-2

0

2

4

6

0 1 2 3 4 5 6 7 8 9 10

x3

R
3/

F
n

 198

x3 R3

0 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A16-x_12)
=A16+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A17-x_12)
=A19-0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A18-x_12)
=A20-0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A19-x_12)
=A21-0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A20-x_12)
=A22-0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A21-x_12)
=A28-0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A22-x_12)
=A24-0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A23-x_12)
=A25-0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A24-x_12)
=A26-0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A25-x_12)
=A27-0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A26-x_12)
=A28-0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A27-x_12)
=A17+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A28-x_12)
=A28+0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A29-x_12)
=A29+0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A30-x_12)
=A30+0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A31-x_12)
=A31+0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A32-x_12)
=A32+0.01 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A33-x_12)
=A28+0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A34-x_12)
=A34+0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A35-x_12)
=A35+0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A36-x_12)
=A36+0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A37-x_12)
=A37+0.1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A38-x_12)
=A28+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A39-x_12)
=A39+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A40-x_12)
=A40+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A41-x_12)
=A41+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A42-x_12)
=A42+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A43-x_12)
=A43+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A44-x_12)
=A44+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A45-x_12)
=A45+1 =(F_n*SIN(angle_of_Fn*PI()/180)*(x_n-x_12)+F_n*COS(angle_of_Fn*PI()/180)*(y_n-y_12))/(A46-x_12)

 199

B.2 NO THREE CONSTRAINTS SHOULD INTERSECT AT A POINT ANALYSIS
(FIG. 3.10)

x3 y3 R3
3 6 0.610843918

3.1 5.8 0.652913594
3.2 5.6 0.701206679
3.3 5.4 0.757214429
3.4 5.2 0.822945903
3.5 5 0.901174073
3.6 4.8 0.995837053
3.7 4.6 1.11272187
3.8 4.4 1.26069384
3.9 4.2 1.45405727
4 4 1.717482259

4.1 3.8 2.097471742
4.2 3.6 2.693375673
4.3 3.4 3.762253908
4.4 3.2 6.237721845
4.5 3 18.23760431

4.51 2.98 22.58180203
4.52 2.96 29.64269183
4.53 2.94 43.12796752
4.54 2.92 79.12335979
4.55 2.9 478.4288389
4.551 2.898 965.8632625 Fn= 1
4.5511 2.8978 1075.430636 x12= 3
4.5512 2.8976 1213.037404 y12= 2
4.5519 2.8962 11628.6299 x3= variable
4.552 2.896 -51312.25259 y3= variable
4.553 2.894 -930.8211091 xn= 5.5
4.554 2.892 -469.6705435 yn= 1
4.555 2.89 -314.0719485 thetaC3= 30
4.556 2.888 -235.9149584 thetaFn= 30
4.557 2.886 -188.9056705
4.558 2.884 -157.5180424
4.559 2.882 -135.0747008 x12 is the x-coordinate of the instant center (IC12)
4.56 2.88 -118.2292666 y12 is the y-coordinate of the instant center (IC12)

4.57 2.86 -52.61368957
4.58 2.84 -33.83547674
4.59 2.82 -24.93573094
4.6 2.8 -19.74278579
4.7 2.6 -6.40473071
4.8 2.4 -3.822370384
4.9 2.2 -2.724046401
5 2 -2.116025404

5.1 1.8 -1.729902399
5.2 1.6 -1.462949764
5.3 1.4 -1.267373075
5.4 1.2 -1.117921959
5.5 1 -1
5.6 0.8 -0.904581835
5.7 0.6 -0.825786776
5.8 0.4 -0.759618943
5.9 0.2 -0.703268162
6 0 -0.654700538

R3 as C3 moves along the right side of the triangle

-10

-8

-6

-4

-2

0

2

4

6

8

10

3 3.5 4 4.5 5 5.5 6

x3

R
3/

F
n

 200

x3
3
=A12+0.1
=A13+0.1
=A14+0.1
=A15+0.1
=A16+0.1
=A17+0.1
=A18+0.1
=A19+0.1
=A20+0.1
=A21+0.1
=A22+0.1
=A23+0.1
=A24+0.1
=A25+0.1
=A26+0.1
=A27+0.01
=A28+0.01
=A29+0.01
=A30+0.01
=A31+0.01
=A32+0.001
=A33+0.0001
=A34+0.0001
=A35+0.0007
=A33+0.001
=A37+0.001
=A38+0.001
=A39+0.001
=A40+0.001
=A41+0.001
=A42+0.001
=A43+0.001
=A32+0.01
=A45+0.01
=A46+0.01
=A47+0.01
=A27+0.1
=A49+0.1
=A50+0.1
=A51+0.1
=A52+0.1
=A53+0.1
=A54+0.1
=A55+0.1
=A56+0.1
=A57+0.1
=A58+0.1
=A59+0.1
=A60+0.1
=A61+0.1
=A62+0.1

y3
=-2*A12+12
=-2*A13+12
=-2*A14+12
=-2*A15+12
=-2*A16+12
=-2*A17+12
=-2*A18+12
=-2*A19+12
=-2*A20+12
=-2*A21+12
=-2*A22+12
=-2*A23+12
=-2*A24+12
=-2*A25+12
=-2*A26+12
=-2*A27+12
=-2*A28+12
=-2*A29+12
=-2*A30+12
=-2*A31+12
=-2*A32+12
=-2*A33+12
=-2*A34+12
=-2*A35+12
=-2*A36+12
=-2*A37+12
=-2*A38+12
=-2*A39+12
=-2*A40+12
=-2*A41+12
=-2*A42+12
=-2*A43+12
=-2*A44+12
=-2*A45+12
=-2*A46+12
=-2*A47+12
=-2*A48+12
=-2*A49+12
=-2*A50+12
=-2*A51+12
=-2*A52+12
=-2*A53+12
=-2*A54+12
=-2*A55+12
=-2*A56+12
=-2*A57+12
=-2*A58+12
=-2*A59+12
=-2*A60+12
=-2*A61+12
=-2*A62+12
=-2*A63+12

 201

R3

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A12-x_12)+COS(thetaC3*PI()/180)*(B12-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A13-x_12)+COS(thetaC3*PI()/180)*(B13-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A14-x_12)+COS(thetaC3*PI()/180)*(B14-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A15-x_12)+COS(thetaC3*PI()/180)*(B15-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A16-x_12)+COS(thetaC3*PI()/180)*(B16-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A17-x_12)+COS(thetaC3*PI()/180)*(B17-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A18-x_12)+COS(thetaC3*PI()/180)*(B18-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A19-x_12)+COS(thetaC3*PI()/180)*(B19-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A20-x_12)+COS(thetaC3*PI()/180)*(B20-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A21-x_12)+COS(thetaC3*PI()/180)*(B21-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A22-x_12)+COS(thetaC3*PI()/180)*(B22-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A23-x_12)+COS(thetaC3*PI()/180)*(B23-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A24-x_12)+COS(thetaC3*PI()/180)*(B24-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A25-x_12)+COS(thetaC3*PI()/180)*(B25-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A26-x_12)+COS(thetaC3*PI()/180)*(B26-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A27-x_12)+COS(thetaC3*PI()/180)*(B27-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A28-x_12)+COS(thetaC3*PI()/180)*(B28-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A29-x_12)+COS(thetaC3*PI()/180)*(B29-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A30-x_12)+COS(thetaC3*PI()/180)*(B30-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A31-x_12)+COS(thetaC3*PI()/180)*(B31-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A32-x_12)+COS(thetaC3*PI()/180)*(B32-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A33-x_12)+COS(thetaC3*PI()/180)*(B33-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A34-x_12)+COS(thetaC3*PI()/180)*(B34-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A35-x_12)+COS(thetaC3*PI()/180)*(B35-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A36-x_12)+COS(thetaC3*PI()/180)*(B36-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A37-x_12)+COS(thetaC3*PI()/180)*(B37-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A38-x_12)+COS(thetaC3*PI()/180)*(B38-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A39-x_12)+COS(thetaC3*PI()/180)*(B39-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A40-x_12)+COS(thetaC3*PI()/180)*(B40-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A41-x_12)+COS(thetaC3*PI()/180)*(B41-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A42-x_12)+COS(thetaC3*PI()/180)*(B42-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A43-x_12)+COS(thetaC3*PI()/180)*(B43-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A44-x_12)+COS(thetaC3*PI()/180)*(B44-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A45-x_12)+COS(thetaC3*PI()/180)*(B45-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A46-x_12)+COS(thetaC3*PI()/180)*(B46-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A47-x_12)+COS(thetaC3*PI()/180)*(B47-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A48-x_12)+COS(thetaC3*PI()/180)*(B48-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A49-x_12)+COS(thetaC3*PI()/180)*(B49-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A50-x_12)+COS(thetaC3*PI()/180)*(B50-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A51-x_12)+COS(thetaC3*PI()/180)*(B51-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A52-x_12)+COS(thetaC3*PI()/180)*(B52-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A53-x_12)+COS(thetaC3*PI()/180)*(B53-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A54-x_12)+COS(thetaC3*PI()/180)*(B54-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A55-x_12)+COS(thetaC3*PI()/180)*(B55-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A56-x_12)+COS(thetaC3*PI()/180)*(B56-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A57-x_12)+COS(thetaC3*PI()/180)*(B57-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A58-x_12)+COS(thetaC3*PI()/180)*(B58-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A59-x_12)+COS(thetaC3*PI()/180)*(B59-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A60-x_12)+COS(thetaC3*PI()/180)*(B60-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A61-x_12)+COS(thetaC3*PI()/180)*(B61-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A62-x_12)+COS(thetaC3*PI()/180)*(B62-y_12))

=(F_n*COS(thetaFn*PI()/180)*(y_12-y_n)+F_n*SIN(thetaFn*PI()/180)*(x_n-x_12))/(-SIN(thetaC3*PI()/180)*(A63-x_12)+COS(thetaC3*PI()/180)*(B63-y_12))

 202

B.3 NESTING FORCE WINDOW USING THE EQUATIONS OF EQUILIBRIUM
(SECTION 3.4.2)

Fn = 1
y12 = 2
x12 = 3
y3 = 4.875
x3 = 3.5625

Theta = 30

RIGHT SIDE

xn yn R3 R2 R1 R3 R2 R1
3 6 -1.568479538 -0.568479538 -0.5684795 FAILED FAILED FAILED

3.1 5.8 -1.467416509 -0.467416509 -0.4674165 FAILED FAILED FAILED
3.2 5.6 -1.36635348 -0.36635348 -0.3663535 FAILED FAILED FAILED
3.3 5.4 -1.265290451 -0.265290451 -0.2652905 FAILED FAILED FAILED
3.4 5.2 -1.164227422 -0.164227422 -0.1642274 FAILED FAILED FAILED
3.5 5 -1.063164393 -0.063164393 -0.0631644 FAILED FAILED FAILED
3.6 4.8 -0.962101364 0.037898636 0.03789864 FAILED ok ok
3.7 4.6 -0.861038335 0.138961665 0.13896166 FAILED ok ok
3.8 4.4 -0.759975306 0.240024694 0.24002469 FAILED ok ok
3.9 4.2 -0.658912277 0.341087723 0.34108772 FAILED ok ok
4 4 -0.557849248 0.442150752 0.44215075 FAILED ok ok

4.1 3.8 -0.456786219 0.543213781 0.54321378 FAILED ok ok
4.2 3.6 -0.35572319 0.64427681 0.64427681 FAILED ok ok
4.3 3.4 -0.254660161 0.745339839 0.74533984 FAILED ok ok
4.4 3.2 -0.153597132 0.846402868 0.84640287 FAILED ok ok
4.5 3 -0.052534103 0.947465897 0.9474659 FAILED ok ok
4.51 2.98 -0.0424278 0.9575722 0.9575722 FAILED ok ok
4.52 2.96 -0.032321497 0.967678503 0.9676785 FAILED ok ok
4.53 2.94 -0.022215194 0.977784806 0.97778481 FAILED ok ok
4.54 2.92 -0.012108892 0.987891108 0.98789111 FAILED ok ok
4.55 2.9 -0.002002589 0.997997411 0.99799741 FAILED ok ok
4.551 2.898 -0.000991958 0.999008042 0.99900804 FAILED ok ok
4.552 2.896 1.86719E-05 1.000018672 1.00001867 ok ok ok
4.553 2.894 0.001029302 1.001029302 1.0010293 ok ok ok
4.554 2.892 0.002039932 1.002039932 1.00203993 ok ok ok
4.555 2.89 0.003050563 1.003050563 1.00305056 ok ok ok
4.56 2.88 0.008103714 1.008103714 1.00810371 ok ok ok
4.6 2.8 0.048528926 1.048528926 1.04852893 ok ok ok
4.7 2.6 0.149591955 1.149591955 1.14959195 ok ok ok
4.8 2.4 0.250654984 1.250654984 1.25065498 ok ok ok
4.9 2.2 0.351718013 1.351718013 1.35171801 ok ok ok
5 2 0.452781042 1.452781042 1.45278104 ok ok ok

5.1 1.8 0.553844071 1.553844071 1.55384407 ok ok ok
5.2 1.6 0.6549071 1.6549071 1.6549071 ok ok ok
5.3 1.4 0.755970129 1.755970129 1.75597013 ok ok ok
5.4 1.2 0.857033158 1.857033158 1.85703316 ok ok ok
5.5 1 0.958096187 1.958096187 1.95809619 ok ok ok
5.6 0.8 1.059159216 2.059159216 2.05915922 ok ok ok
5.7 0.6 1.160222245 2.160222245 2.16022224 ok ok ok
5.8 0.4 1.261285274 2.261285274 2.26128527 ok ok ok
5.9 0.2 1.362348303 2.362348303 2.3623483 ok ok ok
6 0 1.463411332 2.463411332 2.46341133 ok ok ok

 203

LEFT SIDE

xn yn R3 R2 R1 R3 R2 R1
0 0 -1.463411332 -2.463411332 -1.4634113 FAILED FAILED FAILED

0.1 0.2 -1.362348303 -2.362348303 -1.3623483 FAILED FAILED FAILED
0.2 0.4 -1.261285274 -2.261285274 -1.2612853 FAILED FAILED FAILED
0.3 0.6 -1.160222245 -2.160222245 -1.1602222 FAILED FAILED FAILED
0.4 0.8 -1.059159216 -2.059159216 -1.0591592 FAILED FAILED FAILED
0.5 1 -0.958096187 -1.958096187 -0.9580962 FAILED FAILED FAILED
0.6 1.2 -0.857033158 -1.857033158 -0.8570332 FAILED FAILED FAILED
0.7 1.4 -0.755970129 -1.755970129 -0.7559701 FAILED FAILED FAILED
0.8 1.6 -0.6549071 -1.6549071 -0.6549071 FAILED FAILED FAILED
0.9 1.8 -0.553844071 -1.553844071 -0.5538441 FAILED FAILED FAILED
1 2 -0.452781042 -1.452781042 -0.452781 FAILED FAILED FAILED

1.1 2.2 -0.351718013 -1.351718013 -0.351718 FAILED FAILED FAILED
1.2 2.4 -0.250654984 -1.250654984 -0.250655 FAILED FAILED FAILED
1.3 2.6 -0.149591955 -1.149591955 -0.149592 FAILED FAILED FAILED
1.4 2.8 -0.048528926 -1.048528926 -0.0485289 FAILED FAILED FAILED
1.5 3 0.052534103 -0.947465897 0.0525341 ok FAILED ok
1.6 3.2 0.153597132 -0.846402868 0.15359713 ok FAILED ok
1.7 3.4 0.254660161 -0.745339839 0.25466016 ok FAILED ok
1.8 3.6 0.35572319 -0.64427681 0.35572319 ok FAILED ok
1.9 3.8 0.456786219 -0.543213781 0.45678622 ok FAILED ok
2 4 0.557849248 -0.442150752 0.55784925 ok FAILED ok

2.1 4.2 0.658912277 -0.341087723 0.65891228 ok FAILED ok
2.2 4.4 0.759975306 -0.240024694 0.75997531 ok FAILED ok
2.3 4.6 0.861038335 -0.138961665 0.86103834 ok FAILED ok
2.4 4.8 0.962101364 -0.037898636 0.96210136 ok FAILED ok
2.41 4.82 0.972207667 -0.027792333 0.97220767 ok FAILED ok
2.42 4.84 0.98231397 -0.01768603 0.98231397 ok FAILED ok
2.43 4.86 0.992420273 -0.007579727 0.99242027 ok FAILED ok
2.431 4.862 0.993430903 -0.006569097 0.9934309 ok FAILED ok
2.432 4.864 0.994441533 -0.005558467 0.99444153 ok FAILED ok
2.433 4.866 0.995452164 -0.004547836 0.99545216 ok FAILED ok
2.434 4.868 0.996462794 -0.003537206 0.99646279 ok FAILED ok
2.435 4.87 0.997473424 -0.002526576 0.99747342 ok FAILED ok
2.436 4.872 0.998484055 -0.001515945 0.99848405 ok FAILED ok
2.437 4.874 0.999494685 -0.000505315 0.99949468 ok FAILED ok
2.4371 4.8742 0.999595748 -0.000404252 0.99959575 ok FAILED ok
2.4372 4.8744 0.999696811 -0.000303189 0.99969681 ok FAILED ok
2.4373 4.8746 0.999797874 -0.000202126 0.99979787 ok FAILED ok
2.4374 4.8748 0.999898937 -0.000101063 0.99989894 ok FAILED ok
2.4375 4.875 1 6.40988E-16 1 ok ok ok
2.4376 4.8752 1.000101063 0.000101063 1.00010106 ok ok ok
2.4377 4.8754 1.000202126 0.000202126 1.00020213 ok ok ok
2.4378 4.8756 1.000303189 0.000303189 1.00030319 ok ok ok
2.4379 4.8758 1.000404252 0.000404252 1.00040425 ok ok ok
2.438 4.876 1.000505315 0.000505315 1.00050532 ok ok ok
2.44 4.88 1.002526576 0.002526576 1.00252658 ok ok ok
2.45 4.9 1.012632879 0.012632879 1.01263288 ok ok ok
2.5 5 1.063164393 0.063164393 1.06316439 ok ok ok
2.6 5.2 1.164227422 0.164227422 1.16422742 ok ok ok
2.7 5.4 1.265290451 0.265290451 1.26529045 ok ok ok
2.8 5.6 1.36635348 0.36635348 1.36635348 ok ok ok
2.9 5.8 1.467416509 0.467416509 1.46741651 ok ok ok
3 6 1.568479538 0.568479538 1.56847954 ok ok ok

 204

BASE SIDE

xn yn R3 R2 R1 R3 R2 R1
6 0 -1.358343125 -1.358343125 -2.358343125 FAILED FAILED FAILED

5.9 0 -1.313065021 -1.313065021 -2.313065021 FAILED FAILED FAILED
5.8 0 -1.267786917 -1.267786917 -2.267786917 FAILED FAILED FAILED
5.7 0 -1.222508813 -1.222508813 -2.222508813 FAILED FAILED FAILED
5.6 0 -1.177230709 -1.177230709 -2.177230709 FAILED FAILED FAILED
5.5 0 -1.131952604 -1.131952604 -2.131952604 FAILED FAILED FAILED
5.4 0 -1.0866745 -1.0866745 -2.0866745 FAILED FAILED FAILED
5.3 0 -1.041396396 -1.041396396 -2.041396396 FAILED FAILED FAILED
5.2 0 -0.996118292 -0.996118292 -1.996118292 FAILED FAILED FAILED
5.1 0 -0.950840188 -0.950840188 -1.950840188 FAILED FAILED FAILED
5 0 -0.905562084 -0.905562084 -1.905562084 FAILED FAILED FAILED

4.9 0 -0.860283979 -0.860283979 -1.860283979 FAILED FAILED FAILED
4.8 0 -0.815005875 -0.815005875 -1.815005875 FAILED FAILED FAILED
4.7 0 -0.769727771 -0.769727771 -1.769727771 FAILED FAILED FAILED
4.6 0 -0.724449667 -0.724449667 -1.724449667 FAILED FAILED FAILED
4.5 0 -0.679171563 -0.679171563 -1.679171563 FAILED FAILED FAILED
4.4 0 -0.633893458 -0.633893458 -1.633893458 FAILED FAILED FAILED
4.3 0 -0.588615354 -0.588615354 -1.588615354 FAILED FAILED FAILED
4.2 0 -0.54333725 -0.54333725 -1.54333725 FAILED FAILED FAILED
4.1 0 -0.498059146 -0.498059146 -1.498059146 FAILED FAILED FAILED
4 0 -0.452781042 -0.452781042 -1.452781042 FAILED FAILED FAILED

3.9 0 -0.407502938 -0.407502938 -1.407502938 FAILED FAILED FAILED
3.8 0 -0.362224833 -0.362224833 -1.362224833 FAILED FAILED FAILED
3.7 0 -0.316946729 -0.316946729 -1.316946729 FAILED FAILED FAILED
3.6 0 -0.271668625 -0.271668625 -1.271668625 FAILED FAILED FAILED
3.5 0 -0.226390521 -0.226390521 -1.226390521 FAILED FAILED FAILED
3.4 0 -0.181112417 -0.181112417 -1.181112417 FAILED FAILED FAILED
3.3 0 -0.135834313 -0.135834313 -1.135834313 FAILED FAILED FAILED
3.2 0 -0.090556208 -0.090556208 -1.090556208 FAILED FAILED FAILED
3.1 0 -0.045278104 -0.045278104 -1.045278104 FAILED FAILED FAILED
3 0 -4.0215E-16 -4.0215E-16 -1 FAILED FAILED FAILED

2.9 0 0.045278104 0.045278104 -0.954721896 ok ok FAILED
2.8 0 0.090556208 0.090556208 -0.909443792 ok ok FAILED
2.7 0 0.135834313 0.135834313 -0.864165687 ok ok FAILED
2.6 0 0.181112417 0.181112417 -0.818887583 ok ok FAILED
2.5 0 0.226390521 0.226390521 -0.773609479 ok ok FAILED
2.4 0 0.271668625 0.271668625 -0.728331375 ok ok FAILED
2.3 0 0.316946729 0.316946729 -0.683053271 ok ok FAILED
2.2 0 0.362224833 0.362224833 -0.637775167 ok ok FAILED
2.1 0 0.407502938 0.407502938 -0.592497062 ok ok FAILED
2 0 0.452781042 0.452781042 -0.547218958 ok ok FAILED

1.9 0 0.498059146 0.498059146 -0.501940854 ok ok FAILED
1.8 0 0.54333725 0.54333725 -0.45666275 ok ok FAILED
1.7 0 0.588615354 0.588615354 -0.411384646 ok ok FAILED
1.6 0 0.633893458 0.633893458 -0.366106542 ok ok FAILED
1.5 0 0.679171563 0.679171563 -0.320828437 ok ok FAILED
1.4 0 0.724449667 0.724449667 -0.275550333 ok ok FAILED
1.3 0 0.769727771 0.769727771 -0.230272229 ok ok FAILED
1.2 0 0.815005875 0.815005875 -0.184994125 ok ok FAILED
1.1 0 0.860283979 0.860283979 -0.139716021 ok ok FAILED
1 0 0.905562084 0.905562084 -0.094437916 ok ok FAILED

0.9 0 0.950840188 0.950840188 -0.049159812 ok ok FAILED
0.8 0 0.996118292 0.996118292 -0.003881708 ok ok FAILED

0.799 0 0.996571073 0.996571073 -0.003428927 ok ok FAILED
0.798 0 0.997023854 0.997023854 -0.002976146 ok ok FAILED
0.797 0 0.997476635 0.997476635 -0.002523365 ok ok FAILED
0.796 0 0.997929416 0.997929416 -0.002070584 ok ok FAILED
0.795 0 0.998382197 0.998382197 -0.001617803 ok ok FAILED
0.794 0 0.998834978 0.998834978 -0.001165022 ok ok FAILED
0.793 0 0.999287759 0.999287759 -0.000712241 ok ok FAILED
0.792 0 0.99974054 0.99974054 -0.00025946 ok ok FAILED

0.7919 0 0.999785818 0.999785818 -0.000214182 ok ok FAILED
0.7918 0 0.999831096 0.999831096 -0.000168904 ok ok FAILED
0.7917 0 0.999876375 0.999876375 -0.000123625 ok ok FAILED
0.7916 0 0.999921653 0.999921653 -7.83474E-05 ok ok FAILED
0.7915 0 0.999966931 0.999966931 -3.30693E-05 ok ok FAILED
0.7914 0 1.000012209 1.000012209 1.22088E-05 ok ok ok
0.7913 0 1.000057487 1.000057487 5.74869E-05 ok ok ok
0.7912 0 1.000102765 1.000102765 0.000102765 ok ok ok
0.7911 0 1.000148043 1.000148043 0.000148043 ok ok ok
0.791 0 1.000193321 1.000193321 0.000193321 ok ok ok
0.79 0 1.000646102 1.000646102 0.000646102 ok ok ok
0.7 0 1.041396396 1.041396396 0.041396396 ok ok ok
0.6 0 1.0866745 1.0866745 0.0866745 ok ok ok
0.5 0 1.131952604 1.131952604 0.131952604 ok ok ok
0.4 0 1.177230709 1.177230709 0.177230709 ok ok ok
0.3 0 1.222508813 1.222508813 0.222508813 ok ok ok
0.2 0 1.267786917 1.267786917 0.267786917 ok ok ok
0.1 0 1.313065021 1.313065021 0.313065021 ok ok ok
0 0 1.358343125 1.358343125 0.358343125 ok ok ok

 205

Example code from Excel®. This spreadsheet is actually set up columns A-E,

where column A is xn, B is yn, C is R3, D is R2, and E is R1. It is simply shown here in

this manner as an illustration of the formulas.

LEFT SIDE

xn yn R3
0 =A6*2 =(fn*COS(theta*PI()/180)*(y.12-B6)+fn*SIN(theta*PI()/180)*(x.12-A6))/(SIN(theta*PI()/180)*(x_3-x.12)-COS(theta*P

R2
=(fn*COS(theta*PI()/180)-R3*COS(theta*PI()/180))/-COS(theta*PI()/180)

R1
=fn*SIN(theta*PI()/180)+D6*SIN(theta*PI()/180)+C6*SIN(theta*PI()/180)

R3
=A6+0.1 =A13*2 =(fn*COS(theta*PI()/180)*(y.12-B13)+fn*SIN(theta*PI()/180)*(x.12-A13))/(SIN(theta*PI()/180)*(x_3-x.12)-COS(theta

R2
=(fn*COS(theta*PI()/180)-C13*COS(theta*PI()/180))/-COS(theta*PI()/180)

R1
=fn*SIN(theta*PI()/180)+D13*SIN(theta*PI()/180)+C13*SIN(theta*PI()/180)

RIGHT SIDE
xn yn R3

3 6 =(fn*COS(theta*PI()/180)*(B22-y.12)-fn*SIN(theta*PI()/180)*(A22-x.12))/(SIN(theta*PI()/180)*(x_3-x.12)-COS(theta
R2

=(fn*COS(theta*PI()/180)+C22*COS(theta*PI()/180))/COS(theta*PI()/180)
R1

=fn*SIN(theta*PI()/180)+D22*SIN(theta*PI()/180)+C22*SIN(theta*PI()/180)

R3
=A105+0.1 =-2*A30+=(fn*COS(theta*PI()/180)*(B30-y.12)-fn*SIN(theta*PI()/180)*(A30-x.12))/(SIN(theta*PI()/180)*(x_3-x.12)-COS(theta

R2
=(fn*COS(theta*PI()/180)+C30*COS(theta*PI()/180))/COS(theta*PI()/180)

R1
=fn*SIN(theta*PI()/180)+D30*SIN(theta*PI()/180)+C30*SIN(theta*PI()/180)

BASE SIDE
xn yn R3

6 0 =(fn*(A39-x.12))/(SIN(theta*PI()/180)*(x_3-x.12)-COS(theta*PI()/180)*(y_3-y.12))
R2

=C39
R1

=(D39*SIN(theta*PI()/180)+C39*SIN(theta*PI()/180)-fn)

R3
=A39-0.1 0 =(fn*(A47-x.12))/(SIN(theta*PI()/180)*(x_3-x.12)-COS(theta*PI()/180)*(y_3-y.12))

R2
=C47

R1
=(D47*SIN(theta*PI()/180)+C47*SIN(theta*PI()/180)-fn)

 206

 207

APPENDIX C COMPARING THE GRAPHICAL NESTING FORCE
WINDOW TO THE QUANTITATIVE NESTING FORCE
WINDOW

Object: To determine if the equations of equilibrium and the graphical method to find the

nesting force window agree

C.1 BRIEF DESCRIPTION AND BASELINE RESULTS

First method—equations of equilibrium (Section C.2):

• Use the equations of equilibrium to find the reaction forces at each constraint,

given a certain nesting force position.

• Find the transition points, which happen at the point when the reaction forces are

all positive and then one or more reaction forces become negative.

Second method—graphical approach (Section C.3):

• Follow Blanding’s rules for finding the nesting force window.

• Find the equation of a line for all sides of the assembly.

• Find the equation of a line for the constraint lines of action and the perpendicular

intersections of the transition points.

• Find the intersections of the necessary lines to find the transition points.

 208

Transition points according to the first method (equations of equilibrium):

Along the left side

xn yn R3 R2 R1
2.4376 4.8752 1.000101063 0.000101063 1.000101

Along the right side
xn yn R3 R2 R1

4.553 2.894 0.001029302 1.001029302 1.001029
Along the base

xn yn R3 R2 R1
0.7914 0 1.000102765 1.000102765 0.000001

Transition points according to the second method (graphical approach):

Along the left side

xn yn
2.40 4.80

Along the right side
xn yn

4.60 2.80
Along the base

xn yn
0.75 0

They are essentially the same. The graphical method is limited by round-off error.

C.2 FIRST METHOD: EQUATIONS OF EQUILIBRIUM

Given the following information, the reaction forces at each constraint can be found:

 209

Fn = 1
θ = 30o
x12 = 3
y12 = 2
x3 = 3.5625
y3 = 4.875

Find R3:

+ ΣM12=0 counterclockwise positive

Along the left side of the triangle:

)(*)cos()(*sin(

sinFcos(*F

123123

nn
3 yyxx

xxyy
R nn

−−−)
)−(∗)(∗ +)−(∗)

= 1212

θθ
θθ

Along the right side of the triangle:

)(*)cos()(*sin(

sinFcos(*F

123123

12n12n
3 yyxx

xxyy
R nn

−−−)
)−(∗)(∗ −)−(∗)

=
θθ

θθ

Along the bottom of the triangle:

)(*)cos()(*sin(

cos(*F

123123

12n
3 yyxx

xx
R n

−−−)
)−(∗)

=
θθ

θ

Find R2:

+ ΣFx=0

Along the left side of the triangle:

)cos(

coscos(*F 3n
2 θ

θθ
−

)(∗ −)
=

R
R

Along the right side of the triangle:

)cos(

coscos(*F 3n
2 θ

θθ)(∗ +)
=

R
R

 210

Along the bottom of the triangle:

32 RR =

Find R1:

+ ΣFy=0

Along the left side of the triangle:

)sin(*sinsin(*F 32n1 θθθ RRR +)(∗ +)=

Along the right side of the triangle:

)sin(*sinsin(*F 32n1 θθθ RRR +)(∗ +)=

Along the bottom of the triangle:

n321 F)sin(*sin −+)(∗ = θθ RRR

Overall results (in numbers):

xn yn R3 R2 R1
0 0 -1.463411332 -2.463411332 -1.463411 Left side of the triangle

0.1 0.2 -1.362348303 -2.362348303 -1.362348
0.2 0.4 -1.261285274 -2.261285274 -1.261285
0.3 0.6 -1.160222245 -2.160222245 -1.160222
0.4 0.8 -1.059159216 -2.059159216 -1.059159
0.5 1 -0.958096187 -1.958096187 -0.958096
0.6 1.2 -0.857033158 -1.857033158 -0.857033
0.7 1.4 -0.755970129 -1.755970129 -0.75597
0.8 1.6 -0.6549071 -1.6549071 -0.654907
0.9 1.8 -0.553844071 -1.553844071 -0.553844
1 2 -0.452781042 -1.452781042 -0.452781

1.1 2.2 -0.351718013 -1.351718013 -0.351718
1.2 2.4 -0.250654984 -1.250654984 -0.250655
1.3 2.6 -0.149591955 -1.149591955 -0.149592
1.4 2.8 -0.048528926 -1.048528926 -0.048529
1.5 3 0.052534103 -0.947465897 0.0525341
1.6 3.2 0.153597132 -0.846402868 0.1535971
1.7 3.4 0.254660161 -0.745339839 0.2546602
1.8 3.6 0.35572319 -0.64427681 0.3557232
1.9 3.8 0.456786219 -0.543213781 0.4567862
2 4 0.557849248 -0.442150752 0.5578492

2.1 4.2 0.658912277 -0.341087723 0.6589123
2.2 4.4 0.759975306 -0.240024694 0.7599753
2.3 4.6 0.861038335 -0.138961665 0.8610383
2.4 4.8 0.962101364 -0.037898636 0.9621014
2.41 4.82 0.972207667 -0.027792333 0.9722077
2.42 4.84 0.98231397 -0.01768603 0.982314
2.43 4.86 0.992420273 -0.007579727 0.9924203
2.437 4.874 0.999494685 -0.000505315 0.9994947
2.4371 4.8742 0.999595748 -0.000404252 0.9995957

 211

2.4374 4.8748 0.999898937 -0.000101063 0.9998989
2.4375 4.875 1 6.40988E-16 1

2.4376 4.8752 1.000101063 0.000101063 1.0001011 Approximate transition point
2.4377 4.8754 1.000202126 0.000202126 1.0002021
2.4378 4.8756 1.000303189 0.000303189 1.0003032
2.4379 4.8758 1.000404252 0.000404252 1.0004043
2.438 4.876 1.000505315 0.000505315 1.0005053
2.44 4.88 1.002526576 0.002526576 1.0025266
2.45 4.9 1.012632879 0.012632879 1.0126329
2.5 5 1.063164393 0.063164393 1.0631644
2.6 5.2 1.164227422 0.164227422 1.1642274
2.7 5.4 1.265290451 0.265290451 1.2652905
2.8 5.6 1.36635348 0.36635348 1.3663535
2.9 5.8 1.467416509 0.467416509 1.4674165
3 6 1.568479538 0.568479538 1.5684795

3 6 -1.568479538 -0.568479538 -0.56848 Right side of the triangle
3.1 5.8 -1.467416509 -0.467416509 -0.467417
3.2 5.6 -1.36635348 -0.36635348 -0.366353
3.3 5.4 -1.265290451 -0.265290451 -0.26529
3.4 5.2 -1.164227422 -0.164227422 -0.164227
3.5 5 -1.063164393 -0.063164393 -0.063164
3.6 4.8 -0.962101364 0.037898636 0.0378986
3.7 4.6 -0.861038335 0.138961665 0.1389617
3.8 4.4 -0.759975306 0.240024694 0.2400247
3.9 4.2 -0.658912277 0.341087723 0.3410877
4 4 -0.557849248 0.442150752 0.4421508

4.1 3.8 -0.456786219 0.543213781 0.5432138
4.2 3.6 -0.35572319 0.64427681 0.6442768
4.3 3.4 -0.254660161 0.745339839 0.7453398
4.4 3.2 -0.153597132 0.846402868 0.8464029
4.5 3 -0.052534103 0.947465897 0.9474659
4.51 2.98 -0.0424278 0.9575722 0.9575722
4.52 2.96 -0.032321497 0.967678503 0.9676785
4.53 2.94 -0.022215194 0.977784806 0.9777848
4.54 2.92 -0.012108892 0.987891108 0.9878911
4.55 2.9 -0.002002589 0.997997411 0.9979974
4.551 2.898 -0.000991958 0.999008042 0.999008
4.552 2.896 1.86719E-05 1.000018672 1.0000187

4.553 2.894 0.001029302 1.001029302 1.0010293 Approximate transition point
4.554 2.892 0.002039932 1.002039932 1.0020399
4.555 2.89 0.003050563 1.003050563 1.0030506
4.56 2.88 0.008103714 1.008103714 1.0081037
4.6 2.8 0.048528926 1.048528926 1.0485289
4.7 2.6 0.149591955 1.149591955 1.149592
4.8 2.4 0.250654984 1.250654984 1.250655
4.9 2.2 0.351718013 1.351718013 1.351718
5 2 0.452781042 1.452781042 1.452781

5.1 1.8 0.553844071 1.553844071 1.5538441
5.2 1.6 0.6549071 1.6549071 1.6549071
5.3 1.4 0.755970129 1.755970129 1.7559701
5.4 1.2 0.857033158 1.857033158 1.8570332
5.5 1 0.958096187 1.958096187 1.9580962
5.6 0.8 1.059159216 2.059159216 2.0591592
5.7 0.6 1.160222245 2.160222245 2.1602222
5.8 0.4 1.261285274 2.261285274 2.2612853
5.9 0.2 1.362348303 2.362348303 2.3623483
6 0 1.463411332 2.463411332 2.4634113

6 0 -1.358343125 -1.358343125 -2.358343 Base of the triangle
5.9 0 -1.313065021 -1.313065021 -2.313065
5.8 0 -1.267786917 -1.267786917 -2.267787
5.7 0 -1.222508813 -1.222508813 -2.222509
5.6 0 -1.177230709 -1.177230709 -2.177231
5.5 0 -1.131952604 -1.131952604 -2.131953
5.4 0 -1.0866745 -1.0866745 -2.086675
5.3 0 -1.041396396 -1.041396396 -2.041396
5.2 0 -0.996118292 -0.996118292 -1.996118
5.1 0 -0.950840188 -0.950840188 -1.95084
5 0 -0.905562084 -0.905562084 -1.905562

4.9 0 -0.860283979 -0.860283979 -1.860284
4.8 0 -0.815005875 -0.815005875 -1.815006
4.7 0 -0.769727771 -0.769727771 -1.769728
4.6 0 -0.724449667 -0.724449667 -1.72445

 212

4.5 0 -0.679171563 -0.679171563 -1.679172
4.4 0 -0.633893458 -0.633893458 -1.633893
4.3 0 -0.588615354 -0.588615354 -1.588615
4.2 0 -0.54333725 -0.54333725 -1.543337
4.1 0 -0.498059146 -0.498059146 -1.498059
4 0 -0.452781042 -0.452781042 -1.452781

3.9 0 -0.407502938 -0.407502938 -1.407503
3.8 0 -0.362224833 -0.362224833 -1.362225
3.7 0 -0.316946729 -0.316946729 -1.316947
3.6 0 -0.271668625 -0.271668625 -1.271669
3.5 0 -0.226390521 -0.226390521 -1.226391
3.4 0 -0.181112417 -0.181112417 -1.181112
3.3 0 -0.135834313 -0.135834313 -1.135834
3.2 0 -0.090556208 -0.090556208 -1.090556
3.1 0 -0.045278104 -0.045278104 -1.045278
3 0 -4.0215E-16 -4.0215E-16 -1

2.9 0 0.045278104 0.045278104 -0.954722
2.8 0 0.090556208 0.090556208 -0.909444
2.7 0 0.135834313 0.135834313 -0.864166
2.6 0 0.181112417 0.181112417 -0.818888
2.5 0 0.226390521 0.226390521 -0.773609
2.4 0 0.271668625 0.271668625 -0.728331
2.3 0 0.316946729 0.316946729 -0.683053
2.2 0 0.362224833 0.362224833 -0.637775
2.1 0 0.407502938 0.407502938 -0.592497
2 0 0.452781042 0.452781042 -0.547219

1.9 0 0.498059146 0.498059146 -0.501941
1.8 0 0.54333725 0.54333725 -0.456663
1.7 0 0.588615354 0.588615354 -0.411385
1.6 0 0.633893458 0.633893458 -0.366107
1.5 0 0.679171563 0.679171563 -0.320828
1.4 0 0.724449667 0.724449667 -0.27555
1.3 0 0.769727771 0.769727771 -0.230272
1.2 0 0.815005875 0.815005875 -0.184994
1.1 0 0.860283979 0.860283979 -0.139716
1 0 0.905562084 0.905562084 -0.094438

0.9 0 0.950840188 0.950840188 -0.04916
0.8 0 0.996118292 0.996118292 -0.003882

0.799 0 0.996571073 0.996571073 -0.003429
0.798 0 0.997023854 0.997023854 -0.002976
0.796 0 0.997929416 0.997929416 -0.002071
0.7915 0 0.999966931 0.999966931 -3.31E-05
0.7914 0 1.000012209 1.000012209 1.221E-05
0.7913 0 1.000057487 1.000057487 5.749E-05

0.7912 0 1.000102765 1.000102765 0.0001028 Approximate transition point
0.7911 0 1.000148043 1.000148043 0.000148
0.791 0 1.000193321 1.000193321 0.0001933
0.79 0 1.000646102 1.000646102 0.0006461
0.7 0 1.041396396 1.041396396 0.0413964
0.6 0 1.0866745 1.0866745 0.0866745
0.5 0 1.131952604 1.131952604 0.1319526
0.4 0 1.177230709 1.177230709 0.1772307
0.3 0 1.222508813 1.222508813 0.2225088
0.2 0 1.267786917 1.267786917 0.2677869
0.1 0 1.313065021 1.313065021 0.313065
0 0 1.358343125 1.358343125 0.3583431

 213

C.3 SECOND METHOD: EQUATION OF A LINE TO FIND
INTERSECTION/TRANSITION POINTS

For the given triangle, the equation of a line is found for each side.

Left side:

xy 2=

Right side:

122 +−= xy

Along the bottom:

0=y

Next, the intersection points where the transition points lie must be found. This

can be done by constructing a line perpendicular to each side of the triangle that runs

through the necessary instant center (dashed lines).

 214

Perpendicular (dashed) line for the transition point on the left side of the triangle:

6
2

1 +−= xy

To find the transition point, set the two equations equal:

6
2

1
*2 +−= xx

8.4

4.2

=
=

y

x

Perpendicular (dashed) line for the transition point on the right side of the triangle:

5.0
2

1 += xy

To find the transition point, set the two equations equal:

5.0
2

1
12*2 +=+− xx

8.2

6.4

=
=

y

x

 215

To find the transition point along the bottom of the assembly, take the equation of

a line for the lines of action on constraints 2 and 3, and set them equal to each other (solid

lines).

Equation of a line for the line of action extending from the top right constraint:

5.2
3

2 += xy

Equation of a line for the line of action extending from the left side constraint:

333.3
9

4 +−= xy

To find the intersection point, set the two equations equal:

333.3
9

4
5.2

3

2 +−=+ xx

3

75.0

=
=

y

x

The transition point is found by simply projecting the x-value onto the x-axis:

0

75.0

=
=

y

x

 216

 217

APPENDIX D DETAILED ANALYSIS USING THE EQUATIONS OF
EQUILIBRIUM FOR FIGURE 4.19

This appendix first shows the set-up in Excel® for the equations of equilibrium.

Afterwards, each of the examples in Fig. 4.19 will be solved.

D.1 FORMULAS USED IN EXCEL® FOR FIG. 4.19

r=
Vertical force only

0 0 =-COS(phi*PI()/180)*(x_3-x_12)-SIN(phi*PI()/180)*(y_3-y_12) R1
=-SIN(phi*PI()/180) =COS(phi*PI()/180) =SIN(phi*PI()/180) R2
=COS(phi*PI()/180) =SIN(phi*PI()/180) =-COS(phi*PI()/180) R3

=MINVERSE(M72:O74) =MINVERSE(M72:O74) =MINVERSE(M72:O74)
=MINVERSE(M72:O74) =MINVERSE(M72:O74) =MINVERSE(M72:O74)
=MINVERSE(M72:O74) =MINVERSE(M72:O74) =MINVERSE(M72:O74)

Add the horizontal force

0 0 =-COS(phi*PI()/180)*(x_3-x_12)-SIN(phi*PI()/180)*(y_3-y_12) R1
=-SIN(phi*PI()/180) =COS(phi*PI()/180) =SIN(phi*PI()/180) R2
=COS(phi*PI()/180) =SIN(phi*PI()/180) =-COS(phi*PI()/180) R3

=MINVERSE(M82:O84) =MINVERSE(M82:O84) =MINVERSE(M82:O84)
=MINVERSE(M82:O84) =MINVERSE(M82:O84) =MINVERSE(M82:O84)
=MINVERSE(M82:O84) =MINVERSE(M82:O84) =MINVERSE(M82:O84)

C

 218

b

=-Fn_1*COS(phi*PI()/180)*(xn_1-x_12)+Fn_1*SIN(phi*PI()/180)*(y_12-yn_1)

=Fn_1*SIN(phi*PI()/180)

=-Fn_1*COS(phi*PI()/180)

=MMULT(M76:O78,S72:S74)

=MMULT(M76:O78,S72:S74)

=MMULT(M76:O78,S72:S74)

=-Fn_1*COS(phi*PI()/180)*(xn_1-x_12)+Fn_1*SIN(phi*PI()/180)*(y_12-yn_1)-Fn_2*COS(phi*PI()/180)*(yn_2-y_12)+Fn_2*SIN(phi*PI()/180)*(xn_2-x_12)

=Fn_1*SIN(phi*PI()/180)+Fn_2*COS(phi*PI()/180)

=-Fn_1*COS(phi*PI()/180)+Fn_2*SIN(phi*PI()/180)

=MMULT(M86:O88,S82:S84)

=MMULT(M86:O88,S82:S84)

=MMULT(M86:O88,S82:S84)

D.2 THE RESULTS FOR FIG. 4.19

C1

C2

C3

Fn2

Fn1

R1 = 0.4
R2 = 1.0
R3 = 1.4

Force Analysis

Vertical force only (Nesting force is along the base of the block)
x_1= 1 0 0 -5 -6
y_1= 0 7.733E-17 1 -7.73E-17 -7.7E-17

1 -7.73E-17 -1 -1
x_2= 0
y_2= 2.5 -0.2 7.73E-17 1 0.2

0 1 -7.73E-17 0
x_3= 6 -0.2 0 0 1.2
y_3= 6.6667

Fn_1= 1 Add on the horizontal force (Vertical nesting force along the base, horizontal along the right)
Fn_2= 1 0 0 -5 -7
xn_1= 7 7.733E-17 1 -7.73E-17 1
yn_1= -4.64E-16 1 -7.73E-17 -1 -1
xn_2= 10
yn_2= 3.5 -0.2 7.73E-17 1 0.4 R1
x_12= 1 0 1 -7.73E-17 1 R2
y_12= 2.5 -0.2 0 0 1.4 R3

Transition points:
xn1_top = 1

xn1_base= 6

yn2_right= 2.5

 219

C1

C2

C3

Fn2

Fn1

R1 = 0.25
R2 = 1.0
R3 = 1.25

Force Analysis

Vertical force only (Nesting force is along the base of the block)
x_1= 6 0 0 4 6
y_1= 0 7.733E-17 1 -7.73E-17 -7.7E-17

1 -7.73E-17 -1 -1
x_2= 0
y_2= 2.5 0.25 7.73E-17 1 0.5

0 1 -7.73E-17 0
x_3= 2 0.25 0 0 1.5
y_3= 6.6667

Fn_1= 1 Add on the horizontal force (Vertical nesting force along the base, horizontal along the right)
Fn_2= 1 0 0 4 5
xn_1= 0 7.733E-17 1 -7.73E-17 1
yn_1= 7.73E-17 1 -7.73E-17 -1 -1
xn_2= 15
yn_2= 3.5 0.25 7.73E-17 1 0.25 R1
x_12= 6 0 1 -7.73E-17 1 R2
y_12= 2.5 0.25 0 0 1.25 R3

Transition points:
xn1_top = 6

xn1_base= 2

yn2_right= 2.5

C1

C2

C3

No nesting force allowed anywhere
else or the block will have play

R1 = -infinity
R2 = 1.0
R3 = -infinity

Fn2

Force Analysis

Vertical force only (Nesting force is along the base of the block)
x_1= 5 0 0 3.22E-16 5
y_1= 0 7.733E-17 1 -7.73E-17 -7.7E-17

1 -7.73E-17 -1 -1
x_2= 0
y_2= 2.5 3.104E+15 7.73E-17 1 1.55E+16

0 1 -7.73E-17 0
x_3= 5 3.104E+15 0 0 1.55E+16
y_3= 6.6667

Fn_1= 1 Add on the horizontal force (Vertical nesting force along the base, horizontal along the right)
Fn_2= 1 0 0 3.22E-16 5
xn_1= 0 7.733E-17 1 -7.73E-17 1
yn_1= 7.73E-17 1 -7.73E-17 -1 -1
xn_2= 14
yn_2= 2.5 3.104E+15 7.73E-17 1 1.55E+16 R1
x_12= 5 0 1 -7.73E-17 1 R2
y_12= 2.5 3.104E+15 0 0 1.55E+16 R3

Transition points:
xn1_top = ---

xn1_base= ---

yn2_right= 2.5

 220

C1

C2

C3

Fn2

Fn1

R1 = 0.33
R2 = 1.0
R3 = 1.33

Force Analysis

Vertical force only (Nesting force is along the base of the block)
x_1= 2 0 0 -6 -7.5
y_1= 0 7.733E-17 1 -7.73E-17 -7.7E-17

1 -7.73E-17 -1 -1
x_2= 0
y_2= 4.5 -0.166667 7.73E-17 1 0.25

0 1 -7.73E-17 0
x_3= 8 -0.166667 0 0 1.25
y_3= 6.6667

Fn_1= 1 Add on the horizontal force (Vertical nesting force along the base, horizontal along the right)
Fn_2= 1 0 0 -6 -8
xn_1= 9.5 7.733E-17 1 -7.73E-17 1
yn_1= -6.57E-16 1 -7.73E-17 -1 -1
xn_2= 11
yn_2= 5 -0.166667 7.73E-17 1 0.333333 R1
x_12= 2 0 1 -7.73E-17 1 R2
y_12= 4.5 -0.166667 0 0 1.333333 R3

Transition points:
xn1_top = 2

xn1_base= 8

yn2_right= 4.5

C1

C2

C3

Fn2

Fn1

R1 = 0.1
R2 = 1.0
R3 = 1.1

Force Analysis

Vertical force only (Nesting force is along the base of the block)
x_1= 0 0 0 -10 -10
y_1= 0 7.733E-17 1 -7.73E-17 -7.7E-17

1 -7.73E-17 -1 -1
x_2= 0
y_2= 2.5 -0.1 7.73E-17 1 0

0 1 -7.73E-17 0
x_3= 10 -0.1 0 0 1
y_3= 6.6667

Fn_1= 1 Add on the horizontal force (Vertical nesting force along the base, horizontal along the right)
Fn_2= 1 0 0 -10 -11
xn_1= 10 7.733E-17 1 -7.73E-17 1
yn_1= -6.96E-16 1 -7.73E-17 -1 -1
xn_2= 9
yn_2= 3.5 -0.1 7.73E-17 1 0.1 R1
x_12= 7.73E-17 0 1 -7.73E-17 1 R2
y_12= 2.5 -0.1 0 0 1.1 R3

Transition points:
xn1_top = 0

xn1_base= 10

yn2_right= 2.5

 221

APPENDIX E DETAILS FOR THE MONTE CARLO SIMULATION
EXAMPLES IN CHAPTER 6

This appendix contains the detailed analysis and programs used to find the results

for the Monte Carlo simulations performed in Chapter 6. Each section contains the C

program developed for the example and the Excel® spreadsheet (if one exists) used to

verify the results. Further description for the development of the slotted block example is

also presented.

E.1 ALL BLOCKS WITH THREE CONSTRAINTS (SECTIONS 6.3.1 AND 6.3.2)

The C program shown below allows for all three constraints to be varied in both

directions. The starting points are changed for each set-up presented.

#include <math.h>
#include <stdio.h>
#include "LUD.h"

#define EPS 0.000001
#define PERTURB 0.000001
#define PI 3.14159265

void func(double d[], double f[]);
double resid(double f[], int nVar);
double rad(double deg);
double nr(double angle);

double x1, z1, x2, y2, x3, y3;
double xp, yp, h, w;
int nfail;

float ran1(int *idum);
float gasdev(int *idum);

 222

/*---
 MONTE CARLO
---*/
main ()
{
 double error1, error;
 int iSeed, i, nloop;

 iSeed = -5;
 nfail = 0;
 error = 0.;
 printf ("Enter number of loops\n");
 scanf ("%d", &nloop);

 for (i=1; i<=nloop; i++)
 {
 /* generate random deviates from the starting points */

 x1 = gasdev(&iSeed) * 0.2 + 2.0;
 z1 = gasdev(&iSeed) * 0.2 + 0.0;
 x2 = gasdev(&iSeed) * 0.2 + 0.0;
 y2 = gasdev(&iSeed) * 0.2 + 3.35;
 x3 = gasdev(&iSeed) * 0.2 + 8.0;
 y3 = gasdev(&iSeed) * 0.2 + 6.667;

 printf ("x1,y1:%lf %lf\nx2,y2:%lf %lf\nx3,y3:%lf %lf\n", x1,
z1, x2, y2, x3, y3);

 error1 = nr(0.);
 error += fabs(error1);
 }

 /* output scalar AF values */

 printf ("nfail = %d\n", nfail);
 printf ("error average = %lf\n", error/(nloop-nfail));

}

/*---
 NR routine
---*/

double nr(double angle)
{
 int i, j, nRow, nCol, nB, nVar, count, pvt[MAX_ROWS];
 double a[MAX_ROWS][MAX_COLS], b[MAX_ROWS], det;
 double d[MAX_ROWS], f1[MAX_ROWS], f[MAX_ROWS], totalResid;
 double error, xd1, xd2, yd1, yd2;

 /* initialize x */

 223

 nVar = 4;
 d[0] = angle;
 d[1] = y2;
 d[2] = x1;
 d[3] = x3;

 /* call functions */
 func(d,f);

 /* compute residuals */
 totalResid = resid(f,nVar);

 /* enter main loop */
 count = 0;

 while (fabs(totalResid) > EPS)
 {
 count++;

 /* Evaluate the Jacobian */
 for (i=0; i<nVar; i++)
 {
 /* perturb x */
 d[i] = d[i] + PERTURB;
 func(d, f1);

 for (j = 0; j<nVar; j++)
 {
 a[j][i] = (f1[j]-f[j]) / PERTURB;
 }
 d[i] = d[i] - PERTURB;
 }

 /* printf ("matrix a:\n");
 for (i=0; i<nVar; i++)
 {
 for (j=0; j<nVar; j++)
 {
 printf("%lf ", a[i][j]);
 }
 printf("\n");
 }
 printf("\n"); */

 /* Make sure the functions are current */
 func(d, f);

 /* load b vector */
 for (i=0; i<nVar; i++)
 {
 b[i] = -f[i];
 }

 224

 /*printf ("vector b:\n");
 for (i=0; i<nVar; i++)
 {
 printf("%lf ", b[i]);
 }
 printf("\n"); */

 /* call LU DECOMPOSITION routine */
 det = LUDecomp(a, nVar, pvt);
 LUSolve(a, nVar, b, pvt);

 /* printf ("matrix a:\n");
 for (i=0; i<nVar; i++)
 {
 for (j=0; j<nVar; j++)
 {
 printf("%lf ", a[i][j]);
 }
 printf("\n");
 } */

 /* compute new value for x */
 for (i=0; i<nVar; i++)
 {
 d[i] = d[i] + b[i];
 }

 /*printf ("new d:\n");
 for (i=0; i<nVar; i++)
 {
 printf("%lf ", d[i]);
 }
 printf("\n"); */

 /* evaluate the function's residuals */
 func(d, f);
 totalResid = resid(f, nVar);
 if (count > 15)
 {
 nfail +=1;
 printf("Failure in NR\n");
 break;
 }
 }

 /*--
 EVALUATE ERROR
 --*/
 if (count <= 15)
 {

 225

 xd1=x2 + sin(rad(d[0]))*d[1];
 yd1=y2 - cos(rad(d[0]))*d[1];
 xd2=xd1 + w*cos(rad(d[0]));
 yd2=yd1 + w*sin(rad(d[0]));

 error = pow((xp-xd1),2.)+pow((yp-yd1),2.)+pow(((xp+w)-
xd2),2.)+pow((yp-yd2),2.);
 error=sqrt(error);
 printf("u1: %lf\nu2: %lf\nu3: %lf\nphi: %lf\n",
d[2],d[1],d[3],d[0]);
 /*printf("xd1, yd1, xd2, yd2, angle: %lf %lf %lf %lf
%lf\n",xd1, yd1, xd2, yd2, d[0]);
 printf("Count: %d, Error: %lf\n", count, error);*/
 return(error);
 }

}

/*--
 DLM Equations
---*/
void func(double d[], double f[])
{
 h=6.667;
 w=10.0;
 xp=0.;
 yp=0.;

 f[0] = x1*cos(rad(0.)) + z1*cos(rad(90.)) +
d[2]*cos(rad(180.+d[0])) + d[1]*cos(rad(90.+d[0])) +
x2*cos(rad(180.)) + y2*cos(rad(270.));
 f[1] = x1*sin(rad(0.)) + z1*sin(rad(90.)) +
d[2]*sin(rad(180.+d[0])) + d[1]*sin(rad(90.+d[0])) +
x2*sin(rad(180.)) + y2*sin(rad(270.));
 f[2] = x1*cos(rad(0.)) + z1*cos(rad(90.)) +
d[2]*cos(rad(180.+d[0])) + h*cos(rad(90.+d[0])) +
d[3]*cos(rad(d[0])) + x3*cos(rad(180.)) + y3*cos(rad(270.));
 f[3] = x1*sin(rad(0.)) + z1*sin(rad(90.)) +
d[2]*sin(rad(180.+d[0])) + h*sin(rad(90.+d[0])) +
d[3]*sin(rad(d[0])) + x3*sin(rad(180.)) + y3*sin(rad(270.));
}

/*--
 RESIDUALS
---*/
double resid(double f[], int nVar)
{
 int i;
 double tot;

 tot = 0;
 for (i=0; i<nVar; i++)

 226

 {
 tot = tot + f[i]*f[i];
 }
 return (sqrt(tot));
}

/*--
 RADIANS/DEGREES CONVERSION
---*/

double rad(double deg)
{
 return(deg*PI/180.);
}

/*---
 GASDEV routine (for monte carlo)
--*/
float gasdev(int *idum)
{
 static int iset=0;
 static float gset;
 float fac, r, v1, v2;
 float ran1();

 if (iset == 0)
 {
 do
 {
 v1 = 2.0 * ran1(idum) - 1.0;
 v2 = 2.0 * ran1(idum) - 1.0;
 r = v1 * v1 + v2 * v2;
 }
 while(r >= 1.0 || r == 0);
 fac = sqrt(-2.0*log(r)/r);
 gset = v1 * fac;
 iset = 1;
 return v2 * fac;
 }
 else
 {
 iset = 0;
 return gset;
 }
}

/*---
 RAN1 routine
--*/
#define M1 259200

 227

#define IA1 7141
#define IC1 54773
#define RM1 (1.0/M1)
#define M2 134456
#define IA2 8121
#define IC2 28411
#define RM2 (1.0/M2)
#define M3 24300
#define IA3 4561
#define IC3 51349

float ran1(int *idum)
{
 static long ix1, ix2, ix3;
 static double r[98];
 double temp;
 static int iff=0;
 int j;

 if (*idum < 0 || iff == 0)
 {
 iff = 1;
 ix1 = (IC1-(*idum)) % M1;
 ix1 = (IA1*ix1+IC1) % M1;
 ix2 = ix1 % M2;
 ix1 = (IA1*ix1+IC1) % M1;
 ix3 = ix1 % M3;
 for (j=1; j<=97; j++)
 {
 ix1 = (IA1*ix1+IC1) % M1;
 ix2 = (IA2*ix2+IC2) % M2;
 r[j] = (ix1+ix2+RM2)* RM1;

 }
 *idum=1;
 }
 ix1 = (IA1*ix1+IC1) %M1;
 ix2 = (IA2*ix2+IC2) %M2;
 ix3 = (IA3*ix3+IC3) %M3;
 j = 1+((97*ix3)/M3);
 if (j>97 || j<1) printf("RAN1: This cannot happen\n");
 r[j] = (ix1+ix2*RM2)*RM1;
 temp = r[j];

 /*printf("the ran1: %d %d\n", ix1, ix2);*/

 return temp;
}

 228

The formulas used in the spreadsheet.

length= 10
height= 6.6667
x_base= 0
y_base= 0
x_1= 2.4
y_1= -0.08
x_2= -0.05
y_2= 3.1
x_3= 7.5
y_3= 7

VECTOR LOOPS
k_1= =x_1+x_base
k_2= =y_1+y_base
k_3= =x_2+x_base
k_4= =y_2+y_base
k_5= =height
k_6= =(x_3+x_base)
k_7= =y_3+y_base
u_1= 2.19811669790986
u_2= 3.35904495092889
u_3= 7.82763809053195
phi= 4.41187319831158
hx1= =k_1*COS(0*PI()/180)+k_2*COS(90*PI()/180)+u_1*COS((180+phi)*PI()/180)+u_2*COS((90+phi)*PI()/180)+k_3*COS(180*PI()/180)+k_4*COS(270*PI()/180)
hy1= =k_1*SIN(0*PI()/180)+k_2*SIN(90*PI()/180)+u_1*SIN((180+phi)*PI()/180)+u_2*SIN((90+phi)*PI()/180)+k_3*SIN(180*PI()/180)+k_4*SIN(270*PI()/180)
htheta1= =0+90+90+phi-90+90-phi+90+90
hx2= =k_1*COS(0*PI()/180)+k_2*COS(90*PI()/180)+u_1*COS((180+phi)*PI()/180)+k_5*COS((90+phi)*PI()/180)+u_3*COS(phi*PI()/180)+k_6*COS(180*PI()/180)+k_7*COS(270*PI()/180)
hy2= =k_1*SIN(0*PI()/180)+k_2*SIN(90*PI()/180)+u_1*SIN((180+phi)*PI()/180)+k_5*SIN((90+phi)*PI()/180)+u_3*SIN(phi*PI()/180)+k_6*SIN(180*PI()/180)+k_7*SIN(270*PI()/180)
htheta2= =0+90+90+phi-90-90+180+90-phi+90

Error
xd1= =x_2 + SIN(phi*PI()/180)*u_2
yd1= =y_2 - COS(phi*PI()/180)*u_2
xd2= =xd_1 + length*COS(phi*PI()/180)
yd2= =yd_1 +length*SIN(phi*PI()/180)
error = =(x_base-xd_1)^2+(y_base-yd_1)^2+((x_base+length)-xd_2)^2+(y_base-yd_2)^2
sqrt error= =SQRT(error)

 229

Example results from the spreadsheet above.

length= 10
height= 6.6667

x_base= 0
y_base= 0

x_1= 2.4
y_1= -0.08

x_2= -0.05
y_2= 3.1

x_3= 7.5
y_3= 7

VECTOR LOOPS
k_1= 2.4
k_2= -0.08
k_3= -0.05
k_4= 3.1
k_5= 6.6667
k_6= 7.5
k_7= 7
u_1= 2.198116698
u_2= 3.359044951
u_3= 7.827638091
phi= 4.411873198

hx1= 8.44935E-13
hy1= -7.66942E-13
htheta1= 360

hx2= 5.00534E-13
hy2= -1.08002E-12
htheta2= 360

Error
xd1= 0.20839669
yd1= -0.249091538
xd2= 10.17876502
yd2= 0.520164883

error = 0.408004211
sqrt error= 0.638752073

 230

E.2 BLOCK WITH FOUR CONSTRAINTS (SECTION 6.3.3)

The C program shown below allows for all four constraints to be varied in both

directions. The starting points are changed for each set-up presented.

#include <math.h>
#include <stdio.h>
#include "LUD.h"

#define EPS 0.000001
#define PERTURB 0.000001
#define PI 3.14159265

void func1(double d[], double f[]);
void func2(double d[], double f[]);
void func3(double d[], double f[]);
double resid1(double f[], int nVar);
double resid2(double f[], int nVar);
double resid3(double f[], int nVar);
double rad(double deg);
double nr1(double angle);
double nr2(double angle);
double nr3(double angle);

double x1, z1, x2, y2, x3, y3, x4,
y4;
double xp, yp, h, w;
int nfail1, nfail2, nfail3;
int constraintfail1, constraintfail2,
constraintfail3;
int nochance1,nochance2, nochance3;
int fail1, fail2, fail3, never, one,
two, three, assembled;

float ran1(int *idum);
float gasdev(int *idum);

/*-----------------------------------

MONTE CARLO
-----------------------------------*/
main ()
{
 double errorcase1, errorcase2,
errorcase3, error1, error2, error3;
 double maxerror, totmaxerror,
error, erroroverall;
 double averrorone, averrortwo,
averrorthree, averagetwo,
averagethree;
 int iSeed, i, nloop, icnt, ierror;

 iSeed = -5;
 nfail1 = 0;
 nfail2 = 0;
 nfail3 = 0;
 constraintfail1 = 0;
 constraintfail2 = 0;
 constraintfail3 = 0;
 nochance1 = 0;

 nochance2 = 0;
 nochance3 = 0;
 error1 = 0.;
 error2 = 0.;
 error3 = 0.;
 never = 0;
 one = 0;
 two = 0;
 three = 0;
 averrorone = 0.;
 averrortwo = 0.;
 averrorthree = 0.;

 printf ("Enter number of
loops\n");
 scanf ("%d", &nloop);

 for (i=1; i<=nloop; i++)
 {
 /* generate random deviates */

 x1 = gasdev(&iSeed) * 0.2 + 2.0;
 z1 = gasdev(&iSeed) * 0.2 +
0.00;
 x2 = gasdev(&iSeed) * 0.2 +
0.00;
 y2 = gasdev(&iSeed) * 0.2 + 2.5;
 x3 = gasdev(&iSeed) * 0.2 + 4.0;
 y3 = gasdev(&iSeed) * 0.2 +
6.667;
 x4 = gasdev(&iSeed) * 0.2 + 5.5;
 y4 = gasdev(&iSeed) * 0.2 +
0.00;

 error1 = nr1(0.);
 error2 = nr2(0.);
 error3 = nr3(0.);

 if ((fail1 == 1) && (fail2 ==
1) && (fail3 == 1))
 {
 never += 1;
 }

 if (((fail1 == 1) && (fail2 ==
1) && (fail3 == 0)) || ((fail2 == 1)
&& (fail3 == 1) && (fail1 == 0)) ||
((fail1 == 1) && (fail3 == 1) &&
(fail2 == 0)))
 {
 one += 1;
 averrorone +=
(error1+error2+error3);
 }

 231

 if (((fail1 == 1) && (fail2 ==
0) && (fail3 == 0)) || ((fail2 == 1)
&& (fail3 == 0) && (fail1 == 0)) ||
((fail1 == 0) && (fail3 == 1) &&
(fail2 == 0)))
 {
 two += 1;
 averagetwo =
(error1+error2+error3)/2;
 averrortwo += averagetwo;
 }

 if (((fail1 == 0) && (fail2 ==
0) && (fail3 == 0)) || ((fail2 == 0)
&& (fail3 == 0) && (fail1 == 0)) ||
((fail1 == 0) && (fail3 == 0) &&
(fail2 == 0)))
 {
 three += 1;
 averagethree =
(error1+error2+error3)/3;
 averrorthree += averagethree;
 }

 maxerror = 0.;
 erroroverall = 0.;
 icnt = 0;

 if ((fail1 == 0) || (fail2 == 0)
|| (fail3 == 0))
 {
 assembled += 1;

 if(fail1 == 0)
 {
 if(fabs(error1) >
maxerror) maxerror = fabs(error1);
 erroroverall +=
fabs(error1);
 icnt += 1;
 }

 if (fail2 == 0)
 {
 if(fabs(error2) >
maxerror) maxerror = fabs(error2);
 erroroverall +=
fabs(error2);
 icnt += 1;
 }

 if (fail3 == 0)
 {
 if(fabs(error3) >
maxerror) maxerror = fabs(error3);
 erroroverall +=
fabs(error3);
 icnt += 1;
 }

 if (erroroverall != 0.)
 {

 ierror += 1;
 error +=
(erroroverall/icnt);
 totmaxerror += (maxerror);
 }
 }

 errorcase1 += fabs(error1);
 errorcase2 += fabs(error2);
 errorcase3 += fabs(error3);
 }

 /* output scalar AF values */

 /*printf ("nfail1 =
%d\n", nfail1);
 printf ("constraintfail1 = %d\n",
constraintfail1);
 printf ("nochance1 = %d\n",
nochance1);
 printf ("nfail2 = %d\n",
nfail2);
 printf ("constraintfail2 = %d\n",
constraintfail2);
 printf ("nochance2 = %d\n",
nochance2);
 printf ("nfail3 = %d\n",
nfail3);
 printf ("constraintfail3 = %d\n",
constraintfail3);
 printf ("nochance3 = %d\n",
nochance3);*/
 printf ("error average1 = %lf\n",
errorcase1/(nloop-
(constraintfail1+nfail1-nochance1)));
 printf ("error average2 = %lf\n",
errorcase2/(nloop-
(constraintfail2+nfail2-nochance2)));
 printf ("error average3 = %lf\n",
errorcase3/(nloop-
(constraintfail3+nfail3-nochance3)));
 printf ("never assembles = %d\n",
never);
 printf ("one assembles = %d\n",
one);
 printf ("error for one = %lf\n",
averrorone/(one));
 printf ("two assemble = %d\n",
two);
 printf ("error for two = %lf\n",
averrortwo/(two));
 printf ("three assemble = %d\n",
three);
 printf ("error for three = %lf\n",
averrorthree/(three));
 printf ("Total assembled = %d\n",
assembled);
 printf ("average error = %lf\n",
error/(ierror));
 printf ("Max ave error = %lf\n",
totmaxerror/(ierror));

}

 232

/*-----------------------------------

NR routine-Case 1
-----------------------------------*/
double nr1(double angle)
{
 int i, j, nRow, nCol, nB, nVar,
count1, pvt[MAX_ROWS];
 double a[MAX_ROWS][MAX_COLS],
b[MAX_ROWS], det;
 double d[MAX_ROWS], f1[MAX_ROWS],
f[MAX_ROWS], totalResid1;
 double error1, xd1, xd2, yd1, yd2,
yc4;

 /* initialize x */
 nVar = 4;
 d[0] = angle;
 d[1] = y2;
 d[2] = x1;
 d[3] = x3;

 /* call functions */
 func1(d,f);

 /* compute residuals */
 totalResid1 = resid1(f,nVar);

 /* enter main loop */
 count1 = 0;
 fail1 = 0;

 while (fabs(totalResid1) > EPS)
 {
 count1++;
 /*printf ("Residuals %lf\n",
totalResid);*/

 /* Evaluate the Jacobian */
 for (i=0; i<nVar; i++)
 {
 /* perturb x */
 d[i] = d[i] + PERTURB;
 func1(d, f1);

 for (j = 0; j<nVar; j++)
 {
 a[j][i] = (f1[j]-f[j]) /
PERTURB;
 }
 d[i] = d[i] - PERTURB;
 }

 /* Make sure the functions are
current */
 func1(d, f);

 /* load b vector */
 for (i=0; i<nVar; i++)
 {
 b[i] = -f[i];
 }

 /* print out vector b */
 /*printf ("vector b:\n");
 for (i=0; i<nVar; i++)
 {
 printf("%lf ", b[i]);
 }
 printf("\n"); */

 /* call LU DECOMPOSITION
routine */
 det = LUDecomp(a, nVar, pvt);
 LUSolve(a, nVar, b, pvt);

 /* print out matrix a */
 /* printf ("matrix a:\n");
 for (i=0; i<nVar; i++)
 {
 for (j=0; j<nVar; j++)
 {
 printf("%lf ", a[i][j]);
 }
 printf("\n");
 } */

 /* print out vector b */
 /*printf ("delta x:\n");
 for (i=0; i<nVar; i++)
 {
 printf("%lf ", b[i]);
 }
 printf("\n"); */

 /* compute new value for x */
 for (i=0; i<nVar; i++)
 {
 d[i] = d[i] + b[i];
 }

 /* print new d */
 /*printf ("new d:\n");
 for (i=0; i<nVar; i++)
 {
 printf("%lf ", d[i]);
 }
 printf("\n"); */

 /* evaluate the function's
residuals */
 func1(d, f);
 totalResid1 = resid1(f, nVar);
 if (count1 > 15)
 {
 nfail1 +=1;
 /*printf("Failure in
NR1\n");*/
 break;
 }
 }

/*--------------------------------

CHECK THE 4TH CONSTRAINT

 233

 -------------------------*/
 xd1=x2 + sin(rad(d[0]))*d[1];
 yd1=y2 - cos(rad(d[0]))*d[1];
 xd2=xd1 + w*cos(rad(d[0]));
 yd2=yd1 + w*sin(rad(d[0]));

 yc4=((yd2-yd1)/(xd2-
xd1))*x4+((xd1-
x2)*tan(rad(d[0]))+yd1);

 if ((count1 > 15) && (y4 >
yc4))
 {
 nochance1 +=1;
 }

 if((count1 > 15) || (y4 > yc4))
 {
 fail1 = 1;
 }

 if (y4 > yc4)
 {
 constraintfail1 +=1;
 /*printf("Constraint4
crashed\n");*/
 error1=0.0;
 return(error1);
 }

/*--------------------------------

EVALUATE ERROR
 -------------------------------*/

 if ((y4 < yc4) && (count1 <=
15))
 {
 error1 = pow((xp-
xd1),2.)+pow((yp-
yd1),2.)+pow(((xp+w)-
xd2),2.)+pow((yp-yd2),2.);
 error1 = sqrt(error1);
 /*printf("u1: %lf\nu2:
%lf\nu3: %lf\nphi: %lf\n",
d[2],d[1],d[3],d[0]);*/
 /*printf("xd1, yd1, xd2,
yd2, angle: %lf %lf %lf %lf
%lf\n",xd1, yd1, xd2, yd2, d[0]);
 /*printf("Count: %d,
Error: %lf\n", count, error);*/
 return(error1);

 }

}

/*--------------------------------DLM

Equations
--------------------------------*/
void func1(double d[], double f[])
{
 h=6.667;

 w=10.0;
 xp=0.0;
 yp=0.0;

 f[0] = x1*cos(rad(0.)) +
z1*cos(rad(90.)) +
d[2]*cos(rad(180.+d[0])) +
d[1]*cos(rad(90.+d[0])) +
x2*cos(rad(180.)) +
y2*cos(rad(270.));
 f[1] = x1*sin(rad(0.)) +
z1*sin(rad(90.)) +
d[2]*sin(rad(180.+d[0])) +
d[1]*sin(rad(90.+d[0])) +
x2*sin(rad(180.)) +
y2*sin(rad(270.));
 f[2] = x1*cos(rad(0.)) +
z1*cos(rad(90.)) +
d[2]*cos(rad(180.+d[0])) +
h*cos(rad(90.+d[0])) +
d[3]*cos(rad(d[0])) +
x3*cos(rad(180.)) +
y3*cos(rad(270.));
 f[3] = x1*sin(rad(0.)) +
z1*sin(rad(90.)) +
d[2]*sin(rad(180.+d[0])) +
h*sin(rad(90.+d[0])) +
d[3]*sin(rad(d[0])) +
x3*sin(rad(180.)) +
y3*sin(rad(270.));
}

/*--------------------------------

RESIDUALS
--------------------------------*/
double resid1(double f[], int nVar)
{
 int i;
 double tot;

 tot = 0;
 for (i=0; i<nVar; i++)
 {
 tot = tot + f[i]*f[i];
 }
 return (sqrt(tot));
}

/*-----------------------------------

NR routine-Case 2
-----------------------------------*/
double nr2(double angle)
{
 int i, j, nRow, nCol, nB, nVar,
count2, pvt[MAX_ROWS];
 double a[MAX_ROWS][MAX_COLS],
b[MAX_ROWS], det;
 double d[MAX_ROWS], f1[MAX_ROWS],
f[MAX_ROWS], totalResid2;
 double error2, xd1, xd2, yd1, yd2,
yc1;

 /* initialize x */

 234

 nVar = 4;
 d[0] = angle;
 d[1] = y2;
 d[2] = x4;
 d[3] = x3;

 /* call functions */
 func2(d,f);

 /* compute residuals */
 totalResid2 = resid2(f,nVar);

 /* enter main loop */
 count2 = 0;
 fail2 = 0;

 while (fabs(totalResid2) > EPS)
 {
 count2++;
 /*printf ("Residuals %lf\n",
totalResid);*/

 /* Evaluate the Jacobian */
 for (i=0; i<nVar; i++)
 {
 /* perturb x */
 d[i] = d[i] + PERTURB;
 func2(d, f1);

 for (j = 0; j<nVar; j++)
 {
 a[j][i] = (f1[j]-f[j]) /
PERTURB;
 }
 d[i] = d[i] - PERTURB;
 }

 /* printf ("matrix a:\n");
 for (i=0; i<nVar; i++)
 {
 for (j=0; j<nVar; j++)
 {
 printf("%lf ", a[i][j]);
 }
 printf("\n");
 }
 printf("\n"); */

 /* Make sure the functions are
current */
 func2(d, f);

 /* load b vector */
 for (i=0; i<nVar; i++)
 {
 b[i] = -f[i];
 }

 /* print out vector b */
 /*printf ("vector b:\n");
 for (i=0; i<nVar; i++)
 {
 printf("%lf ", b[i]);

 }
 printf("\n"); */

 /* call LU DECOMPOSITION
routine */
 det = LUDecomp(a, nVar, pvt);
 LUSolve(a, nVar, b, pvt);

 /* print out matrix a */
 /* printf ("matrix a:\n");
 for (i=0; i<nVar; i++)
 {
 for (j=0; j<nVar; j++)
 {
 printf("%lf ", a[i][j]);
 }
 printf("\n");
 } */

 /*printf ("delta x:\n");
 for (i=0; i<nVar; i++)
 {
 printf("%lf ", b[i]);
 }
 printf("\n"); */

 /* compute new value for x */
 for (i=0; i<nVar; i++)
 {
 d[i] = d[i] + b[i];
 }

 /* print new d */
 /*printf ("new d:\n");
 for (i=0; i<nVar; i++)
 {
 printf("%lf ", d[i]);
 }
 printf("\n"); */

 /* evaluate the function's
residuals */
 func2(d, f);
 totalResid2 = resid2(f, nVar);
 if (count2 > 15)
 {
 nfail2 +=1;
 /*printf("Failure in
NR2\n");*/
 break;
 }
 }

/*--------------------------------

CHECK THE 4TH CONSTRAINT
 ---------------------------------*/
 xd1=x2 + sin(rad(d[0]))*d[1];
 yd1=y2 - cos(rad(d[0]))*d[1];
 xd2=xd1 + w*cos(rad(d[0]));
 yd2=yd1 + w*sin(rad(d[0]));

 235

 yc1=((yd2-yd1)/(xd2-
xd1))*x1+((xd1-
x2)*tan(rad(d[0]))+yd1);

 if ((count2 > 15) && (z1 >
yc1))
 {
 nochance2 +=1;
 }

 if ((count2 > 15) || (z1 >
yc1))
 {
 fail2 = 1;
 }

 if (z1 > yc1)
 {
 constraintfail2 +=1;
 /*printf("Constraint1
crashed\n");*/
 error2=0.0;
 return(error2);
 }

/*--------------------------------

EVALUATE ERROR
 --------------------------------*/

 if ((z1 < yc1) && (count2 <=
15))
 {
 error2 = pow((xp-
xd1),2.)+pow((yp-
yd1),2.)+pow(((xp+w)-
xd2),2.)+pow((yp-yd2),2.);
 error2 = sqrt(error2);
 /*printf("u1: %lf\nu2:
%lf\nu3: %lf\nphi: %lf\n",
 d[2],d[1],d[3],d[0]);*/
 /*printf("xd1, yd1, xd2,
yd2, angle: %lf %lf %lf %lf
%lf\n",xd1, yd1, xd2, yd2, d[0]);
 printf("Count: %d, Error:
%lf\n", count, error);*/
 return(error2);
 }

}

/*--------------------------------DLM

Equations
--------------------------------*/
void func2(double d[], double f[])
{
 h= 6.667;
 w= 10.0;
 xp=0.;
 yp=0.;

 f[0] = x4*cos(rad(0.)) +
y4*cos(rad(90.)) +
d[2]*cos(rad(180.+d[0])) +
d[1]*cos(rad(90.+d[0])) +
x2*cos(rad(180.)) +
y2*cos(rad(270.));
 f[1] = x4*sin(rad(0.)) +
y4*sin(rad(90.)) +
d[2]*sin(rad(180.+d[0])) +
d[1]*sin(rad(90.+d[0])) +
x2*sin(rad(180.)) +
y2*sin(rad(270.));
 f[2] = x4*cos(rad(0.)) +
y4*cos(rad(90.)) +
d[2]*cos(rad(180.+d[0])) +
h*cos(rad(90.+d[0])) +
d[3]*cos(rad(d[0])) +
x3*cos(rad(180.)) +
y3*cos(rad(270.));
 f[3] = x4*sin(rad(0.)) +
y4*sin(rad(90.)) +
d[2]*sin(rad(180.+d[0])) +
h*sin(rad(90.+d[0])) +
d[3]*sin(rad(d[0])) +
x3*sin(rad(180.)) +
y3*sin(rad(270.));
}

/*--------------------------------

RESIDUALS
--------------------------------*/
double resid2(double f[], int nVar)
{
 int i;
 double tot;

 tot = 0;
 for (i=0; i<nVar; i++)
 {
 tot = tot + f[i]*f[i];
 }
 return (sqrt(tot));
}

/*-----------------------------------

NR routine-Case 3
-----------------------------------*/
double nr3(double angle)
{
 int i, j, nRow, nCol, nB, nVar,
count3, pvt[MAX_ROWS];
 double a[MAX_ROWS][MAX_COLS],
b[MAX_ROWS], det;
 double d[MAX_ROWS], f1[MAX_ROWS],
f[MAX_ROWS], totalResid3;
 double error3, xd1, xd2, yd1, yd2,
yc3;

 /* initialize x */
 nVar = 4;
 d[0] = angle;

 236

 d[1] = y2;
 d[2] = x1;
 d[3] = x4;

 /* call functions */
 func3(d,f);

 /* compute residuals */
 totalResid3 = resid3(f,nVar);

 /* enter main loop */
 count3 = 0;
 fail3 = 0;

 while (fabs(totalResid3) > EPS)
 {
 count3++;
 /*printf ("Residuals %lf\n",
totalResid);*/

 /* Evaluate the Jacobian */
 for (i=0; i<nVar; i++)
 {
 /* perturb x */
 d[i] = d[i] + PERTURB;
 func3(d, f1);

 for (j = 0; j<nVar; j++)
 {
 a[j][i] = (f1[j]-f[j]) /
PERTURB;
 }
 d[i] = d[i] - PERTURB;
 }

 /* printf ("matrix a:\n");
 for (i=0; i<nVar; i++)
 {
 for (j=0; j<nVar; j++)
 {
 printf("%lf ", a[i][j]);
 }
 printf("\n");
 }
 printf("\n"); */

 /* Make sure the functions are
current */
 func3(d, f);

 /* load b vector */
 for (i=0; i<nVar; i++)
 {
 b[i] = -f[i];
 }

 /*printf ("vector b:\n");
 for (i=0; i<nVar; i++)
 {
 printf("%lf ", b[i]);
 }
 printf("\n"); */

 /* call LU DECOMPOSITION
routine */
 det = LUDecomp(a, nVar, pvt);
 LUSolve(a, nVar, b, pvt);

 /* printf ("matrix a:\n");
 for (i=0; i<nVar; i++)
 {
 for (j=0; j<nVar; j++)
 {
 printf("%lf ", a[i][j]);
 }
 printf("\n");
 } */

 /*printf ("delta x:\n");
 for (i=0; i<nVar; i++)
 {
 printf("%lf ", b[i]);
 }
 printf("\n"); */

 /* compute new value for x */
 for (i=0; i<nVar; i++)
 {
 d[i] = d[i] + b[i];
 }

 /* print new d */
 /*printf ("new d:\n");
 for (i=0; i<nVar; i++)
 {
 printf("%lf ", d[i]);
 }
 printf("\n"); */

 /* evaluate the function's
residuals */
 func3(d, f);
 totalResid3 = resid3(f, nVar);
 if (count3 > 15)
 {
 nfail3 +=1;
 printf("Failure in NR3\n");
 break;
 }
 }

/*--------------------------------

CHECK THE 4TH CONSTRAINT
 ---------------------------------*/
 xd1=x2 + sin(rad(d[0]))*d[1];
 yd1=y2 - cos(rad(d[0]))*d[1];
 xd2=xd1 + w*cos(rad(d[0]));
 yd2=yd1 + w*sin(rad(d[0]));

 yc3=((yd2-yd1)/(xd2-
xd1))*x3+(((xd1-x2)*tan(rad(d[0]))+
yd1)+ h);

 /*printf("count3 = %d\n",
count3);

 237

 printf("y3 = %lf\n", y3);
 printf("yc3 = %lf\n", yc3);*/

 if ((count3 > 15) && (y3 <
yc3))
 {
 nochance3 +=1;
 }

 /*printf("fail3beforeif =
%d\n", fail3);*/

 if((count3 > 15) || (y3 < yc3))
 {
 fail3 = 1;
 }

 /*printf("fail3afterif = %d\n",
fail3);*/

 if (y3 < yc3)
 {
 constraintfail3 +=1;
 /*printf("Constraint3
crashed\n");*/
 error3 = 0.0;
 return(error3);
 }

/*-------------------------------
EVALUATE ERROR

 -------------------------------*/

 if ((y3 > yc3) && (count3 <=
15))
 {
 error3 = pow((xp-
xd1),2.)+pow((yp-
yd1),2.)+pow(((xp+w)-
xd2),2.)+pow((yp-yd2),2.);
 error3 = sqrt(error3);
 /*printf("u1: %lf\nu2:
%lf\nu3: %lf\nphi: %lf\n",
d[2],d[1],d[3],d[0]);*/
 /*printf("xd1, yd1, xd2,
yd2, angle: %lf %lf %lf %lf
%lf\n",xd1, yd1, xd2, yd2, d[0]);
 printf("Count: %d, Error:
%lf\n", count, error);*/
 return(error3);
 }

}

/*--------------------------------DLM

Equations
--------------------------------*/
void func3(double d[], double f[])
{
 h=6.667;
 w=10.0;
 xp=0.;

 yp=0.;

 f[0] = x1*cos(rad(0.)) +
z1*cos(rad(90.)) +
d[2]*cos(rad(180.+d[0])) +
d[1]*cos(rad(90.+d[0])) +
x2*cos(rad(180.)) +
y2*cos(rad(270.));
 f[1] = x1*sin(rad(0.)) +
z1*sin(rad(90.)) +
d[2]*sin(rad(180.+d[0])) +
d[1]*sin(rad(90.+d[0])) +
x2*sin(rad(180.)) +
y2*sin(rad(270.));
 f[2] = x4*cos(rad(0.)) +
y4*cos(rad(90.)) +
d[3]*cos(rad(180.+d[0])) +
d[1]*cos(rad(90.+d[0])) +
x2*cos(rad(180.)) +
y2*cos(rad(270.));
 f[3] = x4*sin(rad(0.)) +
y4*sin(rad(90.)) +
d[3]*sin(rad(180.+d[0])) +
d[1]*sin(rad(90.+d[0])) +
x2*sin(rad(180.)) +
y2*sin(rad(270.));
}

/*--------------------------------

RESIDUALS
--------------------------------*/
double resid3(double f[], int nVar)
{
 int i;
 double tot;

 tot = 0;
 for (i=0; i<nVar; i++)
 {
 tot = tot + f[i]*f[i];
 }
 return (sqrt(tot));
}

/*-----------------------------------

RADIANS/DEGREES CONVERSION
-----------------------------------*/
double rad(double deg)
{
 return(deg*PI/180.);
}

/*-----------------------------------

GASDEV routine (for monte carlo)
-----------------------------------*/
float gasdev(int *idum)
{
 static int iset=0;
 static float gset;
 float fac, r, v1, v2;
 float ran1();

 if (iset == 0)

 238

 {
 do
 {
 v1 = 2.0 * ran1(idum) - 1.0;
 v2 = 2.0 * ran1(idum) - 1.0;
 r = v1 * v1 + v2 * v2;
 }
 while(r >= 1.0 || r == 0);
 fac = sqrt(-2.0*log(r)/r);
 gset = v1 * fac;
 iset = 1;
 return v2 * fac;
 }
 else
 {
 iset = 0;
 return gset;
 }
}

/*-----------------------------------

RAN1 routine
-----------------------------------*/
#define M1 259200
#define IA1 7141
#define IC1 54773
#define RM1 (1.0/M1)
#define M2 134456
#define IA2 8121
#define IC2 28411
#define RM2 (1.0/M2)
#define M3 24300
#define IA3 4561
#define IC3 51349

float ran1(int *idum)
{
 static long ix1, ix2, ix3;
 static double r[98];

 double temp;
 static int iff=0;
 int j;

 if (*idum < 0 || iff == 0)
 {
 iff = 1;
 ix1 = (IC1-(*idum)) % M1;
 ix1 = (IA1*ix1+IC1) % M1;
 ix2 = ix1 % M2;
 ix1 = (IA1*ix1+IC1) % M1;
 ix3 = ix1 % M3;
 for (j=1; j<=97; j++)
 {
 ix1 = (IA1*ix1+IC1) % M1;
 ix2 = (IA2*ix2+IC2) % M2;
 r[j] = (ix1+ix2+RM2)* RM1;

 }
 *idum=1;
 }
 ix1 = (IA1*ix1+IC1) %M1;
 ix2 = (IA2*ix2+IC2) %M2;
 ix3 = (IA3*ix3+IC3) %M3;
 j = 1+((97*ix3)/M3);
 if (j>97 || j<1) printf("RAN1:
This cannot happen\n");
 r[j] = (ix1+ix2*RM2)*RM1;
 temp = r[j];

 /*printf("the ran1: %d %d\n", ix1,
ix2);*/

 return temp;
}

E.3 SLOTTED BLOCK ASSEMBLY (SECTION 6.3.4)

The C program shown below allows the right peg to be varied in the x-

direction. The starting slot angle is input for each set-up presented in the thesis.

#include <math.h>
#include <stdio.h>
#include "LUD.h"

#define EPS 0.000001
#define PERTURB 0.000001
#define PI 3.14159265

void func(double d[], double f[]);
double resid(double f[], int nVar);
double rad(double deg);

double nr(double angle);

double x1, y1, x2, y2, x3, y3, x4,
y4, r, phi;
double xp, yp, delx, dely, theta;
int nfail;

float ran1(int *idum);
float gasdev(int *idum);

 239

/*-----------------------------------
MONTE CARLO

-----------------------------------*/
main ()
{
 double error1, error, theta, d[1],
y, x;
 int iSeed, i, nloop;

 FILE *data;

 /* Information for the slot:
 distance from center of slot to
bottom = 0.5
 distance from center of slot to
left sd= 2 */

 y = 0.5;
 x = 2.0;

 printf ("Angle of the slot
(CCW+):\n");
 scanf ("%lf", &phi);

 /* to help find x2 */
 delx = cos(rad(((180.- phi)/2)-
(atan(y/x)*180./PI)))*2*sin(rad(phi/2
)) *
 (y/sin((atan(y/x))));

 /* to help find y3 */
 dely = sin(rad(((180.- phi)/2.)-
(atan(y/x)*180./PI)))*2.*sin(rad(phi/
2.)) *
 (y/sin((atan(y/x))));

 /*printf ("delx: %lf\n dely:
%lf\n", delx, dely);*/

 x1 = 2.5;
 x2 = 4 + delx;
 x3 = 2;
 y1 = 3;
 y2 = 2;
 y3 = 2 - dely;
 y4 = 3;
 r = 0.5;

 iSeed = -5;
 nfail = 0;
 error = 0.;

 strcat("data", "1.txt");
 data = fopen("data", "w");

 printf ("Enter number of
loops\n");
 scanf ("%d", &nloop);

 for (i=1; i<=nloop; i++)
 {
 /* generate random deviates */

 x4 = gasdev(&iSeed) * 0.3 +
6.5;

 printf ("x4:%lf\n", x4);

 error1 = nr(0.);
 error += fabs(error1);
 }

 /* output scalar AF values */

 printf ("nfail = %d\n", nfail);
 fprintf (data,"nfail = %d\n",
nfail);
 printf ("error average =
%lf\n", error/(nloop-nfail));
 fprintf (data,"error average =
%lf\n", error/(nloop-nfail));

 fclose(data);

}

/*--------------------------------

NR routine

-*/
double nr(double angle)
{
 int i, j, nRow, nCol, nB, nVar,
count, pvt[MAX_ROWS];
 double a[MAX_ROWS][MAX_COLS],
b[MAX_ROWS], det;
 double d[MAX_ROWS],
f1[MAX_ROWS], f[MAX_ROWS],
totalResid;
 double error, xd1, xd2, yd1,
yd2, u1, base, x_left, x_right;
 double y_left, y_right, theta,
wanted_angle, angle1, angle2;
 double dxold, dyold, xp, yp,
length_side, length_bottom;

 /* initialize d */
 nVar = 2;
 d[0] = angle;
 d[1] = 2.;

 /* call functions */
 func(d,f);

 /* compute residuals */
 totalResid = resid(f,nVar);

 /* enter main loop */
 count = 0;

 while (fabs(totalResid) > EPS)
 {
 count++;
 /*printf ("Residuals %lf\n",
totalResid);*/

 240

 /* Evaluate the Jacobian */
 for (i=0; i<nVar; i++)
 {
 /* perturb x */
 d[i] = d[i] + PERTURB;
 func(d, f1);

 for (j = 0; j<nVar; j++)
 {
 a[j][i] = (f1[j]-f[j]) /
PERTURB;
 }
 d[i] = d[i] - PERTURB;
 }

 /* printf ("matrix a:\n");
 for (i=0; i<nVar; i++)
 {
 for (j=0; j<nVar; j++)
 {
 printf("%lf ", a[i][j]);
 }
 printf("\n");
 }
 printf("\n"); */

 /* Make sure the functions are
current */
 func(d, f);

 /* load b vector */
 for (i=0; i<nVar; i++)
 {
 b[i] = -f[i];
 }

 /*printf ("vector b:\n");
 for (i=0; i<nVar; i++)
 {
 printf("%lf ", b[i]);
 }
 printf("\n"); */

 /* call LU DECOMPOSITION
routine */
 det = LUDecomp(a, nVar, pvt);
 LUSolve(a, nVar, b, pvt);

 /* print out matrix a */
 /* printf ("matrix a:\n");
 for (i=0; i<nVar; i++)
 {
 for (j=0; j<nVar; j++)
 {
 printf("%lf ", a[i][j]);
 }
 printf("\n");
 } */

 /* print out vector b */
 /*printf ("delta x:\n");
 for (i=0; i<nVar; i++)

 {
 printf("%lf ", b[i]);
 }
 printf("\n"); */

 /* compute new value for x
*/
 for (i=0; i<nVar; i++)
 {
 d[i] = d[i] + b[i];
 }

 /* print new d */
 /*printf ("new d:\n");
 for (i=0; i<nVar; i++)
 {
 printf("%lf ", d[i]);
 }
 printf("\n"); */

 /* evaluate the function's
residuals */
 func(d, f);
 totalResid = resid(f, nVar);
 if (count > 15)
 {
 nfail +=1;
 printf("Failure in NR\n");
 break;
 }
 }

 while(d[0] > 360 || d[0] < -
180)
 {
 if(d[0] >= 0)
 {
 d[0] = 360 - d[0];
 }
 if (d[0] < 0)
 {
 d[0] = 360 + d[0];
 }

 }

/*--------------------------------

EVALUATE ERROR

-*/

 if (count <= 15)
 {
 dxold=2;
 dyold=2.5;
 base = 9.0;
 xp = 0.5;
 yp = 0.5;
 theta = d[0];

 241

 length_side =
sqrt(pow(dxold,2)+pow(dyold,2));
 length_bottom =
tan(rad(theta))*length_side;

angle1=atan(dyold/dxold)*180/PI;
 angle2=(180-theta)/2;
 wanted_angle = 180-
(theta+angle1+angle2);

 x_left = xp +
cos(rad(wanted_angle)) *
length_bottom;
 y_left = yp -
sin(rad(wanted_angle)) *
length_bottom;

 x_right = x_left + base *
cos(rad(theta));
 y_right = y_left + base *
sin(rad(theta));

 error = pow((xp-
x_left),2)+pow((yp-
y_left),2)+pow((((xp+base)-
x_right)),2)
 +pow((yp-
y_right),2);
 error = sqrt(error);

 /*printf("x_left: %lf
y_left: %lf\n x_right: %lf y_right:
%lf\n angle:
 %lf\n", x_left, y_left,
x_right, y_right, theta);*/

 printf("u1: %lf angle:
%lf\n", d[1], theta);

 /*printf("Simulation number
%d, Error: %lf\n", count, error);*/

 return(error);
 }
}

/*--------------------------------DLM

Equations
--------------------------------*/

void func(double d[], double f[])
{
 f[0] = x1*cos(rad(0.)) +
y1*cos(rad(90.))+r*cos(rad(270.+d[0])
)
 + y2*cos(rad(270.+d[0])) +
x3*cos(rad(180.+d[0]))
 + x2*cos(rad(d[0])) +
y3*cos(rad(90.+d[0]))
 + d[1]*cos(rad(d[0]+phi)) +
r*cos(rad(90.+d[0]+phi))

 + y4*cos(rad(270.)) +
x4*cos(rad(180.));

 f[1] = x1*sin(rad(0.)) +
y1*sin(rad(90.))+r*sin(rad(270.+d[
0]))
 + y2*sin(rad(270.+d[0]))
+ x3*sin(rad(180.+d[0]))
 + x2*sin(rad(d[0])) +
y3*sin(rad(90.+d[0]))
 +
d[1]*sin(rad(d[0]+phi)) +
r*sin(rad(90.+d[0]+phi))
 + y4*sin(rad(270.)) +
x4*sin(rad(180.));
}

/*--------------------------------

RESIDUALS

-*/

double resid(double f[], int nVar)
{
 int i;
 double tot;

 tot = 0;
 for (i=0; i<nVar; i++)
 {
 tot = tot + f[i]*f[i];
 }
 return (sqrt(tot));
}

/*--------------------------------

RADIANS/DEGREES CONVERSION

-*/

double rad(double deg)
{
 return(deg*PI/180.);
}

/*--------------------------------
GASDEV routine (for monte carlo)

-*/

float gasdev(int *idum)
{
 static int iset=0;
 static float gset;
 float fac, r, v1, v2;
 float ran1();

 if (iset == 0)
 {
 do
 {

 242

 v1 = 2.0 * ran1(idum) - 1.0;
 v2 = 2.0 * ran1(idum) - 1.0;
 r = v1 * v1 + v2 * v2;
 }
 while(r >= 1.0 || r == 0);
 fac = sqrt(-2.0*log(r)/r);
 gset = v1 * fac;
 iset = 1;
 return v2 * fac;
 }
 else
 {
 iset = 0;
 return gset;
 }
}

/*--------------------------------

RAN1 routine
--------------------------------*/

#define M1 259200
#define IA1 7141
#define IC1 54773
#define RM1 (1.0/M1)
#define M2 134456
#define IA2 8121
#define IC2 28411
#define RM2 (1.0/M2)
#define M3 24300
#define IA3 4561
#define IC3 51349

float ran1(int *idum)
{
 static long ix1, ix2, ix3;

 static double r[98];
 double temp;
 static int iff=0;
 int j;

 if (*idum < 0 || iff == 0)
 {
 iff = 1;
 ix1 = (IC1-(*idum)) % M1;
 ix1 = (IA1*ix1+IC1) % M1;
 ix2 = ix1 % M2;
 ix1 = (IA1*ix1+IC1) % M1;
 ix3 = ix1 % M3;
 for (j=1; j<=97; j++)
 {
 ix1 = (IA1*ix1+IC1) % M1;
 ix2 = (IA2*ix2+IC2) % M2;
 r[j] = (ix1+ix2+RM2)*
RM1;

 }
 *idum=1;
 }
 ix1 = (IA1*ix1+IC1) %M1;
 ix2 = (IA2*ix2+IC2) %M2;
 ix3 = (IA3*ix3+IC3) %M3;
 j = 1+((97*ix3)/M3);
 if (j>97 || j<1) printf("RAN1:
This cannot happen\n");
 r[j] = (ix1+ix2*RM2)*RM1;
 temp = r[j];

 /*printf("the ran1: %d %d\n",
ix1, ix2);*/

 return temp;
}

The formulas used in the spreadsheet

x_1= 2.5
x_2= =E23
x_3= 2
x_4= 6.5
y_1= 3
y_2= 2
y_3= =E24
y_4= 3
r_1= 0.5
phi= =E12

theta= -9.0174693536082E-11
u_1= 2

 243

To find the x_2 and y_3 information

xold= 4
yold= 2

x1= 2
y1= 0.5
theta1= =ATAN(Y1/X1)*180/PI()

h= =Y1/SIN(theta1*PI()/180)

rotated slot= 45

half rot slot= =0.5*rotated slot
1/2 l= =SIN(half rotated slot*PI()/180)*h
l= =2*1/2*l

theta2= =(180-rotated slot)/2
thetanew= =theta2-theta1

del x= =COS(thetanew*PI()/180)*l
del y= =SIN(thetanew*PI()/180)*l

x_2= =xold+delx
y_3= =yold-dely

To find the x_left and y_left
dxold= 2
dyold= 2.5

length r-0= =SQRT(dxold^2+dyold^2)
length bot= =TAN(theta*PI()/180)*(lengthr-0)
angle 1= =ATAN(dyold/dxold)*180/PI()
angle 2= =(180-theta)/2

angle want= =180-(theta+angle1+angle2)

x_left= =0.5+COS(wanted_angle*PI()/180)*bottom_length
y_left= =0.5-SIN(wanted_angle*PI()/180)*bottom_length

To find x_right and y_right
base= 9

x_right =x_left+base*COS(theta*PI()/180)
y_right =y_left+base*SIN(theta*PI()/180)

 244

hx =
=x_1*COS(0*PI()/180)+y_1*COS(90*PI()/180)+r_1*COS(270*PI()/180+theta*PI()/180)+y
_2*COS(270*PI()/180+theta*PI()/180)+x_3*COS(180*PI()/180+theta*PI()/180)+x_2*COS
(theta*PI()/180)+y_3*COS(90*PI()/180+theta*PI()/180)+u_1*COS(theta*PI()/180+phi*PI(
)/180)+r_1*COS(theta*PI()/180+phi*PI()/180+90*PI()/180)+y_4*COS(270*PI()/180)+x_4*

COS(180*PI()/180)

hy=
=x_1*SIN(0*PI()/180)+y_1*SIN(90*PI()/180)+r_1*SIN(270*PI()/180+theta*PI()/180)+y_2*
SIN(270*PI()/180+theta*PI()/180)+x_3*SIN(180*PI()/180+theta*PI()/180)+x_2*SIN(theta*
PI()/180)+y_3*SIN(90*PI()/180+theta*PI()/180)+u_1*SIN(theta*PI()/180+phi*PI()/180)+r_
1*SIN(theta*PI()/180+phi*PI()/180+90*PI()/180)+y_4*SIN(270*PI()/180)+x_4*SIN(180*PI

()/180)

htheta= =0+90+180+theta+0-90-180+90-phi+90+180-theta-phi-90-180

phi = =(90-htheta)/2

Error
overall= =(0.5-x_left)^2+(0.5-y_left)^2+((0.5+9)-x_right)^2+(0.5-y_right)^2
sqrt= =SQRT(overall)

 245

Example results from the spreadsheet above

x_1= 2.5 To find the x_2 and y_3 information
x_2= 4.939339828
x_3= 2 xold= 4
x_4= 6.5 yold= 2
y_1= 3
y_2= 2 x1= 2
y_3= 0.732233047 y1= 0.5
y_4= 3 theta1= 14.03624347
r_1= 0.5
phi= 45 h= 2.061552813

theta= -9.01747E-11
u_1= 2 rotated slot= 45

half rot slot= 22.5
hx= 0 1/2 l= 0.788922106
hy= -6.29461E-12 l= 1.577844213

htheta= 0

phi= 45 theta2= 67.5
thetanew= 53.46375653

del x= 0.939339828
del y= 1.267766953

x_2= 4.939339828
y_3= 0.732233047

Error To find the x_left and y_left
overall= 1.62243E-22 dxold= 2
sqrt= 1.27375E-11 dyold= 2.5

length r-0= 3.201562119
length bot= -5.03876E-12
angle 1= 51.34019175
angle 2= 90

angle want= 38.65980825

x_left= 0.5
y_left= 0.5

To find x_right and y_right
base= 9

x_right 9.5
y_right 0.5

 246

Background to the slotted block problem

In industry, it is common to use slots in order to accommodate variation in a

design. Some slots can be considered as passive smart assemblies because they absorb

variation in dimensions. However, it is possible that a slot can over-constrain the

problem, and perhaps lead to detrimental results. To show the effects of exact constraint

vs. over-constraint on an assembly, the following design will be used.

This assembly is composed of a base block with two pins rigidly connected. The

top plate has a hole on the left side manufactured so as to always be able to fit over the

pin. The tolerance variation of the hole is not under consideration in this problem. On

the right of the plate is a slot. Again, the pin can fit perfectly between the edges of the

slot if the part assembles. The variation in the size or width of the slot is not under

consideration.

If the slot is at 0o (its nominal position), the assembly is exactly constrained. It is

synonymous to the figure below.

 247

However, if the slot is at 90o, as shown in the figure below, the assembly is now over-

constrained in the x-direction and under-constrained in rotation. In other words, there

may be some play in the block.

The assembly at 90o is synonymous with the figure below.

 248

In this problem, the right pin in the slotted block is allowed to vary its position in

the x-direction. The angle of the slot (user-defined) is allowed to vary between 0o and

90o. A Monte Carlo simulation will be run to determine if the block can assemble given

the position of the right pin and the angle of the slot.

Development of the problem

In order to determine if the block will assemble, the vector loop equations will be

used. The assembly with the vector loops is shown below. The slot has been rotated 45o,

and the plate is allowed to rotate in order to assemble.

x1

x2
x3

x4

y1 y2
y3

y4

r r

u1

Notice there is only one loop. It is assumed for this problem that there are 2 parts:

the block and the plate. There are 2 joints, one revolute joint from the pin fitting in the

hole, and one cylindrical joint where the pin touches only one side of the slot (with

almost no clearance on the other side). Thus, according to the equation L = J – P + 1,

there should only be one loop.

 249

The vector loop equations that result from this setup are given below.

hx = x1 cos(0) + y1 cos(90) + r cos(270 + θ) + y2 cos(270 + θ)+ x3 cos(180 + θ) + x2

cos(θ) + y3 cos(90 + θ) + u1 cos(θ+ φ) + r cos(θ + φ+ 90) + y4 cos(270) + x4

cos(180)

hy = x1 sin(0) + y1 sin(90) + r sin(270 + θ) + y2 sin(270 + θ)+ x3 sin(180 + θ) +
x2 sin(θ) + y3 sin(90 + θ) + u1 sin(θ+ φ) + r sin(θ+ φ+ 90) + y4 sin(270) + x4

sin(180)

hθ = 0 + 90 + 180 + θ + 0 – 90 – 180 + 90 – φ + 90 + 180 – θ – φ – 90 – 180

Where θ is the angle between the top plate and the base, and φ is the angle of the slot.

The unknowns for this problem are u1 and θ. Most of the other dimensions

necessary for a solution are easily pulled from a CAD model of the assembly. However,

in order to find x2 and y3, some calculations need to be performed based on the angle of

the slot.

Finding x2 and y3

In order to proceed with an analysis of this slotted assembly, x2 and y3 must be

found. This can be done using geometries, and the derivation will be shown with the help

of the following figure.

 250

In this figure, the slot is shown in both the 0o position and the 45o position. To

find both x2 and y3, the location of the bottom left corner must be found for both slots.

The bottom left corner for the slot at 0o is simply pulled from the CAD drawing. It is the

distance from the left corner of the plate to the left bottom corner of the slot. Thus, for

the slot at 0o, x2 is 4, and y3 is 2.

However, to find these values for the 45o slot requires some calculation. The next

figure helps to show that through the rules of a right triangle, the length of the upper sides

of the bolded triangle can be found.

2.0

0.5 ϕ1

 251

It is known that the distance from the center of the slot to the left edge is 2.0 in the

x-direction and 0.5 in the y-direction. Thus, the hypotenuse of this upper triangle, which

represents the side length of the bolded triangle, is simply

06155.25.02 22 =+=hypotenuse

This length is also the length of the opposite side of the bolded triangle, relating

the center of the slots to the corner on the 45o slot. Now, the angle marked as φ1 must be

found for future use. Again, from the geometry,

o1
1 96.75

5.0

2
tan =






= −ϕ

Now, consider the following figure. Because the slot has been rotated 45o, θ1

must be 45o.

2.0

0.5 θ1
θ2

θ2

2.062

 252

The θ2’s are the same angle, due to the nature of the triangle. They are simply

computed, as shown below.

o
2 5.67

2

45180 =−=θ .

To find the third side of the bolded triangle requires the next figure. The bolded

triangle has been divided into two. Each of the known dimensions is listed in the figure.

To find half the length of the side in question requires a simple calculation, shown below

the figure.

2.062

l

22.5
o

67.5
o

ϕ3

∆y

∆x

5778.1

7889.006155.2*)5.22sin(
2

1 o

=

==

l

l

To find ϕ3,

 253

o
3 54.365.6796.75180 =−−=ϕ

The change in the x and y-direction can now be found:

()
() 9393.057784.1*54.36sin

2677.157784.1*54.36cos
o

o

==∆
==∆

x

y

To now find x2 and y3, simply add each change to the nominal positions. The

following table shows all values for the independent variables.

Variable value
x1 2.5
x2 4+∆x
x3 2.0
x4 variable
y1 3.0
y2 2.0
y3 2 - ∆y
y4 3.0
r 0.5

Error

One final consideration before the Monte Carlo simulation is run is the error. The

assembly is considered to have no error if the bases of the block and the plate are parallel.

If there is any angle between them, the error is calculated as the square root sum of the

squares of this difference between the nominal positions of the corners of the plate and

the new positions of the corners of the plate.

 254

Consider the following figure. The error is the square root of the sum of the

squares for the difference in the x and y-positions of each corner.

 255

APPENDIX F 3D JOINTS IN ASSEMBLIES

While assemblies in 3D will not be treated in this thesis, it is important to note

that Waldron and Kinzel [1999] demonstrate two types of 3D joints: lower pair joints and

higher pair joints. Lower pair joints are those joints that keep all points of the mating

surfaces of the links in contact. Higher pair joints only keep contact on isolated points or

along line segments. They also suggest that there are six distinct lower pair joints, and an

infinite number of higher pair joints (Fig. F.1).

Revolute
Hinge

Turning Pair

Prismatic joint
Slider

Sliding pair

Screw joint
Helical joint
Helical pair

Cylindric joint
Cylindric pair

Spherical joint
Ball joint

Spherical pair

Planar joint
Planar pair

Figure F.1 – Six lower pair joints for 3D assemblies (after Waldron and Kinzel
[1999]). The arrows represent the allowable degrees of freedom.

 256

 257

APPENDIX G RECIPROCAL RELATIONSHIP FOR FIG. 5.12

Table G.1 – Relationship between the equations of equilibrium and the DLM for
the block with three constraints.

 C (Equilibrium) B (DLM)
More unknowns than equations

5 equations
6 unknowns

Over-constrained Under-constrained

More equations than unknowns
5 unknowns
6 equations

Under-constrained Over-constrained

Exactly constrained
OR

Exactly constrained
OR

Over-constrained:
columns are linearly

dependent
OR

Under-constrained:
column goes to zero
columns are linearly

dependent
OR

Equal number of equations and
unknowns

5/6 equations
5/6 unknowns

Under-constrained:
row goes to zero

column goes to zero

Over-constrained:
row goes to zero
rows are linearly

dependent

 258

 259

BIBLIOGRAPHY

Adams, Jeffrey D. Feature Based Analysis of Selective Limited Motion in Assemblies.

Master of Science Thesis, Massachusetts: Massachusetts Institute of Technology,
1998.

Adams, Jeffrey D.; Whitney, Daniel E. “Application of Screw Theory to Constraint

Analysis of Assemblies of Rigid Parts.” Proceedings of the 1999 IEEE
International Symposium on Assembly and Task Planning, Portugal, July, 1999.

Adams, Jeffrey D.; Whitney, Daniel E. “Application of Screw Theory to Constraint

Analysis of Mechanical Assemblies Joined by Features.” Journal of Mechanical
Design: Transactions of the ASME, Vol. 123, pp. 26-32, March 2001.

Ball, Robert Stawell. A Treatise on the Theory of Screws. Cambridge: Cambridge

University Press, 1900.

Blanding, Douglass L. Exact Constraint: Machine Design Using Kinematic Principles,

ASME Press, 1999.

Chase, Kenneth W. “Chap. 13--Multi-Dimensional Tolerance Analysis.” Dimensioning

& Tolerancing Handbook, McGraw-Hill, 1999.

Chase, Kenneth W.; Gao, Jinsong; Magleby, Spencer; Sorensen, Carl. “Including

Geometric Feature Variations in Tolerance Analysis of Mechanical Assemblies.”
IIE (Institute of Industrial Engineers) Transactions, Chapman & Hall Ltd., pp.
795-807, 10 Oct 1996.

Downey, Kristopher D. A Formal Methodology for Smart Assembly Design. Master of

Science Thesis, Provo, Utah: Brigham Young University, December 2001.

Downey Kristopher D.; Parkinson, Alan; Chase, Kenneth. “Smart Assemblies for Robust

Design: A Progress Report.” Proceedings of 2002 ASME Design Automation
Conference, Paper DETC2002/DAC-34135, 2002.

Evans, Chris. Precision Engineering: An Evolutionary View, Cranfield Press, 1989.

Faerber, Paul. Tolerance Analysis of Assemblies Using Kinematically-Derived

Sensitivities. Master of Science Thesis, Provo, Utah: Brigham Young University,
1999.

 260

French, Michael. Form, Structure and Mechanism, Springer-Verlag, 1992.

French, Michael. Conceptual Design for Engineers, Springer-Verlag, 3rd edition, 1998.

Gao, Jinson; Chase, Kenneth W.; Magleby, Spencer P. "Global Coordinate Method for

Determining Sensitivity in Assembly Tolerance Analysis." Proceedings of the
ASME International Mechanical Engineering Conference and Exposition,
Anaheim, CA, Nov. 15-20, 1998.

Hammond, Alisha M.; Parkinson, Alan R. “On the Robustness of Exactly Constrained

Mechanical Assemblies.” Proceedings of 2003 ASME Design Automation
Conference, Paper DETC2003/DAC48840, 2003.

Kamm, Lawrence J. Designing Cost-Efficient Mechanisms: Minimum Constraint Design,

Design with Commercial Components, and Topics in Design Engineering,
McGraw-Hill, 1990, reprinted by the Society of Automotive Engineers, 1993.

Kriegel, Jon M. “Exact Constraint Design.” ASME International ME Congress and

Exhibition (Winter Annual Meeting), Paper 94-WA/DE-18, pp. 1-9, November
1994.

Kriegel, Jon M. “Exact Constraint Design.” Mechanical Engineering, Vol. 117, pp. 88-

90, May 1995.

Konkar, Ranjit. Incremental Kinematic Analysis and Symbolic Synthesis of Mechanisms.

Doctor of Philosophy Dissertation, Palo Alto, California: Stanford University,
June 1993.

Konkar, Ranjit; Cutkosky, M. “Incremental Kinematic Analysis of Mechanisms.”

Journal of Mechanical Design, Vol. 117, pp. 589-596, December 1995.

Niven, W. D. “General Considerations Concerning Scientific Apparatus.” The Scientific

Papers of James Clerk Maxwell: Vol 2, Dover Publications, 1890.

Parkinson, Alan. “Robust Mechanical Design Using Engineering Models.” Journal of

Mechanical Design, Vol. 117, pp. 48-54, June 1995.

Pearce, Eric L. Designing Active Smart Features to Provide Nesting Forces in Exactly

Constrained Assemblies. Master of Science Thesis, Provo, Utah: Brigham Young
University, August 2003.

Pearce, Eric L.; Parkinson, Alan; Chase, Kenneth. “On the Design of Nesting Forces for

Exactly Constrained, Robust Mechanical Assemblies.” Proceedings of 2003
ASME Design Automation Conference, Paper DETC2003/DAC48839, 2003.

 261

Phillips, Jack. Freedom in Machinery. Volume 1, Introducing Screw Theory,
Cambridge: Cambridge University Press, 1984.

Roth, Bernard. “Screws, Motors, and Wrenches that Cannot be Bought in a Hardware

Store.” Robotics Research, Chapter 8, pp. 679-693, 1984.

Savoie, Troy. “Micronworm.” Photo. Pre-2003. 26 Feb 2003

<http://web.mit.edu/savoie/www/portfolio/micronworm/index.html>

Skakoon, James G. Detailed Mechanical Design: A Practical Guide, ASME Press, 2000.

Smith, Daniel K. Constraint Analysis of Assemblies Using Screw Theory and Tolerance

Sensitivities. Master of Science Thesis, Provo, Utah: Brigham Young University,
December 2001.

Waldron, Kenneth J. “The Constraint Analysis of Mechanisms.” The Journal of

Mechanisms, Vol. 1, pp. 101-114. Great Britain: Pergamon Press, 1966.

Waldron, Kenneth J.; Kinzel, Gary L. Kinematics, Dynamics, and Design of Machinery,

New York: John Wiley & Sons, Inc., 1999.

Whitehead, T. N. The Design and Use of Instruments and Accurate Mechanisms:

Underlying Principles, Dover Publications, 1954.

Whitney, Daniel E.; Mantripragada, R.; Adams, Jeffrey. “Use of Screw Theory to Detect

Multiple Conflicting Key Characteristics in Complex Mechanical Products.”
Proceedings of the ASME Design Engineering Technical Conferences, Las Vegas,
Nevada, 12-15 September, 1999.

Wittwer, Jonathan W. Predicting the Effects of Dimensional and Material Property

Variations in Micro Compliant Mechanisms. Master of Science Thesis, Provo,
Utah: Brigham Young University, December 2001.

Wittwer, Jonathan W.; Howell, Larry L.; Wait, Sydney M.; Cherry, Michael S.

“Predicting the Performance of a Bistable Micro Mechanism Using Design-Stage
Uncertainty Analysis.” Proceedings of the ASME International Mechanical
Engineering Congress and Exposition, New Orleans, Louisiana, Nov. 10-12,
2002.

Willis R. Principles of Mechanism, London, 1841. 2nd Edition, London, 1870.

	Establishing A Quantitative Foundation for Exactly Constrained Design
	BYU ScholarsArchive Citation

	ESTABLISHING A QUANTITATIVE FOUDNATION FOR EXACTLY CONSTRAINED DESIGN
	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1 MOTIVATION FOR ESTABLISHING A QUANTITATIVE FOUNDATION FOR EXACTLY CONSTRAINED DESIGN
	1.1 INTRODUCTION
	1.2 MOTIVATION FOR THE RESEARCH
	1.3 EXACTLY CONSTRAINED DESIGN
	1.4 ADVANTAGES OF EXACTLY CONSTRAINED DESIGN
	1.5 ADVOCATES FOR EXACTLY CONSTRAINED DESIGN
	1.6 CURRENT PRACTICES
	1.7 OBJECTIVES OF THE THESIS
	1.8 DELIMITATIONS
	1.9 THESIS OVERVIEW

	CHAPTER 2 BACKGROUND AND LITERATURE REVIEW FOR EXACTLY CONSTRAINED DESIGN
	2.1 INTRODUCTION
	2.2 EXACTLY CONSTRAINED DESIGN AS A ROBUST DESIGN METHOD
	2.3 HISTORY OF EXACTLY CONSTRAINED DESIGN
	2.4 BACKGROUND FOR EXACTLY CONSTRAINED DESIGN
	2.5 CURRENT METHODS TO ANALYZE EXACTLY CONSTRAINED DESIGN
	2.5.1 DEFINING THE CONSTRAINTS
	2.5.2 DEFINING THE NESTING FORCE

	2.6 ALTERNATE DESIGNS
	2.6.1 OVER-CONSTRAINED DESIGN
	2.6.2 UNDER-CONSTRAINED DESIGN

	2.7 EXAMPLES OF EXACTLY CONSTRAINED DESIGN
	2.7.1 KELVIN’S KINEMATIC CLAMP
	2.7.2 BLANDING’S 2D BODY ON TWO PINS EXAMPLE
	2.7.3 KRIEGEL’S COPY MACHINE EXAMPLE

	2.8 USING SCREW THEORY FOR CONSTRAINT ANALYSIS
	2.9 THE DIRECT LINEARIZATION METHOD USED FOR VARIATION ANALYSIS OF EC DESIGNS
	2.9.1 CREATE AN ASSEMBLY GRAPH
	2.9.2 LOCATE THE DATUM REFERENCE FRAME FOR EACH PART
	2.9.3 LOCATE KINEMATIC JOINTS AND CREATE DATUM PATHS
	2.9.4 CREATE VECTOR LOOPS
	2.9.5 GENERATE ASSEMBLY EQUATIONS FROM VECTOR LOOPS
	2.9.6 CALCULATE DERIVATIVES AND FORM MATRIX EQUATIONS
	2.9.7 SOLVE FOR ASSEMBLY SENSITIVITIES

	2.10 CONCLUSIONS

	CHAPTER 3 VALIDATION OF THE CURRENT RULES AND METHODS FOR EXACTLY CONSTRAINED DESIGN USING A QUANTITATIVE FOUNDATION
	3.1 INTRODUCTION
	3.2 STATICALLY DETERMINATE ASSEMBLIES
	3.2.1 TWO-FORCE MEMBERS
	3.2.2 THREE-FORCE MEMBERS
	3.2.3 FOUR FORCES IN A SYSTEM
	3.2.4 FIVE OR MORE FORCES IN A SYSTEM

	3.3 VALIDATING THE RULES FOR EXACTLY CONSTRAINED DESIGN
	3.3.1 NO TWO CONSTRAINTS SHOULD BE CO-LINEAR
	3.3.2 NO FOUR CONSTRAINTS ARE IN A SINGLE PLANE
	3.3.3 NO THREE CONSTRAINTS ARE PARALLEL
	3.3.4 NO THREE CONSTRAINTS SHOULD INTERSECT AT A POINT
	3.3.5 SUMMARY OF THE RULES

	3.4 NESTING FORCE WINDOW
	3.4.1 QUANTITATIVE APPPROACH TO FIND THE NESTING FORCE WINDOW
	3.4.2 COMPARISON BETWEEN GRAPHICAL AND QUANTITATIVE APPROACHES

	3.5 CONCLUSIONS

	CHAPTER 4 GENERALIZED METHOD TO USE THE EQUATIONS OF EQUILIBRIUM IN EXACTLY CONSTRAINED DESIGN
	4.1 INTRODUCTION
	4.2 INITIALIZING THE ANALYSIS FOR EC DESIGN
	4.3 GENERALIZED METHOD TO FIND THE NESTING FORCE WINDOW
	4.3.1 DEFINITION OF TRANSITION POINTS
	4.3.2 PRESENTATION OF THE GENERALIZED METHOD
	STEP 1: FIND THE TRANSITION POINTS
	STEP 2: DETERMINE WHICH SIDE OF THE TRANSITION POINT IS ALLOWED AND WHICH SIDE IS NOT
	STEP 3: IF DESIRED, DRAW THE NESTING FORCE WINDOW ON A SKETCH OF THE ASSEMBLY

	4.4 GENERALIZED METHOD TO QUANTITATIVELY ANALYZE EC DESIGN
	4.4.1 GENERAL METHOD TO INSPECT EC DESIGN
	STEP 1: FIND THE REACTION FORCES
	STEP 2: VERIFY THAT THE REACTION FORCES MEET EC DESIGN CRITERIA
	STEP 3: DETERMINE THE APPROPRIATE CHANGES TO BRING THE ASSEMBLY INTO COMPLIANCE
	STEP 4: FIND THE NESTING FORCE WINDOW

	4.4.2 SINGULARITY OF THE [C] MATRIX
	4.4.2.1 A ROW OF ZEROS
	4.4.2.2 A COLUMN OF ZEROS
	4.4.2.3 LINEAR DEPENDENCE

	4.4.3 GENERAL METHOD TO DESIGN AND MAKE PREDICTIONS FOR EC ASSEMBLIES
	STEP 1: FIND THE REACTION FORCES
	STEP 2: FIND THE CONSTRAINT LOCATIONS TO AVOID
	STEP 3: FIND AN ACCEPTABLE LOCATION FOR THE CONSTRAINTS
	STEP 4: FIND THE NESTING FORCE WINDOW

	4.4.4 MORE SIMPLE EXAMPLES
	EXAMPLE 1: INSPECTION METHOD
	EXAMPLE 2: METHOD FOR PREDICTION

	4.5 TRADEOFF BETWEEN THE REACTION FORCES AND THE NESTING FORCE WINDOW

	CHAPTER 5 A QUANTITATIVE MEASURE OF “GOODNESS” IN AN EXACTLY CONSTRAINED DESIGN
	5.1 INTRODUCTION
	5.2 THE GOODNESS OF AN EXACTLY CONSTRAINED DESIGN
	5.3 USING SCREW THEORY TO QUANTITATIVELY MEASURE GOODNESS
	5.4 USING THE DIRECT LINEARIZATION METHOD (DLM) TO PROVIDE A QUANTITATIVE GOODNESS CRITERIA
	5.4.1 SIGNIFICANCE OF PARTIAL DERIVATIVES IN THE DLM
	5.4.2 [B] MATRIX CONTRIBUTIONS
	5.4.2.1 A ROW OF ZEROS
	5.4.2.2 A COLUMN OF ZEROS
	5.4.2.3 LINEAR DEPENDENCE
	5.4.2.4 USING THE [B] MATRIX AS A MEASURE OF GOODNESS

	5.4.3 USING ASSEMBLY SENSITIVITIES TO QUANTIFY GOODNESS
	5.4.4 USING THE GOODNESS VALUES FOUND IN THE DLM
	STEP 1: FIND THE [A] AND [B] MATRICES
	STEP 2: INSPECT THE [B] MATRIX
	STEP 3: FIND THE ASSEMBLY SENSITIVITIES
	STEP 4: EVALUATE OR COMPARE ASSEMBLY SENSITIVITIES BETWEEN CONFIGURATIONS

	5.4.5 A RETURN TO THE SLOTTED BLOCK EXAMPLE

	5.5 THE [B] MATRIX FROM THE DLM AND THE [C] MATRIX FROM THE EQUATIONS OF EQUILIBRIUM
	5.6 CONCLUSIONS

	CHAPTER 6 USING EXACTLY CONSTRAINED DESIGN AS A ROBUST DESIGN METHOD
	6.1 INTRODUCTION
	6.2 MONTE CARLO SIMULATION TO SHOW THE ROBUST NATURE OF EC DESIGN
	6.2.1 WILL THE DESIGN ASSEMBLE?
	6.2.2 WHAT IS THE OVERALL ERROR?

	6.3 EXAMPLES
	6.3.1 EC BLOCK WITH THREE CONSTRAINTS
	6.3.2 NON-EC BLOCK WITH THREE CONSTRAINTS
	6.3.3 OC BLOCK WITH FOUR CONSTRAINTS
	6.3.4 SUMMARY OF THE BLOCK ASSEMBLIES WITH THREE OR FOUR CONSTRAINTS
	6.3.5 SLOTTED BLOCK ASSEMBLY
	6.3.5.1 SLOT ANGLE: 0o
	6.3.5.2 SLOT ANGLE: 90o
	6.3.5.3 SLOT ANGLE: VARIED

	6.4 CONCLUSIONS

	CHAPTER 7 CONTRIBUTIONS, CONCLUSIONS, AND RECOMMENDATIONS
	7.1 CONTRIBUTIONS OF THIS THESIS
	7.2 CONCLUSIONS OF THIS THESIS
	7.3 RECOMMENDATIONS FOR FUTURE WORK

	APPENDIX A CONSTRAINT ANALYSIS USING SCREW THEORY
	A.1 FIND THE TRANSFORMATION MATRIX
	A.2 FIND THE TWISTMATRIX FOR EACH FEATURE
	A.3 DETERMINE IF THE ASSEMBLY IS UNDER-CONSTRAINED
	A.4 DETERMINE IF THE ASSEMBLY IS OVER-CONSTRAINED
	A.5 DETAILED EXAMPLES FROM CHAPTER 5

	APPENDIX B EXCEL® ANALYSIS FOR EXAMPLES USING THE EQUATIONS OF EQUILIBRIUM
	B.1 NO TWO CONSTRAINTS SHOULD BE CO-LINEAR ANALYSIS (FIG. 3.3)
	B.2 NO THREE CONSTRAINTS SHOULD INTERSECT AT A POINT ANALYSIS (FIG. 3.10)
	B.3 NESTING FORCE WINDOW USING THE EQUATIONS OF EQUILIBRIUM (SECTION 3.4.2)

	APPENDIX C COMPARING THE GRAPHICAL NESTING FORCE WINDOW TO THE QUANTITATIVE NESTING FORCE WINDOW
	C.1 BRIEF DESCRIPTION AND BASELINE RESULTS
	C.2 FIRST METHOD: EQUATIONS OF EQUILIBRIUM
	C.3 SECOND METHOD: EQUATION OF A LINE TO FIND INTERSECTION/TRANSITION POINTS

	APPENDIX D DETAILED ANALYSIS USING THE EQUATIONS OF EQUILIBRIUM FOR FIGURE 4.19
	D.1 FORMULAS USED IN EXCEL® FOR FIG. 4.19
	D.2 THE RESULTS FOR FIG. 4.19

	APPENDIX E DETAILS FOR THE MONTE CARLO SIMULATION EXAMPLES IN CHAPTER 6
	E.1 ALL BLOCKS WITH THREE CONSTRAINTS (SECTIONS 6.3.1 AND 6.3.2)
	E.2 BLOCK WITH FOUR CONSTRAINTS (SECTION 6.3.3)
	E.3 SLOTTED BLOCK ASSEMBLY (SECTION 6.3.4)

	APPENDIX F 3D JOINTS IN ASSEMBLIES
	APPENDIX G RECIPROCAL RELATIONSHIP FOR FIG. 5.12
	BIBLIOGRAPHY

