Brigham Young University

BYU ScholarsArchive

Theses and Dissertations

2002-08-01

A Formal Method to Analyze Framework-Based Software

Trent N. Larson
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

b Part of the Computer Sciences Commons

BYU ScholarsArchive Citation

Larson, Trent N., "A Formal Method to Analyze Framework-Based Software" (2002). Theses and
Dissertations. 104.

https://scholarsarchive.byu.edu/etd/104

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more
information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/104?utm_source=scholarsarchive.byu.edu%2Fetd%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

A FORMAL METHOD TO ANALYZE
FRAMEWORK-BASED SOFTWARE SYSTEMS

by

Trent Larson

A dissertation submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science
Brigham Young University
March 2002

Copyright (© 2002 Trent Larson
All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a dissertation submitted by

Trent Larson

This dissertation has been read by each member of the following graduate committee
and by majority vote has been found to be satisfactory.

Date Phillip J. Windley, Chair
Date J. Kelly Flanagan

Date Mike D. Jones

Date Scott N. Woodfield

Date Dan R. Olsen

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the dissertation of Trent
Larson in its final form and have found that (1) its format, citations, and biblio-
graphical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date Phillip J. Windley
Chair, Graduate Committee

Accepted for the Department

David Embley
Graduate Coordinator

Accepted for the College

G. Rex Bryce, Associate Dean
College of College of Physical and Mathemat-
ical Sciences

ABSTRACT

A FORMAL METHOD TO ANALYZE
FRAMEWORK-BASED SOFTWARE SYSTEMS

Trent Larson
Department of Computer Science

Doctor of Philosophy

Software systems are frequently designed using abstractions that make software ver-
ification tractable. Specifically, by choosing meaningful, formal abstractions for in-
terfaces and then designing according to those interfaces, one can verify entire sys-
tems according to behavioral predicates. While impractical for systems in general,
framework-based software architectures are a type of system for which formal analysis
can be beneficial and practical over the life of the system. We present a method to
formally analyze behavioral properties of framework-based software with higher-order

logic and then demonstrate its utility for a significant, modern system.

ACKNOWLEDGMENTS

For Lynnette, because a process such as this is so tightly intertwined with my life
as a whole and you’ve been incredibly supportive and understanding as I pursued my
passion. Thank you!

For Phil, because you supplied your ample technical vision, expertise, and teaching
skills so many times in my behalf. If that weren’t enough, you gave much needed
moral support delivered to me personally and to others on my behalf.

For Mike, Annette, Robert, Paul, Scott, Kelly, and Leanne from the Laboratory
for Applied Logic, because you helped with my education both in the technical arts
and in my personal growth. My life has been forever touched and enriched by your
examples and assistance.

Finally, for the people of BYU, other academic and commercial institutions, and
friends and relatives who have touched my life, because your ideals and committment

to them have inspired me in my continuing growth. I will pay forward the favor.

Contents

1

Introduction and Background

1.1

1.2

1.3

1.4

The Hardware Verification Process
1.1.1 Approach: organize architectures hierarchically
1.1.2 Approach: choose meaningful, distinct abstractions
1.1.3 Approach: use model-checkers for the details, theorem provers
for the abstractions o000
1.1.4 Task: specify devices with predicates
1.1.5 Task: implement devices to hide internal details
1.1.6 Task: prove that “implementation implies specification”
1.1.7 Task: organize hierarchies of interfaces with abstract theories
Frameworks
1.2.1 Framework architectures
1.2.2 Framework Properties
1.2.3 Limited, well-defined viewpoint results in easier proofs
Software System Formalisms
1.3.1 Verification Approaches
1.3.2 How this thesis is unique

Thesis Organization

vii

CONTENTS viii

1.4.1 Outline 15

1.4.2 Terminology and Notation 16

2 Related Work 19
2.1 Other Formal Architectures and Design Patterns 19
2.2 Formal Specification Languages and Associated Tools 21
2.2.1 Higher-Order Logic (HOL) 22

2.2.2 Other higher-order logics: Isabelle/HOL, PVS, COQ 22

2.2.3 Other specification languages (with tools): VDM, Z, Larch,

OBJ, Wright oL 23

2.3 Java and other Programming Language Formalisms 25
2.4 Viewpoint or Consistency Checking 27
2.5 Refinement oo 27
2.6 Unified Modelling Language 28
2.7 Extended Static Checking 28
2.8 Abstract Interpretation 28
2.9 Object Logics e 29
2.10 Design-By-Contract00 29
3 A Formal Theory for Frameworks 31
3.1 Stages of Framework Verification 31
3.1.1 High-level illustration 33

3.2 The Stages in More Detail 38
3.2.1 Framework Implementor 40
3.2.2 Component Implementor 52

4 Translating Implementations to Logic 57

CONTENTS ix

4.1 Basic Software Verification 58
4.1.1 Specify properties Lo 58
4.1.2 Implement and translate into logic terms 29
4.1.3 Verify that implementation satisfies specification 63

4.2 Handling State Naively oL 65
4.2.1 DataModelo 66
4.2.2 Constructorso 67
423 Fields 69
4.2.4 Expressions and Statements 69
4.2.5 Example involving stateo 72

4.3 Handling State Correctly 82
4.3.1 Specify Framework 84
4.3.2 Specify Components L. 88
4.3.3 Implement Framework 89
4.3.4 Verify Framework 0. 91
4.3.5 Components and Verification 92

5 Examples of Framework Verification 93

0.1 Visitorso 94
5.1.1 Implement Framework 95
5.1.2 Specify Framework & Components 97
5.1.3 Verify Framework 100
5.1.4 Components and Verification 100

5.2 The File Reader o0 100
5.2.1 Specify Framework 00000 102

5.2.2 Specify Components 103

CONTENTS

6

3.3

5.2.3 Implement Framework
5.2.4 Verify Framework
5.2.5 Components and Verification
EJB transactions Lo
5.3.1 Specify Framework
5.3.2 Specify Components
5.3.3 Implement Framework
5.3.4 Verify Framework 000
5.3.5 Implement Component
5.3.6 Verify Component
5.3.7 Final System Framework Properties

5.3.8 Final System Client Properties

Conclusions and Future Work

6.1

Future Work

Definitions and Proofs for Examples

Al
A2
A3
A4
A5
A6

AT

Calculates Framework Proof Steps
Multiplies Proof Steps
Multiplies Proof Script 0.
fold_function Definition Proof
Balances Definitions and Proof
EJB Proofs
A.6.1 Framework
A.6.2 Component

State Functions

104
107
108
108
108
116
117
120
120
124
125
125

129

130

133

List of Tables

5.1 Transaction Attribute Behavior Summary

xi

List of Figures

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

The “framework-component” diagram for visualizing framework parts

The framework’s formal specification is the encompassing statement of

COTTECEINESS. v v o o e e e e e e s

The component specification is a critical part of the overall framework

specification. Lo

The implementation “fills in” the details of the framework except for

the component functionality.

Verification shows that the implementation with the component meet

the overall framework specification.
Deployers implement the component according to its specification.

Component writers then verify that their implementation fits into the
framework properly.o
The correctness of the entire framework follows automatically from
earlier proofs. oo
The client’s critical properties can be proven more easily with the

framework properties. Lo

3.10 “Calculates” framework-component diagram

4.1

“Undoable” framework-component diagram

xii

33

34

35

35

35

36

36

37

LIST OF FIGURES xiii

4.2

5.1
5.2
3.3

“Balances” framework-component diagram 85
Visitor framework-component diagram 95
“FileReader” framework-component diagram 101

EJB framework-component diagram 109

Chapter 1

Introduction and Background

The dream of incorporating mathematical theory into the software design process
is still alive, albeit with a different perspective from a decade ago. Cutting edge
and commercial software development continues to deploy useful methodologies and
abstractions before rigorous mathematical models can be developed and we do not
see an end to this trend anytime soon. However, languages and design tools are
giving more attention to theoretical foundations and more research and conferences
are devoted to applying mathematical theories to large, practical problems. Just as
hardware verification has evolved from a scattered, “conquer-the-world” approach to
an effort focused on certain behaviors and systems, software verification is working its
way into niches where it can be the most effective. For example, there exist automatic

analysis tools for low-level memory security or type-safety.

This work identifies a type of object-oriented software system, a formal approach,
and specific logical translations that make it practical to formally analyze the system.
In particular, we show how the properties and structure of a software framework can
be modelled using abstract theories and verified using a simple system of operational

semantics.

2 CHAPTER 1. INTRODUCTION AND BACKGROUND

Section 1.1 discusses lessons learned from hardware verificiation that apply in
this work. Section 1.2 defines the framework systems this thesis aims to handle.
Section 1.3 discusses related ideas and tools in the field of system verification.

Our thesis statement is found at the beginning of Chapter 3. In short, this work
aims to make large-scale software verification more practical. It contributes to other

formal methodologies by addressing the following problems:

1. Since verification of generic systems has proven impractical, we identify a class
of systems which lend themselves to formal methods, showing why and how to

verify them beneficially.

2. Since formalisms are expensive to create and difficult to share, we explain a
method to specify and verify systems of components at multiple levels of ab-

straction such that the formal work at different levels can be shared and reused.

1.1 The Hardware Verification Process

We introduce three approaches followed by three specific tasks which have proven
useful for formal hardware verification. We apply these principles later when we
describe our method for framework software.

Before explaining these approaches and tasks, let us review the use of logic in
verification. Every logical term states a relationship. For example, the following
term states that, for every possible substitution of the variables a, b, ¢, s, and cout,

the sum of the first three is equal to the sum of 2*s and cout:

V abcs cout . (atb+tc = 2*s + cout)

Almost any relationship can be expressed in logic, including ones that could never
be proven such as the example above. After changing the statement above to mean

that there exists some combination of values for those variables that satisfies the

1.1. THE HARDWARE VERIFICATION PROCESS 3

relationship, any useful reasoning tool should allow it to be proven as a true statement.

Proven statements are called theorems and marked with a turnstile:

F 3dabcs cout . (a+tb+c = 2*¥s + cout)

Sometimes a term can be a definition, ie. it gives a name to a relationship such that
the name and the relationship are interchangeable in subsequent terms. A definition
is created by setting the name equal to the relationship term?, such as in the following

definition of full_adder:

V abcs cout . full_.adder (a,b,c) (s,cout) = (at+b+c = 2*s + cout)

See Section 1.4.2 for the details of the logic notation used in this thesis.
1.1.1 Approach: organize architectures hierarchically

The first lesson is that large systems must be designed in a way which groups
similar or closely-interacting components together, and which also shows only a single
unified interface to external components. If possible, the entire system should be split
into distinct parts which can be specified alone, and each of those parts be split into
distinct parts, and so on until each part is fine-grained enough to be implemented
with a few components in a simple manner. One good example of this is the formally
verified Uinta microprocessor, which is organized into 4 different levels of abstractions
to deal with 4 different issues.

In a previous work [GC94], the verification was complicated because one signal
sent information from the basic gates to the logic which organized the subcomponents.
This made the overall proof more complex, so we reworked the architecture and a
few subcomponent specifications in order to clarify and distinguish the functional

behavior of each part, resulting in a simpler proof [BJLW97].

'In HOL, definitions are created by the function bossLib.Define.

4 CHAPTER 1. INTRODUCTION AND BACKGROUND

A fundmental assumption of this work is that better architectural planning will
reduce the time and effort for humans to understand and develop each subsystem,
and thus the system as a whole.

1.1.2 Approach: choose meaningful, distinct abstractions

This approach refers to the organization of a system by classes or types. Com-
mon wisdom dictates that objects and components are designed with “high-cohesion”
(meaning that constituent parts of a component are closely related) and “low-coupling”
(meaning that components are not dependant on one another). In other words, each
object should be as self-contained as possible to deal with a specific concept, and
there should be as few interdependencies between objects as possible.

This is critical for formal methods, where each component must be specified ex-
actly in a form that often spans pages. The specification of an object with low cohesion
(ie. with too broad a domain or too many functions) will be cumbersome and difficult
to conceptualize as a whole. The specification of an object with high coupling (ie.
with many dependencies on other elements) will be difficult to conceptualize and the
elements will be hard to track.

There are various classifications of abstractions in the literature. Melham describes
four types: structural, behavioral, data, and temporal [Mel89]. Liskov et al describe
two types, parameterized and specification, and how they enable procedural, data,
and iterative abstractions [LG86]. Alagar discusses the concept of abstraction detail
and shows how various specification languages support it, especially in representation
and operational abstractions [Ala98].

1.1.3 Approach: use model-checkers for the details, theorem provers for
the abstractions

For large systems, the low-level details are often relationships between binary bits

or simple signals between processes. Components at that level are usually simple

1.1. THE HARDWARE VERIFICATION PROCESS 5

enough to verify automatically. This is done by model-checkers or, more recently,
symbolic trajectory evaluation tools.

In contrast, when dealing with higher levels of abstraction, the interactions and
meanings can be much more complex. Components at that level should be specified
and verified with behavioral predicates that are more natural for people to understand.
Theorem provers deal well with this type of formalism.

While not employed in this thesis, an appropriate mixture of tools could be ben-
eficial in future work as explained in Chapter 6.

1.1.4 Task: specify devices with predicates

The first verification task is to specify devices with predicates. Hardware devices
(and software functions) are usually written by showing outputs as functions of inputs.
However, it is logically difficult to reason about functional expressions. Therefore, in
addition to the input parameters, each device (or function) definition also takes the
outputs as parameters and gives a boolean result, telling whether the inputs and
outputs match the desired functionality.

To illustrate, consider a full-adder. It could be written as a function over three
bitwise inputs, where the result is two bits that form a binary result. The s output
represents a value of 1, the cout output represents a value of 2, and together they

form the binary representation of the three inputs a, b, and c:

(s, cout) = full_adder (a,b,c)
WHERE full_adder (a,b,c) =

(s := if (a XOR b XOR c) then 1 else O,

cout := atb+c > 1)

For formal verification, we modify the definition of full_adder to be a predicate
over the outputs as well as the inputs. This predicate is true for all combinations of
inputs and outputs that satisfy the relation; it is false for those combinations that

should not happen:

6 CHAPTER 1. INTRODUCTION AND BACKGROUND

full_adder (a,b,c) (s,cout) = (at+b+c = 2%s + cout)

This is one of the most powerful tools in hardware verification because it is a
simple way to achieve composability. Predicates facilitate composition since they
can be combined with the conjunction operator, whereas functions can have various

incompatible result types that are more difficult to compose together.

1.1.5 Task: implement devices to hide internal details
A device will expose inputs and outputs but hide all other internal details from
outside view. Again, this is written as a predicate, but this time the definition more

closely resembles the wiring logic:

adder_implementation (a,b,c) (s,cout) =
d s2 .
s2 = (a AND NOT b) OR (NOT a AND b)

A s = (s2 AND NOT c) OR (NOT s2 AND c)

A cout = (a AND b) OR (a AND c) OR (b AND c)

1.1.6 Task: prove that “implementation implies specification”

After writing a predicate for the specification of the device and translating the
implementation into logic terms, one needs to show that any situation satisfied by
the implementation is part of the specification. The implies operation captures this

relationship 2.

V ab cs cout . adder_implementation ==> full_ adder

2The naive approach would use strict equality, but that is more difficult and is more work than
necessary. Equality shows that the implementation covers every input-output combination of the
specification, but it is sufficient to show that the implementation is a subset of the specification,

meaning that all the input-output combinations are consistent with the specification.

1.2. FRAMEWORKS 7

1.1.7 Task: organize hierarchies of interfaces with abstract theories

As we define our predicates and verify some theorems, we begin to build the hierar-
chy of coarser-grained components and recurse the process until the final, system-wide
predicate is verified. Abstract theories help organize this structure by clarifying the
requirements at each level, and verifying facts based only on those requirements. They
encapsulate much like interfaces or signatures do; they guarantee that, given inputs
that meet certain criteria, they will provide service that satisfies the requirements.

One example of an abstract theory is a group, which is a collection of three
associated entities: an associative function over two values, an inverse function, and
an identity value. The three elements of a group are well-defined but abstract so that
different sets and operations can be made into a group (such as multiply, 1 divided
by x, and 0; or add, zero minus x, and 1). However, no matter what entities are
substituted for each value, if they satisfy that behavior then they all share some

abstractly proven properties, such as the following:

e The identity element is unique for each associative operation.

e The identity element is determined by the associative operation.

In the next chapter, we demonstrate how framework software follows this pattern;
namely, that the framework can be treated as an abstract theory which can be proven

to have certain properties if built from components which are described abstractly.

1.2 Frameworks

The term “framework” may has different meanings in different contexts. For
this thesis, we define a framework as a complete software system which contains
components with well-defined interfaces that must be at least partially implemented

by the deployers.

8 CHAPTER 1. INTRODUCTION AND BACKGROUND

Frameworks fully implement most desired system functions, but leave less critical
parts for developers to further customize. An example is an online message system
which manages posts related to specific topics, but which leaves the input method
unprogrammed. To complete the full system, deployers must supply the unwritten
parts, such as the scripts to translate HT'TP posts, email, voice messages, etc. into
the API provided by the message system. Alone, a framework is not an entire system,
but rather a complete implementation of a particular behavior with some interesting
pieces missing.

We found approximately 50 examples of frameworks in our research. Half of
those were software offerings, some for free and some costing a great deal of money.
The rest were documented in some published form, many in books dedicated to
the topic [FSJ99] [Rog97] [Lea95]. Some frameworks of general interest have been

produced in recent years for common tasks:

e JUnit (www.junit.org) is a framework for testing. Deployers write their tests
in classes that satisfy JUnit interfaces and the framework automatically runs

batch test suites and reports the results.

e Open For Business is an e-commerce framework with a built-in order entry sys-
tem. Deployers supply the products but can also insert their own functionality

“hooks” which execute as the order process proceeds.

e The wftk framework implements a core of workflow functionality. Deployers
write code to set up “processes” and the framework follows those rules to handle

user “tasks” and their associated events.

e The EJB framework [MH99] handles transactions, persistence, and distributed

processing for simple data objects. Based on the deployer’s classes (called

1.2. FRAMEWORKS 9

“beans”), it generates code that interacts with the beans and a central server

(called a “container”) to handle all those issues and more.

To develop a framework, one must choose an application which could be applied
in many contexts but which tackles a few closely-related, well-defined tasks. If the
framework is too general, it is hard to apply to specific problems and it may be of
questionable utility. If too specific and restricted, it will not have the broad appeal
needed to grow into a variety of uses. If it tries to handle too many issues, it will
wind up doing many things in a mediocre or complicated fashion rather than doing
one thing well.

For those reasons, useful frameworks almost always develop over time in an evo-
lutionary way [RJ96]. To some extent, the general and useful functionality may be
achieved through good planning and design. However, understanding and implement-
ing that type of functionality requires a few iterations of examples before pinpointing
exactly how best to interface with the user-defined components.

1.2.1 Framework architectures

There are many ways that frameworks make use of components:

e The components are written to a well-known interface. The framework is built
with methods that deal only with that interface, and the final system is instan-

tiated with classes that satisfy that interface.

e The components are expected to have a very generic structure, such as publicly
available get and set methods, which do the work. The framework discovers

those methods and supplies a more powerful interface to them.

e The components have no predetermined structure. They are generated from
another language or else examined by a pre-processor, and framework code is

generated to deal with the components intelligently.

10 CHAPTER 1. INTRODUCTION AND BACKGROUND

This thesis is focused on the first type of framework. The other two types are quite

common and very powerful but lie beyond the reach of current verification methods.

1.2.2 Framework Properties

Most systems that become popular are designed skillfully (though in an ad hoc
manner), deployed quickly, and updated frequently. The industry has shown that
rapid time-to-market is more important than correctness or even ease of use for mar-
ketplace acceptance. It will never be practical to verify software which is frequently
modified and thus still undergoing change. Even small changes to an interface can
mean large changes in the formal elements, especially the specifications which are a
human-intensive endeavor 3.

In order to make the results of formal analysis worthwhile, we must find systems
which are fairly stable but which have formal properties for which formal analysis
4

would be beneficial, especially to reuse for their own purposes *. Following are the

three properties a system or subsystem needs for formal analysis be worthwhile ®.

1. System must be stable enough that formal results stay relevant.

3Swartout et al [SB79] claim that it is not possible to perfectly separate specifications from
implementations due to imperfect foresight and physical limitations. We agree that specifications
evolve as a result of practical concerns but we also see examples of mature systems fitting our criteria
and that have progressed to the point that they can be described with well-defined specifications

entirely separate from their implementations.

4Some systems meeting these criteria might be verified exactly once upon completion, but not
reused for any other purpose. This may be desirable for political purposes, where someone must
analyze the system in various ways to engender confidence in the system’s correctness. These would
be costly systems tailored to one large or many homogeneous organizations. Many of the ideas in

this thesis may apply to such systems, but that is not our focus.

5 Although the given criteria are important for any formal methods work, most research focuses
on technologies and tools for software in general; we believe it is important to identify a specific

problem domain along with the tools and approach that are best suited for its formal analysis.

1.2.

FRAMEWORKS 11

Since the process is expensive, and specifications are difficult to change, we see

no advantage in analyzing a short-lived artifact.

System must have formalizable behavior. Even though a system is stable,
it may not have behavior which we know how to express formally. An example
might be a ray-tracing engine, where quality is judged by the visual clarity or

raw speed.

System’s formal results must be useful, preferably in a different
systems. Our formal methods must serve a useful purpose. Often the benefit
is that problems were found and eliminated in the process of formal analysis.

But we must extend this benefit to future users or disparate organizations.

Software frameworks satisfy our criteria:

1.

They are stable, so we keep our specifications and verifications.
Whereas most applications evolve over time to add more features, a good frame-
work’s interface stays constant and the formal analysis work will not become
obsolete. Of course, a framework’s implementation may improve over time, but
as long as the interface does not change, most of the formal work will stay

relevant.

They have well-defined behavior, so they can be specified. Other
large programs are built to serve a variety of needs and often include features of
convenience. This makes their behavior hard to formalize, both for the system
as a whole and for each specific feature which may be interdependant with other

features. Frameworks satisfy this criterion.

Frameworks usually implement functions that are difficult or time-consuming

to implement correctly from scratch, and these are the types of functions that

12 CHAPTER 1. INTRODUCTION AND BACKGROUND

can benefit the most from formal methods.

3. They are reused, which increases the payoff. While not everyone who
uses a framework will pay attention to formal specifications, some will use it to
clarify meanings and others may create fully verified systems. Also, just like
many reviewers help solidify theorems in mathematics, many users help clarify

and validate formal analyses over time.

1.2.3 Limited, well-defined viewpoint results in easier proofs

There are two perspectives of a framework, one for each role involved in its use:
the designers of the framework code and the deployers who write components that fit
in the framework. Typically, the deployers also install and run the framework, which
becomes their customized version of the product.

From the designers point of view, there are a few very specific system-wide be-
haviors to implement, behaviors which can be tweaked depending on the deployers’
components. So, in addition to the overall behavior, the designers must specify the
behavior they expect from the components or possibly what they expect the com-
ponents not to do. The designers verify the overall system correctness using the
component behavior as assumptions.

On the other hand, the deployers see an unfinished system where some framing
is left exposed for them to build on. This framing is explicit, with documentation
for all the available hooks (functions and objects) such that the deployers can cus-
tomize as they wish. Also, for our purposes, the designers have given several formal
statements describing the exposed framing, the components that the deployers are
expected to build, and one overall formal statement of correctness for the finished
product. Lastly, the designers have provided a proof of correctness of the system

including the deployers’ components based on the correctness of those components.

1.3. SOFTWARE SYSTEM FORMALISMS 13

Therefore, the deployers merely need to prove that their components satisfy the re-
quired behavior and the result is a finished, verified system.
These roles are explained in depth along with an example and illustrations in

Section 3.2.

1.3 Software System Formalisms

Floyd [Flo67] wrote the seminal work on software verification in 1967, where he
used a flowchart to model programs and gave a meaning to each statement such that
an overall behavior could be derived. Hoare [Hoa69] added to this by defining an
axiomatic semantics for program execution, and others have built on this foundation
to include most programming constructs in modern languages. This line of research
focuses on the meaning of programs as built from primitive program statements and
their data. Just as programming languages have evolved to more powerful abstrac-
tions, programming semantics now work on the level of abstract data types; see [LG86]
for specifics®.

There are now various semantic models for program verification [GPZ94] [Ala98].
Each comes with its own rules for the basic programming constructs (eg. loops,
function calls, etc), and each has strengths and weaknesses for particular types of
programs. Since our work analyzes programming statements, we reason with an
“operational’ semantics: this is a straightforward mapping of each statement into
a mathematical form which behaves similarly but is based on logic. We do this to
make the form as familiar as possible, realizing that it may make some proofs more

complex.

6Even with highly abstract models and advanced tools, program verification remains a difficult
and time-consuming task. We do not claim to significantly simplify this task; rather, we hope
to describe and demonstrate a combination of methods with a problem domain where program

verification can be practical.

14 CHAPTER 1. INTRODUCTION AND BACKGROUND

In this section, we describe specific approaches to software reasoning and verifica-
tion. We then describe the salient features of the main formal languages and tools.

See [GPZ94] and [Ala98] for a more detailed discussion.

1.3.1 Verification Approaches

Software verification approaches are divided into “model-checking” and “theorem-

proving”.

1.3.1.1 Model-checking

Model-checkers automatically decide whether an implementation satisfies certain
properties and otherwise gives counter-examples, usually through efficient modelling
and most often in temporal logic. However, they only work with decidable problems
which restricts their expressiveness.

Within the model-checking arena, the most common tasks are determining confor-
mance to safety and liveness properties. Can the machine ever access an unauthorized
area in memory or get in an inconsistent state? Can it ever get caught in a state such
that it refuses to respond or do anything useful? Many questions can be phrased one

of these two ways, so this approach will remain viable for many problems.

1.3.1.2 Theorem-proving

Theorem-provers deal with very abstract entities and rules, and they can represent
virtually any behavior and relationship. However, they require much more human
insight and intervention. There are two major approaches for using theorem-provers
to verify machines.

The first is “refinement’. Designers begin with the overall (or most abstract)
system specification. From there, the design is transformed by well-understood rules
into a more concrete (or less abstract) form. There must always be a mapping between

the forms, where the mapping follows rules defined by the logic.

1.4. THESIS ORGANIZATION 15

The other theorem-proving approach allows us to independantly develop specifica-
tions at different levels of abstraction. In other words, there is no explicit user-defined
mapping between specifications. When the specifications are formally verified, the
proof may be considered an implicit mapping.

However, even that distinction is somewhat contrived, since most complex logics
support both approaches. In fact, the only real classifications within theorem-proving
are along the lines of the tools themselves: each combination of logic and tool has its
own features and trade-offs, and so each system can be considered its own approach.

We take a theorem-proving based approach because the behavior we wish to ex-
plore is expressed in abstract data types, and model-checkers use less expressive logics
or temporal logics which are meant for different types of specifications.

1.3.2 How this thesis is unique
As we show in Chapter 2, there are many other groups doing research related to

this work. This thesis is unique because it combines work in the following three areas:

e formal modelling of object-oriented constructs
e formal analysis of software at the system level

e identifying a domain in which formal results can be shared

1.4 Thesis Organization
1.4.1 Outline

Chapter 2 delves further into other methods and tools that are closely related to
this work. Chapter 3 explains our thesis in detail and introduces the key concepts
used to support it. Chapter 4 develops other techniques needed to make the thesis
possible. Chapter 5 shows how to apply the concepts and techniques to three signif-
icant examples. Chapter 6 summarizes these ideas and suggests further research to

extend these ideas and tools to make them even more useful.

16 CHAPTER 1. INTRODUCTION AND BACKGROUND

1.4.2 Terminology and Notation

We assume the terms “object” and “class” are standard. We always use the
term “interface” to mean the definition of an abstract data type, ie. the syntax
and semantics that classes must implement at very least; some languages call this
concept a “signature” or “module”. We use the terms “function” and “method”
interchangeably, and we assume there are no functions without an associated class;
some languages call this a “message”. A “field” is a datum belonging to an object;
some languages call this an “attribute” or “member”.

Programming code is given in a slightly different display mode from logic terms.

As shown previously in this chapter, logical statements are presented as follows:

electric_eel_class =
<| zap :=
(A . (state, obj) state’ .
energy_potential obj state < energy_potential obj state’)

| >

Programming code is presented as follows:

public interface Shocking {
public void zap(Physical object);
}

The logic notation in this thesis is standard, and is the same as the notation used
in the Higher-Order Logic (HOL) theorem-prover. For example, all logic operators
have their standard meanings: A is conjunction, V is disjunction, = is implication,
- is negation, * is multiplication, <= is less-than-or-equal-to, etc.

The notation for logical records (ie. groups of elements where each position in the

group is given a name) needs some explanation. Records are shown by the delimeters

1.4. THESIS ORGANIZATION 17

< | and | > along with the assignment operator := to name the slots. For example,
the following term declares a record with two positions, named 1ist and sum, having

the values of an empty list ([1) and 0 respectively:

<| 1list := []; sum := 0 [>

The notation used for logical types also requires explanation. Type declarations

are prefaced with the keyword “type””. A type can be any of the following:

e a primitive type of number (num) or boolean (bool)

e an anonymous type, ie. a type which is free to take any value (written with a

prefix of ’ (apostrophe), such as 'z or 'any_class)
e a list of another type (written with a suffix of “list”, such as bool list)
e a pair of types (combined using #, such as num#bool)
e an alternative of types (combined using |, such as bool|num)
e a function from one type to another (combined using —, such as 'a list — num)

e a new type with a constructor (written with a name followed by the word “of”

and another type, such as TwoNums of num#num)

e a record type (written with a slot name and type for each element, such as

< |element : 'a; measure : 'a — num| >)

"In HOL, types are declared with the function bossLib.Hol datatype.

18

CHAPTER 1.

INTRODUCTION AND BACKGROUND

Chapter 2

Related Work

There are several other techniques to design and analyze software systems. This
chapter describes those that are most relevant and well-developed.

Section 2.1 lists a number of other approaches aimed at developing formal methods
for the architectural level of a software system. Many of them address the same issues
of composing components to build large, object-oriented systems. In contrast, this
thesis does more to share component specifications and proofs.

Sections 2.2 through 2.10 introduce other formal analysis or object-oriented design
techniques that are related to this thesis. However, none of them addresses all three
of the unique features of this thesis (see Section 1.3.2).

2.1 Other Formal Architectures and Design Patterns

The following approaches each use formal methods for software at the system
level. This thesis is unique because it also identifies a type of software system, along
with the appropriate formal tools, for which it is practial to share specifications and

reuse proof results.

e The Composable Software Systems Group [GroOla] at CMU has a variety of

projects ranging from new architectural languages to component-based teach-

19

20

CHAPTER 2. RELATED WORK

ing tools. One of the pioneering papers on software architecture [GS93] is from
this group. One of the fundamental ideas in their approaches is the use of
“connectors’ as first-order elements, along with the components that they at-
tach together. Their formal work is done in Wright, an new language based on

temporal logic. Following are some of the more advanced projects in this group:

— Wright is a formal architectural language mentioned earlier (see Section 2.2)
which is noteworthy because one result of this project is very comprehen-
sive temporal model for the communication protocol between EJB server
and bean methods [SG99]. In particular, it shows how exceptional cases
are handled and verifies that the server will always recover after an error
state in a bean. Temporal models are used to analyze requirements for
protocols such as detecting deadlock or ensuring liveness; since this work
(and the logic in this thesis) is focused on more behavioral requirements,

Wright is a complimentary approach to ours.

— The Able project works with representations of architectural “styles” which
classify architectural approaches. Tools based on these styles can then help

create environments to support design and analysis of a particular system.

— The Acme architecture description language not only models architectures
but also works as an intermediate language for other architectural descrip-

tions.

— The Venari project aims to create the database infrastructure for objects

based on their formal semantics.

— The group maintains a list of “model problems” for software architecture.
These can be used as illustrative examples for education or as reference

implementations for comparing approaches.

2.2. FORMAL SPECIFICATION LANGUAGES AND ASSOCIATED TOOLS 21

e The Software Composition Group [Gro01b] at the University of Berne also stud-
ies composable software, such as in [NTea95], with a focus on object-oriented
approaches. Like the Composable Software Systems Group, they use “connec-
tors” to combine components and then add another concept of “glue” to over-
come interface mismatches. Their work is also based on a variant of temporal

logic called pi-calculus.

e The B Method [Abr96] is based on a formalism called Abstract Machine Nota-
tion which can represent system specifications at a high-level as well as lower
levels [SS98]; this is similar to refinement (see Section 2.5). Most B tools include
executable code libraries to implement many low-level specifications, allowing

refinement all the way to an executable system.

e Rapide [AG02] is another set of architectural tools based on its own formal
description language. Like the B method, it can specify a system at multiple

levels of granularity. It also offers a variety of prototyping and testing tools.

e Amnon Eden et al. [EHY99] have developed a formal language named LePUS
for modelling design patterns and have used it on some of the the canonical
examples [GHJV95] as well as patterns of their own. LePUS has a visual repre-
sentation resembling UML descriptions (see Section 2.6). Unfortunately, there

is no tool support for LePUS.

2.2 Formal Specification Languages and Associated Tools

There are a number of tools backed by formal specification languages which could
support this type of work. Below are those most closely related to this approach.
There are other tools logics and specification languages besides those below, but they

had unacceptable features (eg. expensive, closed-source).

22 CHAPTER 2. RELATED WORK

For this work, we only considered languages with theorem-proving tools. The
specifications we wrote required a language with a high level of abstraction, and
higher-order logics are the formal languages with the greatest degree of abstraction.
2.2.1 Higher-Order Logic (HOL)

HOL [Ge93] is a theorem-proving environment whose specification language is a
strongly-typed, higher-order calculus. One distinguishing feature is that all reasoning
is based on eight simple, fundamental axioms and as a result it is very unlikely
that there is a bug in the system that would allow incorrect proof results. It is
written in ML and has been extended with a large number of libraries and proof
tools. Some automatic tools define non-primitive and nested functions, and some
tools even include basic model-checking functionality. Since interaction with HOL is
done through the programming language ML, it allows a great deal of flexibility when
doing exploratory work.

HOL’s strength is also its weakness: the language is so expressive that there is
very little automated reasoning, so the proof effort is almost entirely the burden of
the researcher.

We chose HOL for examples in this thesis for two reasons. First, because we are
familiar with it; formal notations and tools have a steep learning curve. Second,
because it is open-source; some of our work stretched the type-definition capabilities
of HOL and uncovered some bugs, so it was critical that we were able to fix them
ourselves.

2.2.2 Other higher-order logics: Isabelle/HOL, PVS, COQ

These are other versions of higher-order logics which include theorem-proving
tools.

[sabelle [Pau94]| is a generic theorem-prover; given a specification language and

related axioms, it provides the infrastructure for reasoning and proof. There is a

2.2. FORMAL SPECIFICATION LANGUAGES AND ASSOCIATED TOOLS 23

version similar to HOL called Isabelle/HOL, and the Bali project 2.3 is written for
this platform.

Although the existing Bali project was a useful reference for our work, we found it
difficult to initiate new research in Isabelle because knowledgeable experts were not
accessible and documentation was not helpful.

The Prototype Verification System (PVS) [ORR96] is another strongly-typed,
classical higher-order logic system. It includes many features such as dependant and
uninterpreted types and parameterized theories. The tools provide a gread deal of
help with reasoning such that most obligations can be proven automatically.

PVS is a proprietary system and would be impractical for exploratory research
such as this.

The Calculus of Inductive Constructions (Coq) [DFH'93] is based on a “con-
structive” logic, as opposed to the “classical’ logics of the other higher-order logic
systems. Constructive logics only allow reasoning based on terms constructed from
more primitive terms; they lack the notion of the “excluded middle” where a state-
ment is true if not false and vice versa, so every assertion must be built from other
known assertions. Proof-checking in Coq is actually type-checking. Coq allows set
and propositional sorts in addition to types. Its specification language is said to be
very natural for the formalization of mathematical concepts [Zam97].

Coq’s meta-language is not as powerful as in other systems, and large-scale prob-
lems tend to become unweildy because all terms include their reasoning.

2.2.3 Other specification languages (with tools): VDM, Z, Larch, OBJ,
Wright

The Vienna Development Method (VDM) [Jon90] is a combination of a specifica-

tion language (VDM /SL) and a semantics of program refinement to specify systems in

very abstract or more concrete terms. It is therefore well-suited for working with large

24 CHAPTER 2. RELATED WORK

systems at increasingly lower levels of abstraction, which may prove useful for a disci-
plined engineering process. There is also a new variant that supports object-oriented
extensions.

Unfortunately, the VDM tools are not as accessible as other tools. Commercial
development environments exist, as do theorem-provers and other tools for selected
platforms, but each of these options is too expensive for the purpose of this research.

The Z (pronounced “zed”) notation language is a strongly-typed specification lan-
guage. It is based on both set theory and first-order logic, making it natural for many
types of specification. Z includes refinement much like VDM, though refinement in
Z is done to other schemas and not to implementations. It is best suited for repre-
senting models or “schemas” and includes notation for schema composition. Lately,
there have been many variants to support object-oriented constructs [Stu93].

Z is for model-based specifications and does not have good tool support for proof.
Most tasks consist of relating schemas to check for consistency among different models.
7 seems well-suited for our purposes; we later advocate further research in this area
for Z. (See also the explanation of OBJ below.)

Larch [GHG™93] is a specification language and proof tool with a fundamentally
different approach. It is specifically for software, and formalisms consist of an abstract
specification in the Larch Shared Language (LSL) and also a concrete specification in a
Larch Interface Language (LIL). There is a separate LIL to support each programming
language and its features, but each is written in a form that can be related to the
language-independant LSL. There is a theorem-proving tool, the Larch Prover (LP),
which can be used to check properties of Larch specifications, such as consistency and
completeness.

Larch is well-suited for specific programs in many languages. However, the LSL

and LP (based on first-order logic) without mechanisms like OBJs “parameterized

2.3. JAVA AND OTHER PROGRAMMING LANGUAGE FORMALISMS 25

programming” do not support the higher-order nature of framework systems.

OBJ [GMO00] is an algebraic specification language, where all functions are ex-
pressed as algebraic expressions. OBJ includes an environment for executing specifi-
cations with rewrite rules, which is the method for verifying systems.

OBJ is based on equational logic, which would usually prohibit its use for “higher-
order” programs such as frameworks. However, OBJ has some unique features such
as parameterized programming which may support this type of work.

Wright [All197] is a formal language based on temporal logic, desiged to reason
about the component-connector style of architectures. Temporal logic is especially
well-suited for reasoning about aspects of concurrent events and find problems such
as deadlock. The reasoning can also be done automatically.

In contrast to Wright, our aim is to reason about different kinds of system behavior
at different levels of abstraction. For example, temporal logic will not help determine
whether components conform to arbitrary abstract data type specifications.

2.3 Java and other Programming Language Formalisms

This thesis offers concrete programming examples along with a formal representa-
tion used for proofs. There have been many other programming language formalisms
but none that were readily adaptable to the HOL system in a way that would support
our method.

Following are the key references for programming languages in general, especially
object-oriented languages. At the start of our research, only the last three had tool
support for sharing mechanically-checked logic results and none had tool support for
abstract theories as presented in our method. For those interested in theorem-proving
tools that deal well with different levels of abstractions (like HOL in this thesis), the

last three are most similar to this work.

1. Liskov and Guttag’s work includes reasoning about software abstractions and

26

CHAPTER 2. RELATED WORK

concrete representations [LG86].

. Abadi and Leino developed a taxonomy for object-oriented languages organized

by their features; it includes a logic to represent constructs in each type of

language [AL98]..

. Wahab presented a formalism for object code including an abstraction language

to relate it to higher-level constructs [Wah98].

. Leino developed an axiomatic semantics for a specific object-oriented program-

ming language (called Esctatic) [Lei97].

. Oheimb designed a Hoare logic for a subset of Java which is provably com-

plete; they claim it is the first provably complete logic for an object-oriented

language [vOO1].

. Norrish developed an axiomatic set of rules for C program verification which is

build on a basic operational semantics for the language [Nor96].

There are many analysis approaches dedicated to the Java language [PHM99]

[LSS99] [FF00] or its variants (eg. JavaCard [BDJ*01] [PvJ00]), and formal semantics

have even been presented for the language [AF99] [vO01] and its bytecode instruc-

tions [Qia97]. However, at the time we began our research only the Bali project had

published any formalisms or tools, and its purpose was to reason about the Java lan-

guage itself; this was too complex for our needs since we only reason about programs

written in Java. Along with Bali, the following formal tools are worth investigating

at the time of publication:

1. The Bali project has formalisms for Java at both the source [vO01] and byte-

code [Pus98] levels. They have used these formalisms to show that a subset

2.4. VIEWPOINT OR CONSISTENCY CHECKING 27

of Java is type-safe [ON99] and that a bytecode verifying algorithm is cor-

rect [Nip01].

2. The Java PathFinder [HP0O] converts Java programs into the PROMELA tem-
poral logic which can be analyzed by the SPIN model-checker for various proto-
col properties. It can also take annotated Java programs to check more abstract

user-defined predicates with the Standford Validity Checker.

3. Park et al. [PSSD00] show how to compile multi-threaded Java programs into
executable model-checking programs. The resulting programs are executed to

verify the absense of deadlock and assertion violations.

4. Jakarta [BDHSO01] is a combination of tools for specification and proof of the
JavaCard platform. For verification it uses Coq, another higher-order logic

related to HOL.

2.4 Viewpoint or Consistency Checking

The 7Z community approaches the verification problem from a slightly different
angle: rather than verifying properties which are written independant of the problem
domain, they write formal descriptions of the problem (or the ideal solution) from
more than one vantage-point. Then they verify that the descriptions are all consistent
with each other. This approach is sometimes called consistency checking for multiple
views, viewpoints, or perspectives [Jac95] [BDBS99] [FKN*92]. Although the formal
specifications may not be generally useful, they may prove to be much easier to write
and reason about.
2.5 Refinement

Refinement [Bac80] is a very general methodology: one begins with a high-level

statement of system behavior, transforms it with trustworthy mappings into more a

28 CHAPTER 2. RELATED WORK

concrete program, and repeats until an implementation is generated. This approach is

discussed in connection with the B method (Section 2.1 and VDM and Z (Section 2.2).

2.6 Unified Modelling Language

Another method which has gained some popularity is the Unified Modelling Lan-
guage (UML) [BRJ99] . The basic tenet of UML is that there are multiple ways to
communicate about processes and protocols, each with its own language and mod-
els and each applicable to a specific type of problem or at a specific time in the
software lifecycle. There is a core language and there has been some research into
formal semantics for it and there are competing “system modelling” approaches such
as OSA [EKW92] with even more formality. But these approaches do not yet have

the reasoning infrastructure necessary for program verification.

2.7 Extended Static Checking

Extended static checking [DLNS98] aims to check more complex errors in a pro-
gram. Example applications include null dereferences, array index bounds errors, and
deadlock situations. This is one of the more advanced statement-level methods but
does not address issues of defining abstract datatypes or sharing specifications and

proofs.

2.8 Abstract Interpretation

Abstract interpretation [CC77] is a statement-based model using abstract opera-
tions. Rather than calculating with concrete primitives, such as an integer or a string,
abstract interpretation primitives are abstractions of the values. For example, an ab-
stract view of the integers might be only whether the value is positive or negative; an
abstract view of threads may simply be the active, waiting, or finished state of the
thread. Given an interface between the two methods, this approach may prove useful

in conjunction with our work.

2.9. OBJECT LOGICS 29

2.9 Object Logics

Researchers have recently been investigating “object” logics [AL98] which com-
bine data and methods together as a logical unit. This is in contrast with logics
for theorem-provers which are mainly functional, and the difference is akin to the
difference between object-oriented and functional programming languages. However,
rather than use a new, unconventional object logic (for which we must develop new
tools), we translate the object-oriented concepts into a traditional higher-order logic
to take advantage of the well-developed tool base. In this work, almost all translations
could be automated so that the functional approach is not a major drawback.
2.10 Design-By-Contract

Programming language “asserts’ are runtime boolean checks for correctness within
an executable program. Meyer first added asserts in a disciplined way to his object-
oriented language Eiffel [Mey97]. He calls this “design by contract”, where designers
write boolean language expressions for method pre- and postconditions and class in-
variants. The expressions are meant to be executed at run-time, so this only allows
statements from the source language. This method does not support more power-
ful specifications to determine more abstract meanings or undecidable properties;
however, the approach is simple and encourages programmers to write precise speci-

fications for debugging and documentation.

30

CHAPTER 2.

RELATED WORK

Chapter 3

A Formal Theory for Frameworks

This thesis shows that, while impractical for systems in general, framework-based
software architectures are a type of system for which formal analysis can be beneficial
and practical over the life of the system. In this chapter we preview the process
of framework specification and verification (3.1) and introduce the specific technical

tools used to accomplish our goal (3.2).

3.1 Stages of Framework Verification

This section shows how higher-order logic constructs can naturally and faithfully
represent the behavior and structure of software in a manner similar to how they are
used to represent hardware. Following are the steps of framework analysis broken
down into two sets of responsibilities, the first set being the job of the framework
implementor and the second set being the job of the component implementor. They
specialize the three hardware verification tasks from Sections 1.1.4 through 1.1.6,

applying them to framework software verification.

1. The framework implementor creates the following (possibly with feedback from

the component implementors):

31

32

CHAPTER 3. A FORMAL THEORY FOR FRAMEWORKS

(a) The framework specification gives the behavior of the final system,

usually defined in terms of interfaces (Section 3.2.1.2).

(b) Component specifications give behavioral definitions of user-implemented

components that interface with the framework (Section 3.2.1.1).

(c) The framework class implementation forms an abstract theory of the
framework (Section 3.2.1.3); it is built from the component specifications
and the logic terms translated from the actual program code (as shown in

Chapter 4).

(d) The framework verification breaks down the goal into the component
abstract theories, then uses domain-specific tactics to verify that the frame-
work code and conforming components together yield the desired overall

framework behavior (Section 3.2.1.4).

2. Next, each component implementor creates the following when they deploy that

framework:

(a) Component implementations written in programming code are trans-

lated into logic, just like the framework implementation (Section 3.2.2.1).

(b) The component verification shows that the component implementa-

tion meets the specification required by the framework. (Section 3.2.2.2).

(c) Verification of the final framework properties automatically follows

from the framework and component verifications (Section 3.2.2.3).

(d) Verification of the final client properties follows directly (though

not automatically) from the framework properties (Section 3.2.2.4).

3.1. STAGES OF FRAMEWORK VERIFICATION 33

3.1.1 High-level illustration

Take a framework system that handles stock purchases. The system might provide
a useful interface, allow deployment on the internet, guarantee a certain response
time, or even guarantee that certain legal requirements are met. Deployers of the
system (such as stock sellers) might be required to write a module that communicates
with external systems that sell stocks; that module would have to ensure that the
transaction succeeds or fails gracefully in a given amount of time.

Figure 3.1 is used throughout this thesis to better explain the interactions of
the key elements of this system and illustrate our verification process. Each part is

explained throughout the example that follows.

overall
frameswark
specification

component
specification

component

core nitation

framework P
implementation

componerit
werification
frameswark hridges the gap
wetification —

bridges the gap

Figure 3.1: The “framework-component” diagram for visualizing framework parts

Say a company named Frieda’s Framework Foundry will build the framework
described above. This framework’s feature list includes qualitative elements, such
as ease-of-use and speed-of-deployment, along with quantitative elements which are
verified by means other than formal methods, such as platform independance and
benchmark measurements. But we are most interested in the formally verifiable fea-
tures, such as security and transaction consistency. Cory’s Component Construction
will deploy and run the formally verified stock purchasing system; he will purchase

Frieda’s framework and write his own component that will interface with his com-

34

CHAPTER 3. A FORMAL THEORY FOR FRAMEWORKS

pany’s network of stock sellers.

3.1.1.1 Framework Implementor

Following are the four steps Frieda takes to build her framework and achieve

verification results that will be useful to deployers such as Cory.

(a)

The process begins when Frieda specifies exactly what services the framework
will provide, which are security and transaction consistency. The result of this
step is a written formal specification to which end users could refer to see if this

system satisfies their requirements.

Figure 3.2: The framework’s formal specification

is the encompassing statement of correctness.

Next, since Cory will deploy the system for his own particular needs, he must
receive a formal specification for the component he will implement. So Frieda
has to write another formal specification for each component that deployers
must implement. As described above, Frieda’s example framework requires a
communication module for purchasing from external systems; the result of this
step is another written formal specification to which Cory will refer when he

implements this communication component.

Note that these first two steps of component and framework specification are
often developed together, so they are sometimes introduced in a different order
or even at the same time in this thesis. In general, we found that all the stages of
framework verification are interdependant and choices at later stages may affect

the work of earlier ones, but the order we present in this thesis is the order in

3.1. STAGES OF FRAMEWORK VERIFICATION 35

which stages begin; later stages cannot start development until previous stages

have begun.

Figure 3.3: The component specification is a crit-

ical part of the overall framework specification.

(c¢) Next, Frieda implements the framework. The result is program code that im-
plements the entire framework functionality, excepting only the component(s)

Cory will deploy later.

Figure 3.4: The implementation “fills in” the de-

tails of the framework except for the component

functionality.

(d) Now Frieda formally verifies her implementation, proving that her program code
satisfies the overall framework specification when combined with her customers’
components. The result is a proof script that anyone else can check with a

theorem-prover to see that the framework is correct.

Figure 3.5: Verification shows that the implemen-
tation with the component meet the overall frame-

work specification.

36 CHAPTER 3. A FORMAL THEORY FOR FRAMEWORKS

That is the end of Frieda’s work. She now has framework and component specifica-
tions, an implementation, and a proof which can be delivered to any of her customers.
Each customer can implement the components for the framework differently, but as
long as they satisfy Frieda’s component specifications their entire system is guaran-
teed to be correct for this property. That is the point of this thesis and many of
our examples end here; however, a framework is not actually deployable until the
following tasks are completed.
3.1.1.2 Component Implementor

This is where Cory’s work begins. He will proceed through the following four
steps, building on Frieda’s results, to deploy a system with the properties that her

framework supplies.

(a) He must develop the component that plugs into Frieda’s framework. Again,

this is an implementation written in programming code.

Figure 3.6: Deployers implement the component

according to its specification.

(b) Now Cory proves that his code satisfies the component requirements. The

deliverable is a proof script for the component implementation.

Figure 3.7: Component writers then verify that .

their implementation fits into the framework

properly.

3.1. STAGES OF FRAMEWORK VERIFICATION 37

(¢) Now Cory’s component proof can be combined with Frieda’s framework proof to
verify the system they have cooperatively implemented. This task is automatic

due to the structure of framework and component theorems.

Figure 3.8: The correctness of the entire frame-

work follows automatically from earlier proofs.

(d) Cory’s ultimate goal is to verify that his system works correctly for his customers
and that each of their stock purchases will succeed correctly or else completely
fail. So he uses the framework properties to fulfill properties that are stricter

than those in the framework.

In particular, he will guarantee to his customers that he will not charge their
credit card without transferring the stock, and he will guarantee to the seller
that he will not transfer stocks to the customer without obtaining the customer’s
money. Since his components have been guaranteed to satisfy the framework

transaction properties, these more specific properties are now easier to prove.

Figure 3.9: The client’s critical properties can be

proven more easily with the framework properties.

This final step is where framework users see the benefit of the earlier framework
verification. Because the framework was previously proven to preserve transactional

properties, this final proof is much simpler for the deployer because its properties are

38 CHAPTER 3. A FORMAL THEORY FOR FRAMEWORKS

a direct consequence of the earlier results. In other words, he is able to leverage the
framework designer’s proof to get his own verified system with very little effort on his
part. This is the most significant benefit of framework verification.

3.2 The Stages in More Detail

The remainder of this chapter elaborates on each of these eight steps, shows in
more technical detail how each step is accomplished, and develops a small illustrative
example. This section explains each step and includes logical details but does not
discuss how the details were generated. The details are the focus of Chapter 4; readers
without a background in logical models of software may wish to read that chapter
first.

First, let us point out a key enabler of this work: all object data is accessed
through methods. No internal fields are directly available to the users of any class
(though constants are allowed). Internal data can always be made available to clients
when necessary with get and set methods, though of course such access should be
allowed only with care.

We have found this to be a general rule of good design; it is simply encapsulation
in action. However, it is especially true for formal methods work: method-based
interfaces are the focus of all specifications since they encapsulate the behavior into
abstract data types. For those to whom this seems unnecessarily restrictive we offer

the following in its defense:

e Modern OO languages such as Java and Smalltalk only allow methods and

constants in interfaces.

e Data should be hidden by default to encourage well-defined abstractions. It
should cost extra effort to make data available externally so that programmers

do not unwittingly allow accesses to data in a way contrary to the programmer’s

3.2. THE STAGES IN MORE DETAIL 39

intentions.

e An interface’s specification might be written in terms of internal data members,
but only such that the data is part of the specification. If a specification depends
on internal representation details then either those details are critical to the
abstract data type and should be external and understood by users or they are
not critical and the specification should be rewritten without them. Put another
way, if the data is an important part of the specification then the only additional
work is in changing the data accesses to “getter” and “setter” methods since

they are already an integral part of the definition.

The interface obligations are used in different ways by the two parties in component

sharing:

e Framework writers assume that the component code satisfies the predicates and

use them as assumptions when building and verifying framework systems.

e Component writers must offer proof that their code satisfies the predicates.

In mathematical terms, the framework writers implement an “abstract theory’ of
their system: they take advantage of a few key facts about the building blocks to
create a larger system, realizing that the system’s correctness depends explicitly on
the correctness of each of the blocks. An abstract theory is a collection of related items
which can be proven to satisfy certain theorems if its elements satisfy certain more
basic properties. Frameworks are structured precisely the same way: an abstract
system is created but is essentially useless until some primitive components with
certain features are supplied.

Throughout this thesis, the suffix “_sig” marks type signatures and and the suffix

“_obligs” marks the behavioral predicates. The suffix “_obj” is used for types that

40 CHAPTER 3. A FORMAL THEORY FOR FRAMEWORKS

contain object data and “_ptr” marks object variables that are references to that
data found somewhere in memory.

As for implementations (Sections 3.2.1.3 and 3.2.2.1), Java is the language used
for all examples in this thesis but these verification principles are designed to apply
to any object-oriented language. Chapter 4 shows how to translate object-oriented
constructs into logic terms; although Java is used to illustrate concepts, the techniques
are generally applicable.

As a running example, consider a framework that Calculates; it coordinates the
actions of simple functions and provides services such as repeated operations, macro
definition, history tracking, and so on. The framework will use Operates components
which implement a single method (named operate) that takes two numbers and
outputs a third. One implementation of this framework is a class named Calculator
below, and a sample component used to create a working system is a class named

Checksum. They fit together in the framework diagram as shown in Figure 3.10.

Calculates
—

.;,ff Operator

Checksum

Calculator —__|

Figure 3.10: “Calculates” framework-component diagram

3.2.1 Framework Implementor

The next four sections describe the four tasks of the framework designer in more

detail.

3.2. THE STAGES IN MORE DETAIL 41

[]

3.2.1.1 Specify component signatures and behavior

Class and interface specifications come in two parts: the syntax (or signature) and

the semantics (or behavior) of the class methods.

The syntax of each interface specification is a record type definition containing a
field for each object method. Each method is a predicate, so each signature returns
a boolean (bool below) and takes three arguments: a reference to the object data,
the input parameters, and the output values. (“Static” class methods are similar
but without any reference to an object.) The signature is declared as follows (see

Section 1.4.2 to review the notation for types):

type iface_signature =
<|
methodl = ’object_ptr
-> (’input_state # ’inputl_types)

-> (Poutput_state # ’outputl_types)

-> bool;
method2 = ’object_ptr
-> (’input_state # ’input2_types)
-> (Poutput_state # ’output2_types)
-> bool;
| >

The semantics of any class or interface are written as a predicate over the meth-
ods. The predicate takes a single argument which is the record of all the methods
contained in the class. Inside the predicate are statements about the relationships of
the methods and/or their arguments, possibly over periods of time. The following is

a general example:

42 CHAPTER 3. A FORMAL THEORY FOR FRAMEWORKS

iface_obligs class =
V iface object_ptr statel state2 state3 inputl outputl output2 .
(inputl <= outputl)
A
class.methodl iface object_ptr (statel, inputl) (state2, outputl)

class.method2 iface object_ptr (state2, outputl) (state3, output2)

Simple interfaces are self-contained, needing no reference to other system compo-
nents. However, more complex interfaces are specified in terms of other interfaces.
This is done with an existential quantifier, such as the following where the interface

is defined in terms of the behavior of the 1ibrary_component interface.

iface_obligs class =
3 lib_class::library_component .
V lib_object_ptr iface object_ptr statel state2 inputl outputl .

class.methodl iface objectptr (statel, inputl) (state2, outputl)

lib_class.methodl lib_object_ptr (statel, inputl) (state2, outputl)

As an example, we begin the Calculates framework by specifying the responsi-
bilities of the Operates component. We specify the framework second because its
definition depends on some characteristics of the component.

The signature for Operates components is as follows:

public interface Operates {
public int operate(int x, int y);
public int identity();
public int maximum() ;

}

3.2. THE STAGES IN MORE DETAIL 43

Since any compiler can typecheck the signature, for this example we also require
that the function throws an overflow error for any calculation outside the range of 0

to maximum. Following are the modified Java declarations ! %:

public interface Operates {

public interface PosNumber {}

public class Number implements PosNumber {
int value;
public Number(int val) { value = val; }
public int getValue() { return value; }

}

public class Overflow implements PosNumber {
String message;
public Overflow(string val) { message = val; }
public String getMessage() { return message; }

3

public PosNumber operate(int x, int y);
public int identity();
public int maximum() ;

The remainder of this section presents the behavioral specifications for an
operates component. First, because the Operates interface is defined in terms of
the concrete classes Number and Overflow, the associated class data must be defined
before other specifications. This is often the case since more complex datatypes often

make use of simpler concrete classes to specify their meaning.

'We collect other interface and class declarations (such as PosNumber) inside the Operates class;
this does not change the semantics but we must refer to those entities by prepending them with

“Operates.” (“Operates”-“dot”) in subsequent Java code.
2Qverflows are usually handled by exceptions. Exceptions can be implemented here by adding an-

other element to the state (see Section 4.2) such that each statement would be executed conditionally
based on the current exception state. Although this example emulates exception behavior, it is con-
trived to demonstrate simple framework behavior and is not representative of good object-oriented

design.

44 CHAPTER 3. A FORMAL THEORY FOR FRAMEWORKS

Following are the auxiliary number_obj and overflow_obj types along with their
superclass pos_number_obj; only the first two hold data, and the latter is simply a

wrapper around either one:

type number_obj = Number of num

type overflow.obj = Overflow of string

type pos_number_obj =

Pos_Number Number of number_obj

| Pos Number_Overflow of overflow.obj

After defining the data, the next step is to define the entire memory and pointer
structures when writing class implementations (see Section 4.2). However, this ex-
ample is still in the specification stage and it is good practice to leave the memory
structure as general as possible until absolutely necessary, so the pointer structure
definitions are postponed.

Next is the signature for the operates interface methods. The identity and
maximum methods return single numbers. The operate method takes an object
pointer, the state and two numbers (representing inputs), and the new state and
a pos_number_obj (representing outputs) and returns true if all the arguments satisfy

the specification:

type operates_iface_sig =
<l
operate : ’operates_ptr
-> (’state # num # num)
-> (’state # pos_number_obj)
-> bool;
identity : ’operates_ptr -> num;
maximum : ’operates_ptr -> num
| >

3.2. THE STAGES IN MORE DETAIL 45

Note that the first parameter to each method need not be specified yet (as shown
by the single quote (') mark in front of the type ’operates_ptr); this way, multiple
class objects can potentially implement this method and satisfy the obligations.

Semantically, this framework only cares that the identity and operate functions
return a number lower than the component’s maximum number. The operate function
also guarantees that the result z is either a number under the maximum or it’s an

overflow?:

operates_obligs (operates_class) =
V oper ptr x y z state .

1) ((operates_class.identity oper _ptr) < (operates_class.maximum oper_ptr))
A

2) ((operates_class.operate oper_ptr (state, x, y) (state, z))

3) (X0R
4) (3w . (z = (Pos Number Number (Number w)))
A (w <= (operates_class.maximum oper_ptr)))

5) (3 str . z = (Pos_Number_Overflow (Overflow str)))))

This specification for the Operates interface says in clause 1 that the value of
the identity method is always less than the value of the maximum method. Clause 2
implies the rest of the formula; in other words, when the operate method is called,
the result (z) obeys the constraints in clauses 3-5. Clause 4 says that the PosNumber
result called z (the result of operate in clause 2) is a Number object with an internal
value (w) less than the value of maximum. To the contrary, clause 5 says that it is
an Overflow object containing some internal error message. So clauses 2-5 together
state that after a call to operate, exactly one condition (clause 4) or the other (clause

5) is true, but not both.

3Note that numbers in HOL specifications are in no danger of overflow; they are defined logically

as an infinite set.

46 CHAPTER 3. A FORMAL THEORY FOR FRAMEWORKS

3.2.1.2 Specify framework signatures and behavior

For our example, a class that Calculates can, in addition to applying a given
operation once to a pair of numbers, repeatedly apply (or fold) the operation to a
list of numbers. Following is the programmer’s syntactic (Java) specification for a

Calculates framework:

public interface Calculates {
public Operates.PosNumber fold(Operates op, List yy);
}

The following is the syntactic declaration, where fold is a predicate over a

’calc_ptr, three input parameters, and finally a pos_number_obj:

type calculates_iface_sig =
<|
fold : ’calculates_ptr
-> (’state # ’operates_ptr # num list)
-> (’state # pos_number_obj)

-> bool

| >

Following are the Calculates semantics; much like in the Operates component
above, the result of fold is either an overflow value or a valid number not greater

than the maximum integer value:

3.2. THE STAGES IN MORE DETAIL 47

calculates_obligs calculates_class =
3 operates_class::operates_obligs .
V calc_ptr oper_ptr state yy z .

(calculates_class.fold calc_ptr (state, oper_ptr, yy) (state, z))

(3 w . (z = Pos_Number_Number (Number w))

A (w <= operates_class.maximum oper_ptr))

(3 str . z = Pos_Number_0Overflow (Overflow str)))

At this point we have introduced the key elements to framework verification: first
were the component obligations, and finally the entire system obligations. Next comes
the framework code in terms of the components, and its verification, but our most

significant contribution is the technique for framework specification.

3.2.1.3 Implement framework with a predicate made of com- E

binations of interfaces

The previous section shows how a specification is written in object-oriented terms
for a framework; this section shows how the implementation is written using the

approach in Chapter 4.

Just as in hardware circuitry modelled in logic, each method body becomes a
predicate over the object data, machine state, input values, and output values where
internal variable values are represented with existential variables. Also, since class
implementations often depend on other library or component classes, we must supply

the latter as arguments.

48 CHAPTER 3. A FORMAL THEORY FOR FRAMEWORKS

class_function (component_class) (object_ptr)
(input_state, inputl, input2) (output_state, output) =
3 local.varl local._var?2 .
3 inner _statel inner_state2 component ptr .
primitive methodl (input_state, inputl)
A

component_class component ptr (input_state, local_varl) (inner_statel)

Returning to the Calculates example, following is the implementation for a com-

plete calculator:

public class Calculator implements Calculates {
public Operates.PosNumber fold(Operates op, List yy) {
if (yy.size() == 0) {
return op.identity();
} else {
Operates.PosNumber rest = fold(op, yy.subList(1l,yy.size()));
if (rest instanceof Operates.0Overflow) {
return rest;
} else {
return op.operate(((Integer)yy.get(0)).intValue(),
((Operates.Number)rest) .value) ;

The Calculator class contains no data so the object data definition is merely a

constructor:

type calculator_obj = Calculator

3.2. THE STAGES IN MORE DETAIL 49

The Calculates interface contains a single fold method. The implementation

above translates to the following in HOL*:

(fold function (operates_class) (calc_ptr:’calculates_ptr)
((state:’state), (oper_ptr:’operatesptr), []) (state2, z) =
((state = state2)
A
(z = (Pos Number Number (Number (operates_class.identity oper_ptr))))))
A
(fold function (operates_class) calc_ptr
(state, oper_ptr, CONS x xx) (state2, z) =
(state = state2)
A
A w .
fold function (operates_class) calc_ptr (state, oper_ptr, xx) (state, w)
A
(pos number_obj_case
(A number .
number_obj_case
() num . operates_class.operate oper ptr (state, x, num) (state, z))
number)

(A message . Pos Number Overflow message = z)

w)))

The idea is that the fold function is a logic version of the Java code for the
fold method in the Calculates class above. The details of that logic translation are
not important for this discussion; that is the entire focus of Chapter 4.

Those are all the elements needed for the Calculator framework. When used in

proofs or as a part of another system, it is referenced as a record in the following way;

4The definition of fold_function must be manually proven to terminate with the list argument

as shown in Appendix A .4.

50 CHAPTER 3. A FORMAL THEORY FOR FRAMEWORKS

note that it in turn references a component with the name operates_class since a

Calculates component is a part of its implementation:

<| fold := fold function operates_class |>

The final system is an aggregate of these types of records, where the components
used to implement them are often supplied when the system is deployed®. That is the
essential technique of mapping framework implementations to HOL terms. Chapter 4

covers this topic in detail.

3.2.1.4 Verify framework behavior based on component

specifications and programming logic

Verification is proof that our function implementations combined with the com-
ponents satisfy the obligations.

Recall that calculates_obligs is a predicate over a class record definition; in
this case, the class record contains a single fold function which is the fold_function

above, coupled with an Operates component:

V operator: :operates obligs .

calculates_obligs <| fold := fold_function operator |>

There are three general steps to proving this and similar goals in this thesis:

e Rewrite with the specification and implementation definitions as much as pos-

sible. In other words, replace specification and component names with their

[Tl
€

5Tt is possible to use the logical choice operator to name an implementation so that it stands

alone as in the following example:

calculator_class =

<| fold := fold_function (¢ operates_class::operatesobligs . T) |[>

However, this mechanism is not useful in a larger system since the component (“operates_class”)

is not shared or connected with any other part of the system implementation.

3.2. THE STAGES IN MORE DETAIL o1

meanings (such as operates_obligs in the logic of fold_function in the last

section).

e Fill in the local variables (such as j in the last section) with values that help

solve the goal.

e Use domain-specific facts to finish the proof. For our Multiplier example, this
involves proof by arithmetic induction; for the EJB example in Section 5.3, this

involves tactics which manipulate boolean conditions and implications.

The following is a synopsis of the proof in HOL. Appendix A.1 shows the HOL

results at each of these steps.

1. Rewrite with the definitions from previous sections to get a goal in terms of

fold_function:

2. Case-split on the variable yy, which is either an empty list or a list of at least

one item:

(a) For the case with the empty list, rewrite with the definitions of

fold_function, XOR, and operates_obligs.

Then rewrite with theorems about the relationships of the classes, such as
that a Number does not equal an Overflow. At that point a value must
be chosen for an instance of w, and since this is the case of an empty list,

supply operator_class.identity to prove this case.

(b) For the case with at least one item in the list, rewriting with the
fold_function and then case splitting on its result yields the following

two goals:

52 CHAPTER 3. A FORMAL THEORY FOR FRAMEWORKS

Each of these cases is solved by rewriting with the definitions and the
properties of the PosNumber classes and then choosing the values for the

existential variables that match existing variables.

3.2.2 Component Implementor

This section shows the four tasks of the framework deployer in more detail.

[

3.2.2.1 Implement component with a predicate

In general, component implementations are logically simpler than framework im-
plementations since they are built from primitive programming constructs. Following

is an Checksum component, built to implement the Operates interface®:

public class Checksum implements Operates {

public int identity() {
return O;

}

public int maximum() {
return 1000;

}

public Operates.PosNumber operate(int x, int y) {
return new Operates.Number((x + y) % maximum());

3
}

6We simplify this code by assuming that both x and y are positive arguments.

3.2. THE STAGES IN MORE DETAIL 93

Those methods are translated to the following logic terms:

(checksum_identity checksum ptr = 0)

(checksummaximum checksum ptr = 100)

(checksum operate checksum ptr (state, x, y) (state2, z) =

(state = state2)

A

(z = Pos_Number Number (Number ((x + y) MOD (checksum maximum checksum ptr)))))

The Checksum class does not rely on any other components, so the entire class

can be defined independently:

checksum_class = <|
identity := checksum_identity;

maximum := checksum_maximum;

operate := checksum_operate

| >

3.2.2.2 Verify component

Following is the goal stating that the checksum_class satisfies the Operates spec-

ification;

I operates_obligs checksum class

The proof of this goal is a direct result of the properties of the “%” (modulo)

operator.

3.2.2.3 Verify final system framework properties

Since the Calculator class framework was verified for any component that satis-

fies the operates_obligs obligations (Section 3.2.1.4), and since the checksum_class

o4 CHAPTER 3. A FORMAL THEORY FOR FRAMEWORKS

was proven to satisfy those obligations (Section 3.2.2.2), the combination of the two
correctly implements the Calculates functionality.
In logical terms, this final theorem is a logical consequence of those two previous

theorems:

F calculates_obligs <| fold := fold function checksum class |>

In fact, the following HOL script VERIFY_FRAMEWORK manipulates the framework

and component correctness theorems and generates that final theorem automatically:

1) fun VERIFY FRAMEWORK framework_ thm component_thm =

2) MP

3) (PART_MATCH

4) (fst o dest_imp)

5) (REWRITERULE [RES_QUAN_CONV (concl framework_thm)] framework_thm)

6) (concl component_thm))

7) component_thm

That script works as follows. Line 5 converts the framework theorem into an
implication saying that the correctness of a component implies framework correctness.
Lines 3-6 then match the actual component theorem results; the result of those lines
says that the component already proven correct implies framework correctness. That
result, combined with the component correctness theorem (line 7) using modus ponens
(line 2), yields the framework correctness theorem.

This step is fully automatic.

3.2.2.4 Verify final system client properties i

Finally, now that the client has verified their own incarnation of the framework

system they can more easily verify the properties in which they are ultimately inter-

ested. This is not an automatic verification since these properties are in an arbitrary

3.2. THE STAGES IN MORE DETAIL 35

form, but it is a very simple proof because it is a direct result of the framework
properties which is the reason the framework was employed in the first place.

For example, the calculator with the checksum component might be part of a
data transfer program that ensures the checksum value occupy no more than a byte

in memory.

type transfer_sig =

<|
transfer : ’transfer ptr
-> (’state # ’calculator ptr # num list)
-> (’state # num)

-> bool

transfer_obligs transfer_class =
V transfer ptr state amounts checksum .
transfer_class.transfer transfer ptr (state, amounts) (state, checksum)

==> checksum < 256

The Transfer class extends the Checksum class with a transfer method that

returns the computed checksum as a char value.

public class Transfer extends Checksum {
public char transfer(List[] amounts) {
Operates.PosNumber result = Calculator.fold(this, amounts);
if (result instanceof Operates.Number) {
return (char) ((Operates.Number)result).getValue();
} else {
return O;
}
}
}

o6 CHAPTER 3. A FORMAL THEORY FOR FRAMEWORKS

That is translated to the following logic term:

transfer_transfer (calculator_class) transfer ptr

(statel, calculator ptr, amounts) (state2, checksum) =
3 result .
calculator_class.fold calculator ptr (statel, transfer ptr, amounts)

(state2, result)
A
(checksum =
(pos_number _obj_case
(A number . number obj_case (A num . num) number)
() message . 0)

result))

Is it straightforward to specify and implement the final framework since the initial
framework abstractions clearly state the deployment requirements. It is also straight-
forward to prove the final properties because they follow directly from the framework

properties proven automatically in the previous step. The goal is stated as follows:

transfer_obligs
<|
transfer := transfer_transfer <| fold := fold_function checksum_class |>

| >

This chapter detailed each step of framework verification. Chapter 5 gives further
examples of this process. However, there are specific technical issues that arise when

translating an implementation into logic terms, and these are explained in Chapter 4.

Chapter 4

Translating Implementations to

Logic

The sections in this chapter show how programming concepts can be translated into
logic terms. The focus is on object-oriented concepts in imperative languages and
how they map to logic terms in a classical higher-order logic. This is background for
the examples in Chapter 5, where each implementation is generated as shown by this
chapter.

The programming language we have chosen is Java and the formal logic is the
Higher-Order Logic (HOL) theorem-proving system. While all the examples are done
in these specific tools, the concepts are not tied to them. The approach and all the
translation and proof details are applicable to object-oriented programming languages
and higher-order logics in general.

Similarly, although most examples have been hand-crafted following the principles
in this chapter, this process could be automated. The formulae in Section 4.2 were
created with the help of automatic tools and the rest of the examples could have been

generated much the same way.

57

o8 CHAPTER 4. TRANSLATING IMPLEMENTATIONS TO LOGIC

Almost all the work in this section is original; exceptions are acknowledged. For
other formal representations of programming languages in general and Java in par-
ticular, see the references in Section 2.3.

Section 4.1 introduces the fundamental programming concepts in the context of a
simple verification. Section 4.2 goes into more detail about basic programming data
types and expressions. Section 4.3 addresses remaining issues such as well-formedness
of object data.

4.1 Basic Software Verification

This section is an introduction to the three verification steps of specification
(4.1.1), implementation (4.1.2), and proof (4.1.3) for object-oriented programs. This
section does not illustrate a framework program, but it does show how basic object-
oriented constructs map to prediates and proofs.

4.1.1 Specify properties
First we show how an interface maps to a HOL predicate. Our first example is a

function that multiplies two numbers, with the following interface in Java:

public interface Multiplies {
public int operate(int m, int n);

}

That signature translates to a new HOL record type containing one element:
operate, which is a function from an object reference and two numbers to a third
number. In this work, each method is transformed into a predicate, which is a final

type that ranges from the inputs and output to a boolean value® 2:

Tt is not absolutely necessary to convert every method to be a predicate since each interface-
and class-level construct is also a predicate. However, we use this convention in order to conform to

the standard way of defining functions in theorem-provers.
2More explanation of the object-reference parameter can be found in Section 3.2.1.1.

4.1. BASIC SOFTWARE VERIFICATION 99

type multiplies_sig = <| operate: ’mult_ptr -> (num # num) -> num -> bool |[>

The following is a HOL specification for the interface Multiplies:

multiplies_obligs multiplier =

V multptr m n k . multiplier.operate mult_ptr (m,n) k = (k = m*n)

That says that a class with a function operate satisfies the multiplies_obligs
property if and only if, for every call to operate which returns k for inputs of m and

n, k has a value of m*n?.

4.1.2 Implement and translate into logic terms
4.1.2.1 Implement system
The following is an implementation of multiplies_obligs where operate does

its computation with a recursive call.

public class Multiplier implements Multiplies {
public int operate(int m, int n) {

if (n==0) {
return O;

} else {
int i = n-1;
int j = operate(m, i);
return m + j;

3This first example has no elements of a framework since this section is only for introductory

purposes.

60 CHAPTER 4. TRANSLATING IMPLEMENTATIONS TO LOGIC

In HOL terms, our code looks like this:

1) mult_operate mult_ptr (m, n) k =
2) if (n = 0)

3) then k = 0

4) else let i = n-1 in

5) A (3 j . mult_operate mult_ptr (m, i) j
6) A(k=m+ 3))

7) multiplier_class = <| operate := mult_operate [>

Line 1 declares a function called mult_operate which takes three parameters cor-
responding to values from the programming code (ie. inputs m and n and output k).
Since this method is a predicate, its result will be true or false based on whether the
parameter values satisfy the relationship of the respective parameters in the program-
ming code. Line 2 starts the conditional and line 3 is the first arm, which says that
the output must be 0. Lines 4-6 make up the else clause, where i becomes the value
of n-1, j becomes the output value of the recursive call to mult_operate, and the
final output is the value of m added to the result of the recursive call.

Line 7 defines multiplier as a record with one element: an operate method

which is the mult_operate function just described.

4.1.2.2 Implement with components

This section is a small diversion into how a program might be organized with
components. Specifically, we modify the Multiplier class such that it is implemented
with components.

A framework system is implemented in terms of partially specified (ie. abstract or
interface) classes. Consider how such a class might fit into our Multiplier example;

if the addition operation were made more general, it might be fashioned into an

4.1. BASIC SOFTWARE VERIFICATION 61

interface and used in place of the + operator. The following is a sample interface for

such a component:

public interface Adds {
public int add(int m, int n);
}

The translation of this code into logic terms is precisely like that above. We start

with the syntactic declaration of the Adds interface and then intended behavior:

type adds_sig = <| add: ’add_ptr -> (num # num) -> num -> bool [>

adds_obligs adder =

V add ptr m n k . adder.add addptr (x,y) z = (z = x+y)

The syntax of the new Multiplies2 interface must be modified to accept the
new component. There are better ways to do this, such as to have a set method for
the component or to let each implementing class take the Adds component in their

constructor; however, we do it as simply as possible for this first example.

public interface Multiplies2 {
public int operate(Adds a, int m, int n);

}

Its logic syntax and behavior are also altered: the operate method is now imple-
mented with a component that is supplied at execution time. This takes the form of

a new add_class and add_ptr argument to the logic version of the operate method:

62 CHAPTER 4. TRANSLATING IMPLEMENTATIONS TO LOGIC

type multiplies2_sig = <|
operate: adds_sig -> ’mult_ptr -> (’add_ptr # num # num) -> num -> bool

| >

multiplies2 obligs multiplier2 =
V add_class mult_ptr add_ptr m n k .

multiplier2.operate add_class mult_ptr (add_ptr,m,n) k = (k = m¥n)

The new Multiplier2 implementation makes use of the Adds component:

public class Multiplier2 implements Multiplies2 {
public int operate(Adds a, int m, int n) {

if (n==0) {
return O;

} else {
int i = n-1;
int j = operate(m, i);
return a.add(m, j);

Besides the new Adds interface, the only change is the use of a.add(m, j) instead
of m+j.

Finally, we translate the new Multiplier2 code:

1) mult_operate2 add_class mult_ptr (a, m, n) k =
2) if (n = 0)

3) then k =0

4) else let i = n-1 in

5) A (3 j . mult_operate2 mult ptr (m, i) j

6) A (add_class.add a (m, j) k))

7) multiplier2 = <| operate := mult_operate2 adder_impl |>

4.1. BASIC SOFTWARE VERIFICATION 63

That involves three changes to the code from the first example:

e Line number 2 now includes the two new arguments for the class definition

add_class and the object argument a.

e Line number 6 now uses the interface method rather than the hard-coded +

operation.

e Line number 7 now includes the term adder_impl; this is the adder class that

the user wishes to use inside the multiplier2 class.

With those changes the Multiplier?2 class is more general since it can be run
with any component fulfilling the Adds interface.
4.1.3 Verify that implementation satisfies specification

Finally we verify the code by proving that the multiplier_class satisfies the

multiplies_obligs. The primary conjecture is stated as follows:

F multiplies obligs <| operate := mult_operate |>

The other version of this goal that uses the more component-oriented example is

as follows:

F V adder :: adder_obligs

multiplies2 obligs <| operate := mult_operate2 adder |>

Note that the goal is to show that any adder component that meets the
adder_obligs; once that is verified, any adder meeting those criteria can be sub-
stituted in the place of adder, and the resulting proof is simple as explained in
Section 3.2.2.3.

Proving the primary goal is straightforward but requires intelligent selection of
the proof sequence. Following are the proof steps to make that goal a theorem in

HOL:

64 CHAPTER 4. TRANSLATING IMPLEMENTATIONS TO LOGIC
1. Rewrite with the definitions from Section 4.1.2 to get a goal showing the specific
behavior expected from mult_operate.

2. Induct on the variable n to get a base case and induction step.

3. The base case is proven with the following steps:

(a) Rewrite once with the definition of mult_operate.

(b) Induct on k for another base case and induction step. Each of these are
easily provable based on the properties of zero (with the HOL tactic

reducelLib.REDUCE_TAC).

4. The induction step for n is proven with the following steps:

(a) Rewrite once with the definition of mult_operate.

(b) Simplify the phrase (SUC n - 1) to n, expand the let phrase by substi-
tuting n for i in the remainder of the goal, and eliminate the first arm of

the if clause since (SUC n) is never 0.
(c) Rewrite with the hypothesis for the induction step to get the following.

(d) The remainder depends on properties of multiplication and division. Note
that by instantiating (m * n) for j, the result is the following straightfor-
ward goal:

(k=m+m*xn) = (k =m * SUC n)

Appendix A.2 shows the HOL results at each of these steps. The entire HOL

proof script to solve that theorem is found in Appendix A.3.

4.2. HANDLING STATE NAIVELY 65

4.2 Handling State Naively

The most difficult verification issue is handling persistent state. This is mainly
because the state variable is mutable, and also because function calls affecting one
record may affect the data in other records accessed through object references. An-
other reason is that the state represents many data values, so elements of concern
are accessed and updated indirectly which complicates proofs as well as specifica-
tions. These difficulties would be especially pronounced for raw pointers to memory

addresses but they remain problematic for object references.

In this section, we show one possible encoding for object pointers and other per-
sistent data and how it can deal with issues of static (class) variables and inheritance.
This particular formulation is introductory but not comprehensive; we address its

shortcomings in the next section.

State can be a tuple with a place for the list of objects of each class. Objects are
then simple aggregates of object data. Object data may be primitive data (currently
HOL booleans, numbers, or strings) or object references. Each class has two unique
object reference constructors: one for the null value and one for object references.

Each object reference is an offset into the state list for the associated class.

One significant limitation with this approach is that the classes (not interfaces)
must be known at the time of encoding. A consequence is that any change to a
class or even the addition of a new class requires that the entire program encoding
be regenerated. We reiterate that this is consistent with the shallow nature of our
logic embedding; we gain more understandable terms and HOL type-checking that
enforces many constraints, and we lose general constructs and the power to prove

general properties about statements and expressions.

66 CHAPTER 4. TRANSLATING IMPLEMENTATIONS TO LOGIC

4.2.1 Data Model

Memory can be represented with an array of the live objects. While one single
array would be simple, it’s possible to take advantage of HOL’s typechecking with a
little more work: each class will have its own list of objects of that type. So the entire
state becomes a tuple of all types. The following is a state model for the calculator
from the last section; first is the definition of the data object types, then the entire

state type, then the object reference types:

type number_obj = Number of num;

type overflowobj = Overflow of string;

type state = State of number_obj list # overflow.obj list

type number ptr = Number Ptr of num | Number Null

type overflow ptr = Overflow Ptr of num | Overflow Null

Accessor functions are simply array offsets:

number_lookup (Number Ptr x) (State (numbers, overflows)) = EL x numbers

overflow lookup (Overflow Ptr x) (State (numbers, overflows)) = EL x overflows

The code “EL x numbers” returns the element of array numbers at index x.

Static variables and constants are not shown in this example nor in most of the
following discussion. They can be handled at the global state level with their own
separate entries from the lists of object data, and they would have their own access
and assignment methods much like those for object data.

As shown in the previous examples, there are no data constructors defined for
interfaces; the functions are written to take generic types (denoted by a prepended
apostrophe, such as ’a). This is so that any data type can be used to fulfill that

interface. The class methods, when defined, will supply the appropriate type.

4.2. HANDLING STATE NAIVELY 67

The class relationships for abstract and super-classes are straightforward:

type pos_number_obj =
Pos_Number Number of number_obj

| Pos Number_Overflow of overflow.obj

type operator_obj = Operator

Wherever a sub-class is used as a particular instance of a super-class it is wrapped
with a logic constructor such as Pos_Number_Number; for any downward cast the sub-

class is simply unwrapped.

Note that there is a logic constructor for each implementing class; the
pos_number_obj interface has two implementing classes so there is one for each, but
the operator_obj has no subclasses so there is a single logic constructor needed to
make the type declaration even though it will never be used in a term. The method
behavior takes more planning and will be discussed later. (To preview, the process
is to create stub method definitions which invoke the actual methods up or down the

hierarchy. Class casts works much the same way.)

4.2.2 Constructors

Creating a default new object means adding an element to the state with all fields
set to default values. The return value of constructors is a reference to the new object,

along with the new state’:

4While we use predicates over inputs and outputs in this thesis, in most places we could use
functional types instead. For example, new number above could take a state and return a pair of
the new state and the new object reference. This would make many of the expressions more closely
resemble programming statements and thus easier to understand. However, to remain consistent

throughout this thesis we will continue to use predicates.

68 CHAPTER 4. TRANSLATING IMPLEMENTATIONS TO LOGIC

new number (State (numbers, overflows)) (new_state, new ptr) =
let new_obj = Number O
in (new_state = State (APPEND numbers [new_obj], overflows)

A

(new_ptr = Number Ptr (LENGTH numbers))

new_overflow (State (numbers, overflows)) (new_state, new_ptr) =
let new.obj = Overflow ""

in (new_state = State (numbers, APPEND overflows [new_objl)

A

(new_ptr = Overflow Ptr (LENGTH overflows))

We do not discuss ways to reclaim memory or improve efficiency in this thesis.

Explicitly declared class constructors look similar to these above except that they
would contain more arguments and possibly run code to affect the given state. For
example, the following is a constructor declaration for the calculator_class from

the last section that might store an Operates argument:

public Calculator(Operates op) {

The following is the HOL version, assuming there exist objects such as adders

that fulfill the Operates interface:

calculator (State (calculators...), operator) (new_state, new_calc_ptr) =

J inner_state .
let next_state = State (APPEND calculators [Calculator Operator Null]...)
in let inner state =
in (new_state = inner_state)

A

(new_calc_ptr = Calculator Ptr (LENGTH calculators))

4.2. HANDLING STATE NAIVELY 69

4.2.3 Fields
Field access and assignment for objects requires special processing since functional
logics do not allow assignment. Getting field values is straightforward; setting field

values returns a new state:

overflow_get message obj (Overflow message) result = (result = message)

overflow_get message (Overflow Ptr offset) (State (numbers, overflows)) result =

overflow get message obj (EL offset overflows) result

overflow_set message_obj (Overflow message) new message overflow.result =

(overflow result = (Overflow new message))

overflow_set message (Overflow Ptr offset)

(State (numbers, overflows), new_message)
state_result =

J new_overflow .

overflow_set message obj (EL offset overflows) new message new overflow

A

(stateresult =

State (numbers,

(APPEND (FIRSTN offset overflows)

(CONS new_overflow (BUTFIRSTN (offset+1) overflows)))))

4.2.4 Expressions and Statements

Expressions and statements are fairly straightforward to model. Expressions with-
out side effects look very similar; For example, integer operations are exactly the same.
Most other primitives (including reals and strings) and their operators have some kind
of analogy in a mature logic.

Expressions with side effects may affect a local variable or the entire state. In the

former case a variable is updated, and in the latter the whole state must be updated.

70 CHAPTER 4. TRANSLATING IMPLEMENTATIONS TO LOGIC

These are all placed in conjuncts where the variables are assigned to new values, and
any externally visible values are declared equivalent at the end.
The following is an example snippet of Java which both updates a local variable

and creates a new state object:

. new Integer(a++)...

The HOL version looks like the following:

A (value, a’) = (a, a+l)

A (new_integer (state, value) (state’, obj_ptr))

A (output.a = a’)

As for operator overloading, logics such as HOL do not allow ad hoc operator
overloading, but there is always a mapping to a non-overloaded version. Since most
object-oriented languages have strong typing, each expression type can be determined
such that the right operators may be chosen or the subexpressions may be explicitly
cast to the right types.

Statements are also usually straightforward to model in HOL. We list here the
elements that are the most difficult (but we do not address these issues any further

in the rest of this thesis):

e Loops, while simple to specify, are usually very difficult to verify for termination
properties. The verifier must ensure that the conditions placed on each variable
in preceding code are enough to prove termination. This is a requirement for
defining the code used in an implementation, which happens even before a

program camn be proven correct.

4.2. HANDLING STATE NAIVELY 71

For the sake of completeness we show a definition for the general case of a for
loop. This version is only the inner loop; it takes a continuation condition,
an iter_step statement to run after each loop, and a body to execute, but
no initial statement to run. The general definition (for_pred_aux) cannot be
made in HOL; a specific condition, iterative step, and body and possibly even
restrictions on the state would have to be written for each instance in order to

define this type of loop.

for_pred_aux (state, condition, iter_step, body) (state’) =
(3 (inner_state) (inner_state’) inner_state’’ continue .
condition state (inner_state, continue)
A
(continue =>
(body inner_state inner_state’
A
iter_step inner_state’ inner_state’’
A
for_pred_aux (inner_state’’, condition, iter_step, body) state’)
|

(state’ = state)))

e Exceptions force a jump past all subsequent normal statements and outside
functions until execution hits an exception-handling statement. A good way
to handle this (as in [Lei95]) is with one extra element in the state which
tells whether an exception has been thrown; then each statement condition-
ally executes based upon the exception status (including exception-handling
statements). (This could usually be done in HOL with a higher-order function
statement-handling function that would conditionally execute most statements

based on the state.)

72 CHAPTER 4. TRANSLATING IMPLEMENTATIONS TO LOGIC

e Return statements do not do much: that is the point in execution at which
the output values must reconcile with the internally computed values. (The
special case is when a return executes conditionally in a block statement which

is followed by more statements; see the next paragraph.)

e Other control-flow statements such as break or continue (or even a return
that does not come last in a method) do much the same thing as exceptions. A
general statement-reorganization scheme would be very difficult; one alternative
approach would be to put another element in the global state which is set or

cleared based on the statement’s placement in the enclosing block.

4.2.5 Example involving state
The rest of this section steps through a specification and proof involving state.
The example framework is another generic calculator, but this one remembers the

previous result and can undo the previous operation.

4.2.5.1 Specify framework

The calculator will have one operation assigned to it and also contains the most re-
cently calculated result. It is constructed with an element that Inverts and an initial
value, and it has operate and undo methods. The signature for the UndoableCalc

class is as follows; note how it interacts with an Inverts component (Figure 4.1):

public interface UndoableCalc {
public UndoableCalc(Inverts op);
public void set(int y);
public int operate(int y);
public int undo(int z);

}

4.2. HANDLING STATE NAIVELY 73

UndoableCalc

- Inverts

UndoableCalculator

E—

AddSub

Figure 4.1: “Undoable” framework-component diagram
This framework will only store one datum in the object, so the undo function relys
on the behavior of the invertor. Without that invert property, the framework would
have to store at least two datum (for the last value and for the one before that). This
is a contrived but valid example framework that exhibits state-dependant behavior.

First we define the syntax of the operations:

type undoable_iface sig =

<|
set : ’undoableptr -> (’state # num) -> ’state -> bool;
operate : ’undoable ptr -> (’state # num) -> (’state # num) -> bool;
undo : ’undoable.ptr -> (’state # num) -> (’state # num) -> bool

| >

Following is the behavioral specification for that interface:

undoable_obligs undoable class =
V undo_ptr state state’ state’’ state’’’ x x’ y z.

(undoable class.set undo_ptr (state, x) (state’))

A

(undoable class.operate undo_ptr (state’, y) (state’’, z))
A

(undoable _class.undo undo_ptr (state’’, z) (state’’’, x’))
==>

(x? = x)

74 CHAPTER 4. TRANSLATING IMPLEMENTATIONS TO LOGIC

[]

4.2.5.2 Specify components

The calculator relies on components that satisfy the Inverts interface which is

defined as follows:

public interface Inverts {
public int operate(int x, int y);
public int invert_op(int z, int y);

}

The following is that syntax in logic terms:

type inverts_iface_sig =
<l
operate : ’inverts_ptr -> ’state # num # num -> num -> bool;
invert_op : ’inverts_ptr -> ’state # num # num -> num -> bool
| >

When given the result and the second value from any previous call to operate,

invert_op returns something equivalent to the first value from that call® .

inverts_obligs inverts_class =
V inv.ptr x y z x’ state state’
(inverts_class.operate inv_ptr (state, x, y) 2z)

A

(inverts_class.invertop inv_ptr (state’, z, y) x’)

==>

(x? = x)

5Note that the interface functions are defined in terms of the generic types ’inverts_ptr and
’state. This makes it possible to define the interfaces before the program-specific classes, so the

interfaces can be shared independant of the shallowly-embedded programs that use them.

4.2. HANDLING STATE NAIVELY 75

[]
4.2.5.3 Implement framework L

The following is an implementation of UndoableCalc, assuming there exists a

AddSub class that implements Inverts:

public class UndoableCalculator {

private int prev;
private Inverts op;

public UndoableCalculator(Inverts op, int initial_value) {
this.op = op;
this.prev = initial_value;

}

public void set(int x) {
prev = x;

}

public int operate(int y) {
prev = op.operate(prev, y);
return prev;

¥

public int undo(int y) {
prev = op.invert_op(prev, y);
return prev;

3

public static void main(String[] args) {
UndoableCalculator uncalc_ptr=new UndoableCalculator (new AddSub(),5);
System.out.print ("First result: ");
System.out.println(uncalc_ptr.operate(4));
System.out.print ("Prev value: ");
System.out.println(uncalc_ptr.undo(4));

76

CHAPTER 4. TRANSLATING IMPLEMENTATIONS TO LOGIC

We now show the HOL version of that code with the complete state definitions.

Following are the auxiliary type declarations:

type uncalc_obj = Uncalc of ’inverts_ptr # num

type state = State of ’inverts_ptr uncalc_obj list

type system_out_sig =

<

type uncalc_ptr = Uncalc Ptr of num | UncalcNull

type uncalc_class_sig =

<l

| println: (’inverts_ptr state # ’outstream) -> (’inverts_ptr state) -> bool [>

uncalc : (’inverts_ptr state # ’inverts_ptr # num) -> ’inverts_ptr state
-> bool;
set : uncalcptr -> (’inverts ptr state # num) -> ’inverts_ptr state
-> bool;
operate : uncalc_ptr -> (’inverts_ptr state # num)->(’inverts ptr state # num)
-> bool;
undo : uncalc_ptr -> (’inverts_ptr state # num) -> (’inverts_ptr state # num)
-> bool;
main : (’inverts_ptr state # string list) -> ’inverts_ptr state

-> bool

4.2. HANDLING STATE NAIVELY 7

Following are the object constructor, getter, and setter methods:

uncalcnew (State uncalcs, op, initial value)
(new_state, new ptr) =
let resultobj = Uncalc (op, initial value)
in (new_state = State (APPEND uncalcs [result_objl)
A

(new_ptr = Uncalc Ptr (LENGTH uncalcs))

uncalc_get_op._obj (Uncalc (op, prev)) result =
(result = op)
uncalc_get_op (Uncalc Ptr offset) (State uncalcs) result =

uncalc_get_op_obj (EL offset uncalcs) result

uncalc_get_prev.obj (Uncalc (op, prev)) result =
(result = prev)
uncalc_get prev (Uncalc Ptr offset) (State uncalcs) result =

uncalc_get_prev_obj (EL offset uncalcs) result

uncalc_set_op_obj (Uncalc (op, prev)) new._op uncalc_result =
(uncalc result = Uncalc (new_op, prev))
uncalc_set op (Uncalc Ptr offset) (State uncalcs, new_op)
state result =
3 new_uncalc .
uncalc_set_op_obj (EL offset uncalcs) new_op new_uncalc
A
(state_result =
State (APPEND (FIRSTN offset uncalcs)

(CONS new_uncalc (BUTFIRSTN (offset+1) uncalcs))))

78 CHAPTER 4. TRANSLATING IMPLEMENTATIONS TO LOGIC

uncalc_set_prev._obj (Uncalc (op, prev)) new._prev uncalc result =
(uncalc result = Uncalc (op, new_prev))
uncalc_set_prev (Uncalc Ptr offset) (State uncalcs, new_prev)
state result =
3 new_uncalc .
uncalc_set_prev_obj (EL offset uncalcs) new_prev new_uncalc
A
(state_result =
State (APPEND (FIRSTN offset uncalcs)

(CONS new_uncalc (BUTFIRSTN (offset+1) uncalcs))))

Finally, following are the function definitions for the Uncalc class.

uncalc_undoablc_calc = uncalc_new

uncalc_set = uncalc_set_prev

uncalc_operate uncalc ptr (state, y) (stateresult, num result) =
3 op::inverts_obligs .
3 inner prev inner op inner result inner_state .
uncalc_get_prev uncalc_ptr (state) (inner_prev)
A
uncalc_get_op uncalc_ptr (state) (inner_op)
A
op.operate inner op (state, inner _prev, y) (inner result)
A
uncalc_set_prev uncalc ptr (state, inner result) (inner_state)
A

uncalc_get_prev uncalc_ptr (inner_state) (num _result)

4.2. HANDLING STATE NAIVELY 79

uncalc_undo uncalc ptr (state, y) (stateresult, numresult) =
3 op::inverts_obligs .
3 inner prev inner op inner result inner_state .
uncalc_get_prev uncalc_ptr (state) (inner_prev)
A
uncalc_get_op uncalc_ptr (state) (inner_op)
A
op.invert_op inner op (state, inner prev, y) (inner result)
A
uncalc_set_prev uncalc ptr (state, inner result) (inner_state)
A

uncalc_get_prev uncalc_ptr (inner_state) (num _result)

Note the omission of the main method; it is not needed to prove the Undoable

obligations but it is listed below for the interested reader.

Note also that main requires the AddSub class definitions since an instance must
be constructed. Unfortunately, constructors are often not included in interface defini-
tions; for example, Java does not allow any constructors in interfaces. This is probably
a good decision because an interface should not specify how an object should be cre-
ated; if object creation is an important function of the interface then a getInstance

method or a class factory should be specified.

Regardless, the example below includes the add_sub constructor in the type defi-
nition and shows how to relate the interface obligations for the AddSub class (named
add_sub_obligs) to other obligations (such as inverts_obligs below; others could
be included as well). (The addition of a new class mandates modifications to the

above state and the addition of getter, setter, and constructor methods.)

80 CHAPTER 4. TRANSLATING IMPLEMENTATIONS TO LOGIC

type add_sub_class_sig =

<|
add_sub : state -> state # add_sub_ptr;
operate : add_sub_ptr -> state # num # num -> num -> bool;
invert_op : add_sub_ptr -> state # num # num -> num -> bool
| >

add_sub_obligs (add_sub_class:add_sub._class_sig) =

inverts_obligs (y where operate = add_sub_class.operate

where invert op = add_sub_class.invert_op)

The last method is main:

uncalcmain (state, args) (stateresult) =
J System_out:system out_sig outstream ptr .
3 (add_sub::add_sub_obligs) add_sub_ptr.
3 uncalc ptr
inner result inner _result’
inner_state inner_state’ inner_state’2 inner_state’3

inner_state’4 inner_state’5 inner_state’6 inner_state’7

add_sub.add_sub (state) (inner_state, inner_add_sub_ptr)

A

uncalcnew (inner_state, inner_add _sub_ptr, 5) (inner_state’, uncalc_ptr)
A

System_out.println outstream ptr (inner_state’, "First result: ")

(inner_state’2)

4.2. HANDLING STATE NAIVELY 81

uncalc_operate uncalc ptr (inner_state’2, 4)
(inner_state’3, inner_result)
A
System_out.println outstream ptr (inner_state’3, num_str(inner_result))
(inner_state’4)
A
System_out.println outstream ptr (inner_state’4, "Prev value: ")
(inner_state’5)
A
uncalc operate uncalc ptr (inner_state’5, 4)
(inner_state’6, inner _result’)
A
System_out.println outstream ptr (inner_state’6, num_str(inner_result’))
(inner_state’7)
A

(state_result = inner_state’7))

Finally, the undoable framework class is defined in terms of those methods:

undoable_calc_class =
<|
undoable_calc = uncalc_undoable_calc;
set = uncalc_set;
operate = uncalc_operate;
undo = uncalc_undo;

main = uncalc_main

| >

4.2.5.4 Verifty framework

The following is the verification goal, declaring that the UndoableCalculator

class satisfies the undoable interface obligations undoable_obligs:

82 CHAPTER 4. TRANSLATING IMPLEMENTATIONS TO LOGIC

F undoable_obligs undoable_calc_class

The proof of this goal follows the same structure as that in Section 3.2.1.4.

4.2.5.5 Components E . i
and verification

Since our emphasis is on the framework itself, we do not develop the last four

stages of component implementation, component proof, overall verification result,
and final system deployment.
4.3 Handling State Correctly

The preceding section showed a trivial formalism and proof of machine state in-
volving a single component. However, it did not address the problems of showing what
object data remains unchanged after method calls nor guaranteeing class invariants
for all object data. This same problem occurs when verifying that a particular data
model maps to a more abstrct data model.

Since this thesis primarily addresses the composition of components into verified
frameworks, the complete task of mapping between state formalisms and proving data
invariants is left to future work. However, this section discusses the issues involved
and their analogies in hardware verification, then shows how a “well-formed” predicate
can be used for interfaces to map between the concrete and abstract state models.

Restriced access (or rather “well-defined interfaces”) is the means to tractable
verification involving state and component hierarchies. Here’s how: the state model
at each level of abstraction models data appropriately for that level; the mapping to
a higher level of abstraction is done method by method, such that an entire method
implementation at the more concrete level corresponds to a single atomic action at
the more abstract level.

To show how this would work, we explain how state abstractions are handled in

the verified microprocessor Uinta [Win94] and then how a similar approach would

4.3. HANDLING STATE CORRECTLY 83

work for this work.

Uinta was based on the concept of a “generic interpreter” which sequentially exe-
cutes a stream of instructions which change state and generate output. This was used
to verify the correctness of a macro-instruction machine built from simple components
with two abstraction levels in-between; in other words, the basic components were
verified to implement a micro-instruction machine, and that was verifed to implement
another more abstract machine, and that was verified to implement the final machine.

The key innovation that applies here is the abstraction method: each level defines
more powerful operations than the lower one by combining multiple steps into one, ie.
by temporal abstraction. The following is part of the conclusion of the formal state-
ment of correctness for an instantiation, where a lower-level instruction interpreter is

mapped into a higher-level one:

let £ t = sync gi (s’ t) (e’ t)
in ((select gi (s t) (e t) = k) A (f t)
==> 9 ¢ . Next £ (t,t+c)

A (instructions gi k (s t) (e t) = (s (t + ¢))))

Although the background and details of that formula are not given, it illustrates
how the more abstract function £ is verified at time t and then skips forward some
number of lower-level clock cycles using a Next function to be verified at the next
applicable time t+c. It is not verified at every juncture; it is only verified at the
points in which it should synchronize with the lower implementation level. (The
synchronization function in the above formula is sync.) This is a good way to map
from one state model to a more abstract model.

Software formalisms are a bit different and potentially more complicated; although
the memory references and values are still stored in a global state, they are created

(and deleted) at will. However, they are also simpler in some ways; while the micro-

84 CHAPTER 4. TRANSLATING IMPLEMENTATIONS TO LOGIC

processor clock is involved in every state change, program states can be completely
hidden at the abstract level and there is no need to map the sequence of state changes.
However, mapping from the lower-level data to that in the more abstract state is still

a necessary step.

In order to relate the state of memory at any two points in time we write a “well-
formed” predicate that specifies the behavior expected from each particular object.
This predicate is like our other behavioral specifications up to this point since it
is defined in terms of the method results. The difference is that it only applies at
one particular point in time; the rest of the specification is written in terms of this

“well-formed” definition.

In other words, the theory obligations (ie. class invariants) in this section are
broken into two parts: a “well-formed” predicate (named “impl_for_..._ptr”) for the
requirements for a particular object reference in a state, and the obligations (named
“..._obligs”) which say that every object is “well-formed” in every state. As a re-
sult, the state can be verified between successive method calls until the entire, more

abstract methods are verified.

The remainder of this section gives an example formal specification and verification
involving state and illustrates what special definitions and abstractions might be used
in a larger system. Again, being focused on framework verification, most details of

state formalisms, mappings, and verification are left to future work.

4.3.1 Specify Framework

This framework example is based on the role of a consumer. The consumes in-
terfaces includes two simple functions: eat takes a single number representing an
arbitrary token and eaten returns a count of how many tokens have been consumed.

The balancer framework is built as a wrapper around two consumers such that it

4.3. HANDLING STATE CORRECTLY 85

gives each of them an equal number of tokens. In other words, it implements the
balances interface with two functions: one accessor method retrieve for the con-
sumers and the method delegate which takes a token and passes it to one of those

consumers

Balances - Consumes

Balancer ——

Figure 4.2: “Balances” framework-component diagram

Any balances framework has the following two methods:

type balances_iface_sig =

<l
delegate : ’balances ptr -> (’state # num) -> (’state) -> bool;
retrieve : ’balances ptr -> (’state)

-> (’state # ’consumes_ptr # ’consumes_ptr) -> bool

86 CHAPTER 4. TRANSLATING IMPLEMENTATIONS TO LOGIC

The balances specification says that the two consumers accessed from a balancer

will have an eaten count that is no more than one different from each other:

impl_for_bal ptr bal_class bal_ptr state =

V (consumes._class:(’conptr, ’state) consumes_iface_sig)::consumes_obligs .
V conl ptr con2 ptr state’

V countl count2 state’’ state’’’

(bal class.retrieve bal ptr (state) (state’, conl ptr, con2 ptr))

A

consumes_class.eaten conl_ptr sState State , coun

(1 t 1 ptr (state’) (state’’ t1))
A

consumes_class.eaten conz ptr sState State , coun

(1 t 2 ptr (state’) (state’’’ t2))
==>

(state’ = state)

A
(state’’ = state’)
A
(state’’’ = state’)
N

((countl = count?2)
\%

(countl = count2+1)
\%

(countl+1l = count2))

balances_obligs balances_class =
V bal_ptr state .

(impl_for_bal ptr balances_class bal _ptr state)

4.3. HANDLING STATE CORRECTLY 87

There is one more interface necessary for the implementation below: since Java
does not allow for constructors in interfaces, we must have a consumes_factory with

a method for generating consumers:

type consumes_factory_iface_sig =
<|
generate : ’consumes factory ptr -> (’state) -> (’state # ’consumes._ptr)
-> bool
|>

The consumes_factory specification says that generate returns a consumer that

has eaten zero tokens:

impl_for_con fac ptr con_fac_class con_fac_ptr state =
V consumes_class .
V con_fac_ptr con ptr state state’ state’’ how.many .

con_Tac_class.generate con_rac_ptr state sState’, con_ptr
(f 1 g t fac_ptr (state) (state’ ptr))

((impl_for_con_ptr consumes_class con_ptr state’)

A

(consumes_class.eaten con ptr (state’) (state’’, howmany))
A

(state’’ = state’)

A

(howmany = 0))

consumes_factory_obligs

(consumes_factory_class: (’confac_ptr,’state,’conptr)consumes factory_iface_sig)=

V (con_fac ptr:’con_fac_ptr) (state:’state)

(impl_for_con_fac_ptr consumes factory_class con fac_ptr state)

88 CHAPTER 4. TRANSLATING IMPLEMENTATIONS TO LOGIC

[]

4.3.2 Specify Components

The consumes component has two methods:

type consumes_iface_sig =
<|
eat : ’consumes ptr -> (’state # num) -> (’state) -> bool;
eaten : ’consumes ptr -> (’state) -> (’state # num) -> bool
| >

The consumes specification says that after a token is passed to eat, the result of

eaten is one greater than it would have been before the call to eat:

impl_for_con_ptr con_class con_ptr state =

(V state’ state’’ n .

(con_class.eaten con ptr (state’) (state’’, n))
(state’’ = state’))

A

(V state’ state’’ state’’’ token n m .

(con_class.eat con_ptr (state, token) (state’))

A

(con_class.eaten con ptr (state) (state’’, n))
A

(con_class.eaten conptr (state’) (state’’’, m))
==>

(m = n+1))

consumes_obligs consumes_class =

V con_ptr state .

(impl _for_con_ptr consumes_class con_ptr state)

4.3. HANDLING STATE CORRECTLY

4.3.3 Implement Framework

Following is the Java code for each interface:

89

public interface Consumes {
public void eat(int token);
public int eaten();

}

public interface ConsumesFactory {
public Consumes generate();

}

public interface Balances {
public void delegate(int token) ;
public Consumes[] retrieve();

The following is the code for the Balancer class:

public class Balancer implements Balances {

public Consumes consl, cons2;

public boolean inner_consl_last;

public Consumes getCons1() { return consl; }
public Consumes getCons2() { return cons2; }

public Balancer (ConsumesFactory cf) {
consl = cf.generate();
cons2 = cf.generate();

90 CHAPTER 4. TRANSLATING IMPLEMENTATIONS TO LOGIC

public void delegate(int token) {
if (inner_comnsl_last) {
consl.eat (token) ;
} else {
cons2.eat (token);
}
inner_consl_last = !inner_consl_last;

}

public Consumes[] retrieve() {
Consumes[] result = { consl, cons2 };
return result;

The preceding code is for illustrative purposes. Since the logical translation closely

follows earlier examples, it is listed in the Appendix A.5 for interested readers.

There are a few additional predicates that might be necessary for the final goal.
Some of these may be part of an entire state theory that includes concepts of aliveness,
reachability, disjointedness, etc. such as defined in [PH97] (see Appendix A.7). They
might be defined directly by a person along with the shallow embedding. Each of
them could also be derivative theorems proven from the properties of the particular
state model, particularly if it included an abstract model of memory references with

a concept of reachability.

Following are two examples of such theorems. The first states that an object with
a different memory reference still satisfies the balances obligations after a particular

method call:

4.3. HANDLING STATE CORRECTLY 91

V bal2_ptr bal ptr state state’ token (balances_class::balancesobligs) .
balances_class.delegate bal ptr (state, token) (state’)

A

(bal2_ptr = bal_ptr)

==>

bal_impl for ptr balances_class bal ptr state’)

The next theorem is more powerful; it says that the object data is totally unaf-

fected by a particular method call:

V bal2_ptr bal ptr state token state’ .
balances_class.delegate bal ptr (state, token) (state’)
A

(bal2_ptr = bal _ptr)
==>

balances_lookup bal2_ptr state’ = balances_lookup bal2 ptr state

4.3.4 Verify Framework

In this case, we need to prove that the behavior is satisfied after other methods
(like the constructor) as well as for each interface method. This is the reason for a
different specification predicate for a particular object reference. The following goal
is much like previous goals, but it includes the fact that a balancer object reference

is well-formed rught after being constructed:

92 CHAPTER 4. TRANSLATING IMPLEMENTATIONS TO LOGIC

let balancer_class =
<|

delegate := balancer_delgate;

retrieve := balancer retrieve

| >
in
V state con_fac_ptr state’ bal_ptr .
balancer balancer (state, con_fac_ptr) (state’, bal_ptr)
==>
((wf_bal_obj balancer_class bal ptr state’)
A

balances obligs balancer _class)

We include the proof for this goal in the appendix (A.5).

4.3.5 Components and]] Tﬁl‘
Verification N

As in the last section, we do not develop the last four stages of component imple-

mentation, component proof, overall verification result, and final system deployment.

Chapter 5

Examples of Framework

Verification

This section combines our method of framework verification from Section 3 with the
logic representation of Java from Section 4 to verify some larger examples that occur
in the literature. Since every framework we found involves code-generation or intro-
spection, we simplified each example in ways that preserve the essential framework

characteristics.

Section 5.1 shows a formalism for the Visitor design pattern. Since design patterns
are by definition very general principles, we have created a specific set of Visitor
classes to demonstrate. In other words, we show how a typical example behaves
as a framework and how it is translated to logic terms. The only drawback to this
example is that it does not fit the second criterion of section 1.2.2: its behavior cannot
be defined with the mechanisms developed in this thesis since the behavior always
depends on the structure of the data. Therefore we stop after defining the framework

and translating the implementation into logic terms.

Section 5.2 illustrates the FileReader framework. A FileReader takes user-defined

93

94 CHAPTER 5. EXAMPLES OF FRAMEWORK VERIFICATION

classes and creates functions that write and read specific objects of those classes into
and out of textual representations. Since we cannot view the structure of a class,
we force the framework to accept a different model of a class: an array containing
representations for each class datum, each of which may model a different class.
This recursive model of the class structure will be the component that completes the
framework. For this example, we proceed through the specification and framework
proof but do not include a component implementation and proof.

Section 5.3 verifies transaction attributes for an Enterprise JavaBean (EJB) frame-
work (or “container”) and component (or “bean”). This framework automatically
handles issues such as data persistence and remote procedure calls for user-defined
classes, so EJB tools introspect and generate code like the other examples. In order
to analyze an EJB framework we use a single bean which has a single method; it
would be simple to extend this process to an arbitrary number of beans each having
a different number of methods. We show how all steps of our formal analysis apply
to this entire example.

5.1 Visitors

Our first complex example is an application of the visitor design pattern. For
any hierarchically structured document such as the parse tree of an XML page, a
useful way to extract information from it is to allow visitor objects to traverse the
document tree [GHJV95]. This way, a variety of customized visitors can be used to
gather specific information. In addition, all the code for each conversion is contained
in one place even though it may range over many related data objects. See [FF97]
for a more comprehensive explanation of visitors.

This example is different from others in this thesis because the visitor protocol is
too complex to specify in general. This section is meant to illustrate the structure

of a complex framework. Section 5.1.1 gives an example implementation, followed by

5.1. VISITORS 95

Section 5.1.2 which shows the structure of a visitor specification. In other words, we
introduce this example in reverse order starting with the framework and component
implementations followed by the specifications in the next section in order to illustrate
how this non-trivial framework might be specified in logic terms; no verification is

included (see Sections 5.1.2 and 5.1.3 for more explanation).

In terms of our framework diagram, the visitor would be the component interface

that the class structure employs (Figure 5.1).

'fShishVisitor
EdibleCounter

Shish

Figure 5.1: Visitor framework-component diagram

[]
5.1.1 Implement Framework L

A Shish object represents a linked list of items beginning with zero or more foods

and ending with a skewer. Since each edible item must be attached to a shich-kebab,

they all include a link to the remainder of the kebab. The skewer always comes last.

We define an interface Shish with a single method accept followed by a visitor
class ShishVisitor which executes some operation on any given Shish. The purpose
of the mandatory accept method of the Shish interface is to allow any ShishVisitor
to be invoked on any Shish structure. Note that this code presupposes the existence

of a Result class:

96 CHAPTER 5. EXAMPLES OF FRAMEWORK VERIFICATION

public interface Shish {
public Result accept(ShishVisitor sv);
}

The following Java code shows four possible implementing classes. There is one

skewer and three edible items:

public class ShishSkewer implements Shish {
public ShishSkewer() {}
public Result accept(ShishVisitor v) {return v.visitSkewer();}
}
public class ShishOnion implements Shish {
private Shish restO0fKebab;
public ShishOnion(Shish rest0fKebab){this.rest0fKebab = rest0fKebab;}
public Result accept(ShishVisitor v){return v.visitOnion(rest0fKebab);}
}
public class ShishLamb implements Shish {
private Shish restOfKebab;
public ShishLamb(Shish rest0fKebab){this.rest0fKebab = rest0fKebab;}
public Result accept(ShishVisitor v){return v.visitLamb(restOfKebab);}
}
public class ShishTomato implements Shish {
private Shish restOfKebab;
public ShishTomato(Shish restO0fKebab){this.rest0fKebab = rest0fKebab;}
public Result accept(ShishVisitor v){returnv.visitTomato(restO0fKebab);}
}

The ShishVisitor interface has a method for each class that implements Shish:

public interface ShishVisitor {
public Result visitSkewer();
public Result visitOnion(Shish s);
public Result visitLamb(Shish s);
public Result visitTomato(Shish s);

5.1. VISITORS 97

Finally, we write a visitor which tells how many edible items are on any given
shish-kebab. For a skewer, the count is 0; for any other item, the result is the result
of the rest of the kebab plus 1. We assume there is an available Result class with an

add method to accumulate the total:

public class EdibleCounter implements ShishVisitor {

public Result visitSkewer() {
return new Result(0);

}

public Result visitOnion(Shish s) {
return s.accept(this).add(1);

}

public Result visitLamb(Shish s) {
return s.accept(this).add(1);

}

public Result visitTomato(Shish s) {
return s.accept(this).add(1);

}

[]

5.1.2 Specify Framework & Components

Since the visitor pattern is a cookbook structure for programmers to use in partic-
ular situations, the code must be written (or generated) for each purpose. There is no
general framwork or component specification that fits all visitors, and consequently
behavioral specifications must also be custom built. Assuming one could build a sin-
gle abstraction for a node or a tree structure, potential specifications might include
guarantees that all nodes get visited or that they get visited in a particular order.

So this example is only meant to show the structure of a visitor specification. We

begin with the Shish interface which has a single method to accept visitors:

type shish_iface_sig = <| accept: ’shish -> ’visitor -> ’result -> booll>;

98 CHAPTER 5. EXAMPLES OF FRAMEWORK VERIFICATION

Each implementation of the ShishVisitor interface has a method for each shish-

kebab classes:

type shish visitor_iface_sig =
<
visit_skewer: ’visitor -> ’result -> bool;
visit_onion: ’visitor -> ’shish -> ’result -> bool;
visit_lamb: visitor -> ’shish -> ’result -> bool;

visit_tomato: ’visitor -> ’shish -> ’result -> bool

| >

Only the Shish classes have any data, so the entire structure for the class data is

as follows:

type shish = Skewer | Onion of shish | Lamb of shish | Tomato of shish

Now we can define the class methods. The accept method must be implemented

by each subclass of shish! 2

(shish obligs tree_funs =
(3 visitor funs::shish visitor_obligs .
(VY vis_obj result . tree funs.accept (Skewer) vis_obj result =
visitor funs.visit_skewer vis_obj result)
A
(VY vis_obj s result . tree funs.accept (Onion s) vis_obj result =
visitor funs.visit_onion vis_obj s result)

VAN

In HOL, we can define all four functions inside one definition since they share the same name

and take parameters of the same base datatype.

2Note that this definition uses shish_visitor_obligs which is defined below but whose definition
in turn makes use of this one, meaning that the two definitions are mutually recursive and must be

defined concurrently.

5.1. VISITORS 99

(VY vis_obj s result . tree funs.accept (Lamb s) vis_obj result =
visitor funs.visit_lamb vis_obj s result)

A

(VY vis_obj s result . tree funs.accept (Tomato s) vis_obj result =

visitor funs.visit_tomato vis_obj s result)

))

The visitor implements each of the four visit methods from the
shish visitor_iface sig interface, one of which (the Skewer) calculates a result
independantly, and the other three invoke accept on the Shish objects they receive
as arguments. Note that the following does not contain class details (such as add (1)
from the Java code) since it is concerned only with the obligations for the visitor
interface and not specific classes; to instantiate this definition with a class such as

EdibleCounter we would replace the result_fun with the analogy of add(1):

(shish visitor obligs visitor_funs =
(3 shish funs::shish obligs .
(V vis_obj
(3 result . visitor funs.visit_skewer vis_obj result)
A
(V shish result . visitor funs.visit_onion vis_obj shish result =
(3 result2 result_fun . shish funs.accept shish vis_obj result2
A result = result_fun result2)
A
(V shish result . visitor funs.visit_lamb vis_obj shish result =
(3 result2 result_fun . shish funs.accept shish vis_obj result2
A result = result_fun result2)
A
(V shish result . visitor funs.visit_tomato vis_obj shish result =
(3 result2 result_fun . shish funs.accept shish vis_obj result2

A result = result_fun result2)

)))

100 CHAPTER 5. EXAMPLES OF FRAMEWORK VERIFICATION

5.1.3 Verify Framework

The visitor pattern has proven extremely useful for some tasks. Unfortunately,
since each application of this pattern is human-intensive, its analysis is out of the
range of current verification techniques and beyond the scope of this thesis. So we
stop at the framework specification above, which is interesting in its own right.

5.1.4 Components and] [i

Verification

As just explained, we do not develop the last four stages of component implemen-

tation, component proof, overall verification result, and final system deployment.

5.2 The File Reader

In this section, we model a framework which Woolf calls a “File Reader” [Wo0099].
It takes a tree object structure and constructs one or more objects with that structure
from data in an input stream.

For example, consider a Person and an Address object. Person contains the
string fields name and occupation along with an Address field which contains five
more string fields. The data for a given Person could be flattened into seven fields;
a FileReader could then be used to reconstruct the original Person data from those
seven fields. Going further, given simply an input stream that uses a delimiter to
separate fields, a FileReader could reconstruct a list of Person objects with nested
Address objects, one for each seven fields from the stream.

The original FileReader is fairly complex, employing language features such as
introspection to set field values. It must be modified to create formal definitions. In
fact, the methods below barely resemble the original framework for two reasons: we
do not have a rich enough logic to reason about introspection, and we want to show

example components that have well-defined interfaces and behaviors.

5.2. THE FILE READER 101

So where the published file reader works with files or input streams, our version
converts string arrays into objects (and vice-versa). And where the published version
determines the structure of the objects mechanically by introspection, our version

requires components which convert a single object to a string (and vice-versa).

FileReader | StackComposable

FileReaderimpl

Figure 5.2: “FileReader” framework-component diagram

Components of the StackComposable interface require two methods:

e construct takes a list of strings and a list of objects, each of which is treated as
a stack: it pops values from the string list and possibly the object list, creates
an object out of the values, and pushes the result object onto the object list. It

returns the new version of both lists.

e destruct also accepts and returns a list of strings and a list of objects but does
the opposite: it takes the first object and converts it back into string and object

values which it pushes onto the respective list.

The real-world FileReader does not require the opposing destruct operator; it is
included in this formalism in order to be able to state a formal correctness condition.
Without that, there is only an operation that converts strings to objects without any

mechanism to tell whether that operation works correctly.

102 CHAPTER 5. EXAMPLES OF FRAMEWORK VERIFICATION

The final framework takes a list of StackComposable objects along with the string

list of values and creates the hierarchical object structure.

5.2.1 Specify Framework

The FileReader has two operations. The method of_list takes a list of
StackComposable objects and creates an object from a string list. The method

to_list does the opposite: it converts an object into a flattened list of string values.

public interface FileReader {
public Object to_list(StackComposable[] stack_composables,
String[] strings);
public String[] of_list(StackComposable[] stack_composables,
Object obj);

This behavioral specification says that these two are essentially inverses of each

other?®.

type filereader_iface_sig =

<|
of 1ist: ((’obj)stack composable iface_sig list # string list) -> (’obj) -> bool
tolist: ((’obj)stack.composable_iface sig list # ’obj) -> (string list) -> bool

| >

3The inputs to to_list may contain extra elements (represented by morestr); this is becaus it
will finish and return an object as soon as all the StackComposers have been applied successfully.
Also note that the to_list requires the StackComposable objects in reverse order; this was an

implementation decision which may not be necessary for proper functionality.

5.2. THE FILE READER 103

file reader obligs file reader =
(V stack_composers strlist objlist morestr moreobj .

file reader.of list (stack_composers, APPEND strlist morestr) (obj)

file reader.tolist (REVERSE stack_composers, obj) (strlist))

[]

5.2.2 Specify Components

StackComposable objects operate on two stacks, a string stack and an object

stack, each being a list of elements.

The input and output stacks are combined in the StringObjectStacks class:

public interface StackComposable {
public class StringObjectStacks { Vector strings, objects; }

public StringObjectStacks construct(StringObjectStacks stacks);
public StringObjectStacks destruct(StringObjectStacks stacks);

As for their behavior, a construct operation always causes the string list to
shrink in size (specified by the first two conjuncts of stack_composable_obligs). A
construct followed by a destruct restores the string and object stacks (which is the

last part of stack_composable_obligs).

104 CHAPTER 5. EXAMPLES OF FRAMEWORK VERIFICATION

type stack_composable_iface_sig =

<|
construct : (string list # ’Object_with_create list)
-> (string list # ’Object_with_create list) -> bool;
destruct : (string list # ’Object_with_create list)
-> (string list # ’Object_with_create list) -> bool
| >

stack_composable_obligs stack_composer =
(V strlist objlist strlist2 objlist2 .

stack_composer.construct (strlist, objlist) (strlist2, objlist2)

LENGTH strlist2 < LENGTH strlist)
A

(V strlist objlist strlist2 objlist2 .
stack_composer.destruct (strlist2, objlist2) (strlist, objlist)
==>

LENGTH strlist2 < LENGTH strlist)
A

(3 strlist objlist objlist2 .

stack_composer.construct (strlist, objlist) ([], objlist2)
A

stack_composer.destruct ([], objlist2) (strlist, objlist)
A

(LENGTH objlist2 = 1))

[]

5.2.3 Implement Framework

This framework is relatively simple to implement since the StackComposer com-
ponents do most of the work. The most difficult part is keeping the roles in mind.

Each StackComposer has its own version of construct that pops from the

5.2. THE FILE READER 105

StringObjectStacks to create and push another Object onto the stack, and each
destruct moves in the other direction; this framework’s job is simply to delegate the

actions:

public class FileReaderImpl implements FileReader {

public Object of _list(StackComposable[] stack_composables,
String[] strings) {
Object[] objects = {};
StringObjectStacks stacks =
new StringObjectStacks(objects, strings);
int i = 0;
while (stacks.objects.size() > 0) {
stacks = stack_composables[i++].construct(stacks);
}
return stacks.objects.elementAt(i);

}

public String[] to_list(StackComposable[] stack_composables,
Object obj) {
Object[] objects = { obj };
String[] strings = {};
StringObjectStacks stacks =
new StringObjectStacks(objects, strings);
int 1 = 0;
while (stacks.objects.size() > 0) {
stacks = stack_composables[i++].destruct(stacks);

}
return (String[])stacks.strings.toArray(new String[0]);

Following is the logical definition of of _1ist_fun . The workhorse is of 1ist_fun?2
which always succeeds for the base case of no stack_composers, and which applies the

construct method and recurses through the rest of the list when there are more to

106 CHAPTER 5. EXAMPLES OF FRAMEWORK VERIFICATION

apply * . The of _1list_fun method sets up of_1list_fun2 with the right parameters.

(of list_fun2 ([1, strlist, objlist:’a list)

(strlist2:string list, objlist2:’a list)
= T)

A
(of 1list_fun2 (CONS stack_composer stack_composers, strlist, objlist)

(strlist2, objlist2) =

(stack_composable obligs stack_composer

(3 strlist’ objlist’

(stack_composer.construct (strlist, objlist) (strlist’, objlist’))
A

(of _list fun2 (stack_composers, strlist’, objlist’) (strlist2, objlist2)))))

(of_list _fun (stack_composers, strlist) (obj) =

(3 strlist’ objlist’

of 1list fun2 (stack_composers, strlist, []) (strlist’, objlist’)
N

(obj = HD objlist’)))

Following is the logical definition of to_list_fun. It works much the same way:

by calling the recursive to_list_fun2 with the right parameters it forces a destruct

on each memer of the list of objects.

4The definition of of 1ist_fun2 cannot be created automatically; the following measurement

function can be used with HOL’s Defn library:

list meas ((a:’a stack_composable_iface sig list, b:string list, c:’a list),
x:string list, y:’a list)

= LENGTH a

5Note the different syntax to restrict all stack_composer components to satisfy

stack_composable obligs. Inside definitions, an implies (—) must be used because restricted

quantification (::) is only available with the forall (V) and exists (3) bindings.

5.2. THE FILE READER 107

(tolist_fun2 ([], strlist, objlist:’a list)
(strlist2:string list, objlist2:’a list)
=T)
A
(to_list_fun2 (CONS stack_composer stack_composers, strlist, objlist)
(strlist2, objlist2) =
(stack_composable obligs stack_composer
==>
(3 strlist’ objlist’
(stack_composer.destruct (strlist, objlist) (strlist’, objlist’))
A

(to_list fun2 (stack_composers, strlist’, objlist’) (strlist2, objlist2)))))

(tolist_fun (stack_composers, obj) (strlist:string list) =
(3 strlist’

to_list_fun2 (stack_composers, [], [objl) (strlist’, [1)))

The FileReaderImpl class is made of these two methods as follows:

file_reader_class = <|

of_list := of_list_fun;
to_list := to_list_fun

| >

5.2.4 Verify Framework

The theorem for the File Reader follows the familiar pattern:

F file reader_obligs file reader _class

The proof of this theorem proceeds much like earlier proofs (see Section 3.2.1.4).

108 CHAPTER 5. EXAMPLES OF FRAMEWORK VERIFICATION

5.2.5 Components and @ . i
Verification

For this example, we do not develop the last three stages of component implemen-

tation, component proof, overall verification result, and final system deployment.

5.3 EJB transactions

Finally, this section presents a framework that manages transactions for Enterprise
JavaBeans (EJBs).

As a standard for independantly deployable components, the EJB specification
defines roles for the different parties that participate and spells out actions that
occur from development through deployment and maintenance. However, we are
only interested in the technical details of EJBs, especially how their properties can
be formally defined and verified.

The EJB specification version 1.1 is 558 pages in size with additional errata docu-
ments [MH99]. For this example, we chose one area where the code could be treated
as a framework with well-defined behavioral specifications, then verify code involving
reusable components. Out of all the issues addressed in the documentation, only
two appear to be defined well enough for formal analysis: security and transactions.
However, only transactions appear to have functionality that is modular enough to
be organized into some type of component-framework. Throughout this section, the

framework formalisms are developed at the same time the framework is explained.

5.3.1 Specify Framework

The system is structured as an EJB framework that delegates user requests to
component methods which do the work. Each method call can have an associated
transaction assigned to it that guarantees atomicity and consistency; it maintains the

connection to the database and ensures that all data changes happen or they all fail,

5.3. EJB TRANSACTIONS 109

and that other processes viewing the data see all the changes if they see any at all.
Component designers have the option of maintaining all their own transactions
with the database and explicitly controlling when changes commit or not. However,
they can choose “container-managed” transactions where the framework manages
some of the database details so the component designers do not have to. For example,
the component can be marked as always needing a new transaction for its work so that
its actions are not combined with any other methods’ database actions (except those
it explicitly invokes). This is exactly the behavior that the “transaction demarcation”
attributes specify; these are set with a “deployment descriptor” in a location separate

from programming code. That particular behavior is named RequiresNew.

ejb_server_xaction_obligs

—] ' |~ ejb_bean_iface_obligs
container_pass_through_impl

exchange_bean_method_impl

E—

Figure 5.3: EJB framework-component diagram

This section specifies how the example container framework and component to-
gether preserve transaction demarcation attributes. We begin with Table 5.1 showing
the effect of each attribute. We then specify the behavior a transaction, whose syntax
is essential to the framework code and whose semantics are essential to the framework
validation (Section 5.3.1.1).

The framework and component specifications come directly from the “Transaction
attribute summary” table on pages 357-8 of [MH99]. It summarizes the transaction

made available to the business method and the framework “resource managers”, or

110 CHAPTER 5. EXAMPLES OF FRAMEWORK VERIFICATION

Transaction Client’s Transaction associated | Transaction associated
attribute transaction | with business method | with resource managers
NotSupported none none none

T1 none none
Required none T2 T2

T1 T1 T1
Supports none none none

T1 T1 T1
RequiresNew none T2 T2

T1 T2 T2
Mandatory none error N/A

T1 T1 T1
Never none none none

T1 error N/A

Table 5.1: Transaction Attribute Behavior Summary

framework subsystems that control the database connections. The label T1 is the
transaction passed with the client request, while T2 is a transaction initiated by the

framework.

For example, line 2 states that when a component deployed with a “Required”
attribute is called by a process that does not already have a transaction, the resource

managers create a new transaction which is used by the business logic.

First we formally specify what a transaction component does since that is crit-
ical for defining the correct operation of the framework. Then we give the formal

specification of the framework.

5.3. EJB TRANSACTIONS 111

5.3.1.1 A Transaction Component

A transaction is defined in terms of the following actions:

A new returns a transaction object which modifies the database, often called a

Connection in programming code.

A modify updates a particular database table entry with a new value datum.
For this thesis, the table and entry identifiers are strings and the written value

is a number.

A read retrieves the current value of a particular table entry. Again, the table

and entry are strings and the accessed value is a number.

A commit permanently commits updates from modify commands.

e A rollback undoes any transaction changes since the new or the most recent

commit.

The following is the type signature for that interface:

type transaction_iface_sig = <|
new : ’state —-> ’state # xaction ptr -> bool;
modify : xactionptr -> ’state # string # string # num -> ’state # bool ->bool;
read : xactionptr -> ’state # string # string -> ’state # num -> bool;
commit : xaction ptr -> ’state -> ’state —-> bool;
rollback : xaction ptr -> ’state -> ’state -> bool

| >

A transaction has the following two behaviors (spanning lines 1-3 and 4-14 respec-

tively in the specification below):

e The new method (line 2) creates a non-null transaction object.

112 CHAPTER 5. EXAMPLES OF FRAMEWORK VERIFICATION

e A modify (line 6) causes a subsequent read (line 7) to return the same data.
In addition, calls to rollback (lines 8-11) and commit (lines 12-14) work as

follows:

— A rollback (line 8) causes a subsequent read (line 9) to return the same
result as a read (line 10) before creating the transaction (ie. the state

before the new named state’pre begin).

— A commit (line 12) causes a subsequent read (line 13) to return the same

result as the read (line 7) before creating the transaction.

transaction_iface obligs xaction =

1) (V trans ptr state’pre begin state’post_begin .
2) (xaction.new (state’pre begin) (state’post_begin, trans ptr)
3) ==> —(trans_ptr = Xaction Null)))
A
4) (VY trans ptr state’pre begin state’post_begin

state’pre_end state’post.roll state’post_commit

table row data success .

5) (—(trans_ptr = Xaction Null))
A
6) (xaction.modify trans_ptr (state’post begin, table, row, data)

(state’pre_end, success)))
==>
7) (xaction.read trans ptr (state’pre_end, table, row)

(state’pre_end, data)

5.3. EJB TRANSACTIONS

113

8) ((xaction.rollback trans ptr (state’pre_end) (state’post_roll)
V — success)
==>
(3 data2 data3 .
9) xaction.read trans_ptr (state’postroll, table, row)
(state’post_roll, data3)
A
10) xaction.read trans_ptr (state’pre_begin, table, row)
(state’pre_begin, data2)
A
11) (data2 = data3)))
A
12) ((xaction.commit trans ptr (state’pre_end) (state’post_commit)
A success)
==>
(3 data2 .
13) xaction.read trans ptr (state’post_commit, table, row)
(state’post_commit, data2)
A
14) (data2 = data)))))
5.3.1.2 An EJB Container Framework

In EJB terminology, the framework is a “container” and the components are

“beans’”. The container framework acts as an intermediary between the requestor

and the bean component. It intercepts calls to the component and manages server

resources, such as transactions in this example.

In particular, the framework in

this section will create and pass transactions to the bean according to the selected

transaction attribute (Table 5.1).

Like the other industrial examples in this thesis, this framework is simplified. A

framework can normally delegate any number of messages to any number of compo-

114 CHAPTER 5. EXAMPLES OF FRAMEWORK VERIFICATION

nents, but that requires code generation tools and reasoning which is not available in
logic. Plus, that would be overly complex for this illustration. This example shows a
framework with a single method which it delegates to a single component.

First we declare the available transaction attributes:

type xaction_attr =

NotSupported | Required | Supports | RequiresNew | Mandatory | Never

Now we are ready to specify the transactional EJB framework behavior. A frame-
work has a single container method which accepts incoming requests to delegate
to the bean component. Besides the component and framework object on which
it operates, the method takes four arguments: the memory (of type ’state), the
transaction attribute (of type xaction_ attr), the transaction object of the client (of
type xaction ptr), and any arguments for the business logic (of type ’args). It re-
turns four arguments: the new memory (of type ’state), the two transation objects
supplied to the business method component and resource managers respectively (of
type xaction ptr), and the return value of the component method (of type ’val).

Following is the type signature of this method:

type ejb_server_sig = <|
container method :
container_ptr
-> ’state # xaction_attr # xaction.ptr # ’args
-> ’state # xaction ptr # xaction ptr # ’val

-> bool

| >

The overall obligations are a formal statement of the EJB transation attribute
summary (Table 5.1) before and after the method call®. They begin with a call to

the container.container_method on the phrase marked 1 below.

6The name of trans4 is correct; trans3 is used later in the implementation, where there is an

internal transaction between trans2 and trans4.

5.3. EJB TRANSACTIONS 115

The phrases marked 2 through 7 express the behavior of each of the entries in
Table 5.1. For example, phrase 3 says that if the transaction attribute is “Required”
then there are two cases: the transaction from the client may be null, in which case a
new transaction is created for both the component and resource manager; otherwise
there is a transaction from the client which both the component and the resource

manager use.

ejb_server xaction_spec (server:(’state, ’args, ’val) ejb_server_sig)

3 xaction::transaction iface_obligs .
V container ptr state’pre state’post
transl trans2 trans4 trans_attr
(x:’args) (y:’val)
1) server.container method container ptr
(state’pre, trans_attr, transl, x)
(state’post, trans2, transé4, y)
==>
2) ((trans_attr = NotSupported) ==>
((trans2 = Xaction Null)
A (trans4 = trans2)))
A
3) ((trans_attr = Required) ==
(((transl = Xaction Null)
=> ((trans4 = trans2)
A (3 (state’any.pre bean:’state) state’any_pre bean2 .
xaction.new (state’any_pre_bean)
(state’any_pre_bean2, trans2)))
| (trans2 = transl)

A (trans4 = transi))))

116 CHAPTER 5. EXAMPLES OF FRAMEWORK VERIFICATION

4) ((trans_attr = Supports) ==>
((trans2 = transl)
A (trans4 = transl)))
A
5) ((trans_attr = RequiresNew) ==>
((trans4 = trans2)
A (3 state’any._pre_bean state’any_pre bean2 .
xaction.new (state’any_pre_bean)
(state’any_pre_bean2, trans2))))
A
6) ((trans_attr = Mandatory) ==>
((—=(transl = Xaction Null))

A (trans2 = transl)

A (transd

trans1)))
A
7) ((trans_attr = Never) ==>
((transl = Xaction Null)
A (trans2 = transl)

A (trans4 = transl)))

Note that the definition depends on a class that satisfies the transaction obliga-

tions. This is done with the internal reference to the transaction_iface_obligs.

[]

5.3.2 Specify Components

Our component is a single EJB bean. Since most of the critical component code
is simple and does not change between components, introspection tools are used
to generate most of the code so that component developers need not worry about
the details of databases and maintaining transactions. However, automated code-
generation is difficult to specify let alone reason about. So the behavior we specify

for this example is exactly the behavior that the EJB tools generate automatically for

5.3. EJB TRANSACTIONS 117

the developers. We realize that this particular example will not encourage developers
to verify their own component behavior, but it may be useful for EJB tool writers as
well as being good for this framework illustration.

While in the real world a bean component may have any number of methods and
any kind of signatures, it is not possible to deal with all those variations in this thesis.
The property with which we are concerned is the state of the transaction before and
after the method call, which must conform to the table above. So a component is
simplified to contain one method which takes a transaction and other arguments and

returns the transaction and any other arguments.

type ejb_bean_iface sig = <|
bean _method :

bean ptr -> state # xactionptr # ’args -> state # xactionptr # ’val -> bool

|>

The bean component obligation states that the transaction remains unchanged
after the method call. This is a simple obligation, but it is a critical fact in the proof

that the entire framework acts correctly:

ejb_bean_iface_obligs bean =
V bean ptr state’pre_bean state’post_bean transl trans2 x y .
bean.bean method bean ptr (state’pre_bean, transl, x)

(state’post_bean, trans2, y)

==> (transl = trans2)

[]
5.3.3 Implement Framework L

The implementation we studied is the JOnAS EJB container framework and its set

of bean component generation tools. We are focused only on the transactional aspect

of method calls to the component, so we do not include incomplete code snippets or

118 CHAPTER 5. EXAMPLES OF FRAMEWORK VERIFICATION

large blocks of unrelated code. The following framework implementation is restricted
to the details of the transaction, but it accurately captures the entire transaction

behavior across method boundaries.

The implementation of method pass_through method is a bit different from pre-
vious implementations because it takes the bean component as one of the arguments.
An EJB framework must be configured with all the component information, which is
usually done through introspection and/or property files. Here this process is emu-

lated by including the component as an argument to the framework’s entry method.

The semantics below show how the framework implementation interacts with the
component. There are a total of four transaction variables throughout this imple-
mentation: transl and trans4 are the transactions shared with the client process at
the beginning and end of the call to pass_through _method respectively; trans2 and
trans3 are the transactions shared with the component process at the beginning and
end respectively, and they may or may not be different from the trans1 and trans4

transaction depending on what transaction attribute was chosen at deployment.

For example, phrase 3 implements the “Required” functionality for a transaction
which is described in the specification above. Note how the correctness of this case
depends on the behavior of the bean.bean method, which is where the relationship

between trans2 and trans3 is defined.

5.3. EJB TRANSACTIONS 119

container_pass_through impl
(trans_class, bean_class)
container ptr
(state’pre_skel:’state, trans_attr, transl, w)

(state’post_skel, trans2, transd, z)

J bean ptr state’pre_bean state’post_bean
state’any pre_bean:’state state’any_pre_bean?2
trans3 .

1) (bean_class.bean method bean ptr
(state’pre_bean, trans2, w)
(state’post_bean, trans3, z))

A

2) ((trans_attr = NotSupported) ==>
((trans2 = Xaction Null)

A (trans4 = XactionNull)))

A

3) ((trans_attr = Required) ==
(((transl = Xaction Null)

=> (trans2 = transl)
A (trans4 = trans3)
A (trans_class.new state’any pre_bean
(state’any pre_bean2, trans2))
| (trans2 = transi)
A (trans4 = trans3))))

A

4) ((trans_attr = Supports) ==
((trans2 = transi)

A (trans4 = trans3)))

120 CHAPTER 5. EXAMPLES OF FRAMEWORK VERIFICATION

5) ((trans_attr = RequiresNew) ==>

((trans4 = trans3)
A (trans_class.new state’any pre_bean

(state’any_pre_bean2, trans2))))
A

6) ((trans_attr = Mandatory) ==>

((—~(transl = Xaction Null))

A (trans2 = transl)

A (trans4 = trans3)))
A

7) ((trans_attr = Never) ==>

((transl = XactionNull)

A (trans2 = transl)

A (transd

trans3)))

5.3.4 Verify Framework

The correctness statement resembles earlier goals, where the customizable inter-

faces are each written with restricted universal quantification; here, the component

interfaces are the transaction and bean class variables:

F V (trans_class::transaction iface_obligs)
(bean_class::ejb bean_iface obligs) .
ejb_container xaction_obligs

<| container method :=

container pass_through impl (trans_class, bean class) [>

Again, the proof of this theorem resembles earlier proofs. The entire HOL proof

script is found in Section A.6.1.

L]
5.3.5 Implement Component

For this last example we complete the process for the client.

5.3. EJB TRANSACTIONS 121

The bean component depends on three other components: the customer_class
and seller_class have identifiers (accessed by “getId()”) which are used to find
their rows in their respective tables, and the stock_class includes a stock price which
will be the value used to update each entry.

Since our examples do not deal with exceptions (see Section 4.2.4, we rely on a

boolean “success” values to tell whether the updates succeed.

public class StockInterfaceBean {

public static boolean exchange(Connection xaction,
CustomerAccount account,
StockHolder seller,
StockInfo stock) {
1) boolean successl = true;
try {
xaction.executeStatement...
} catch (Exception e) {
successl = false;

}

2) Dboolean success2 = true;
try {
xaction.executeStatement...
} catch (Exception e) {
success2 = false;

}
3) if (!(successl /\ success2)) {
4) xaction.rollback();
} else {
5) xaction.commit () ;
}
}
}

The following logic version of that Java code requires some explanation. Lines

1-4 are parameters of the implementation method: line 1 is the list of external com-

122 CHAPTER 5. EXAMPLES OF FRAMEWORK VERIFICATION

ponents; line 2 is the object reference for the component upon which this method is
called; line 3 is the list of inputs, including the transaction which is made available
by code-generation tools; and line 4 is the list of outputs.

In the body of the Java class above, phrases 1 and 2 correspond with lines 11 and
12 below respectively. Note that variables such as the customer_id and state’mid1
are linked to other phrases where those variables are set or accessed. Finally, lines 3,
4, and 5 above correspond to lines 16, 17-18, and 19-20 below respectively.

It may help to describe the intent of the logic.

e Line 5 states that the transaction pointer remains unchanged (since the output

value is the same as the input value).

e Lines 6-8 retrieve the customer and seller IDs and the stock price from their

respective objects into local variables.

e Lines 9-10 access the database table entries which may be modified later; this

is to ensure that the initial values remain unchanged upon a rollback.

e Lines 11-12 execute the update (or “modify”) statement to fill the database

tables with new values.

e Lines 13-14 relate the input and output machine states to the internal states.

e Line 15 checks whether the table updates were successful. Upon success of
both, lines 16-17 show that the stock_price is successfully written to each
table; however, upon failure of either, lines 18-19 show that the data originally

in each table remains as if nothing happened.

5.3. EJB TRANSACTIONS 123
exchange bean method_impl
1) (trans_class, customer_class, seller_class, stock_info_class)
2) bean ptr
3) (state’pre, trans_attr, trans_ptr, customer ptr, seller ptr, stock_info_ptr)
4) (state’post, trans ptr2) =
V datal data2 successl success2 .
J state’midl state’mid2 state’mid3 customer_id seller_id stock._price
5) (trans_ptr2 = trans_ptr)
A
6) customer class.get_cust_id customer ptr (state’pre, Void)
(state’pre, customer_id)
A
7) seller class.get_sell_id seller ptr (state’pre, Void)
(state’pre, seller_id)
A
8) stock_info_class.get price stock_info ptr (state’pre, Void)
(state’pre, stock_price)
A
9) trans._class.read trans ptr (state’pre, "customer", customer_id)

10) trans_class.read trans_ptr (state’pre, "seller", seller_id)

11) trans_class.modify trans ptr (state’midl, "customer", customer_id,stock_price)

12) trans_class.modify trans ptr (state’mid2, "seller", seller_id, stock_price)

(state’pre, datal)

A

(state’pre, data2)

A

(state’mid2, successl)

A

(state’mid3, success?2)

124 CHAPTER 5. EXAMPLES OF FRAMEWORK VERIFICATION

13) (state’midl = state’pre)
A
14) (state’mid3 = state’post)
A
15) if (successl A success2)
then
16) (trans_class.read trans ptr (state’post, "customer", customer_id)
(state’post, stock_price)
A
17) trans_class.read trans ptr (state’post, "seller", seller_id)
(state’post, stock price))
else
18) (trans_class.read trans ptr (state’post, "customer", customer_id)
(state’post, datal)
A
19) trans_class.read trans ptr (state’post, "seller", seller_id)
(state’post, data2))

5.3.6 Verify Component

Following is the goal to prove this bean component correct. It states that when the
method exchange_bean _method_impl is the implementation for a component method,
it satisfies the ejb_bean_iface_obligs in conjunction with the other (trans_class,

customer_class, etc.) components.

F V (trans_class::transaction iface_obligs)
customer_class seller_class stock_info_class .
ejb_bean_iface_obligs
<| bean.method := exchange bean method_impl

(trans_class, customer_class, seller_class, stock_info_class)

5.3. EJB TRANSACTIONS 125

5.3.7 Final System Framework Properties

The goal of a verified EJB server is stated as follows: when deployed with a bean
component implemented by the exchange bean_method_impl method, a framework
implememented by the container_pass_through impl method satisfies the frame-

work obligations ejb_container_xaction_obligs.

F V (trans_class::transaction iface_obligs)
customer_class seller class stock_info_class .
ejb_container xaction_obligs
<| container method :=
container_pass_through_impl
(trans_class,
<| bean_method :=
exchange_bean method_impl
(trans_class, customer_class, seller_class, stock_info_class)
[>)

| >

As always, the final system properties follow automatically from the framework

and component proofs.

5.3.8 Final System Client Properties ﬁ
[]

Finally, the end users are not so much interested in the details of transaction safety

as they want to know that their transaction completely succeeds or it competely fails.
The following specification states that the customer’s purchase either all succeeded
or all failed.

e Line 1 is all the external components that contribute to this specification. Line

2 is the argument representing the class being validated.

e Line 3 shows how the framework’s exchange method is invoked. Lines 4-6 state

126 CHAPTER 5. EXAMPLES OF FRAMEWORK VERIFICATION

that the transaction attribute must not allow a null transaction.
e Lines 7-9 access the customer’s and seller’s IDs and the stock price for later use.

e Lines 10-12 state the crucial facts about the final state of the transaction: either
the new stock price has been updated to both tables (line 10), or both tables

still have the old values (lines 11-12).

type exchange gateway_sig =
<| exchange : container ptr
-> (’state # xaction_attr # xaction_ptr
(customer ptr # seller ptr # stock_info_ptr))

-> (’state # xactionptr # void)

-> bool
| >
exchange_spec
1) (trans_class, customer_class, seller_class, stock_info_class)
2) exchange class =

V trans_attr
container ptr trans_ptr customer ptr seller ptr stock_info_ptr
state’pre state’post .
3) (exchange_class.exchange
container_ptr
(state’pre, trans_attr, trans_ptr, customer ptr, seller ptr, stock_info_ptr)
(state’post, trans_ptr, Void)
A
4) —(trans_attr = Supports)

A

5) - (trans_attr = NotSupported)

A

5.3. EJB TRANSACTIONS

127

6) —(trans_attr = Never)

==>

(3 customer_id seller_id stock_price .

7) (customer_class.get_cust_id customer ptr (state’pre, Void)

A

8) seller class.get sell_id seller ptr (state’pre, Void)
(state’pre, seller_id)

A

9) stock_info_class.get _price stock_info_ptr (state’pre, Void)
(state’pre, stock._price))

==>

10) ((trans_class.read trans ptr (state’post, "customer", customer_id)
(state’post, stock_price)
A

trans_class.read trans_ptr

\Y
11) (3 datal data2

trans_class.read trans_ptr

A

trans_class.read trans_ptr

A

12) trans_class.read trans_ptr

A

trans_class.read trans_ptr

(state’pre, customer_id)

(state’post, "seller", seller_id)

(state’post, stock_price))

(state’post, "customer", customer_id)

(state’post, datal)

(state’post, "seller", seller_id)

(state’post, data2)

(state’pre, "customer", customer_id)

(state’pre, datal)

(state’pre, "seller", seller_id)

(state’pre, data2)))))

The final theorem says that the

class constructed with the container framework

128 CHAPTER 5. EXAMPLES OF FRAMEWORK VERIFICATION

methods from Section 5.3.1.2 and the bean component methods from Section 5.3.1.2

satisfy those exchange_spec obligations:

|_
V trans_class::xactionobligs .
V bean_class::ejb_bean xaction_obligs .
V customer_class seller_class stock_info_class .
exchange spec (trans_class, customer _class, seller_class, stock_info_class)
<|
exchange :=
container_pass_through impl
(trans_class,
<| bean_method :=
exchange bean_method_impl

(trans_class, customer_class, seller_class, stock_info_class

1>))

Chapter 6

Conclusions and Future Work

This work identifies frameworks as a specific type of high-level system whose concrete
implementations can be formally analyzed. It shows how component interfaces can be
used to build abstract theories of framework systems such that particular behaviors

can be verified, then demonstrates how to formally verify some example frameworks.

This thesis incorporates hardware verification principles into object-oriented soft-
ware verification. Specifically, it shows how to apply predicate specifications and ab-
stract theories to interfaces and classes. Predicates showing the relationships between
interface functions are well-suited for the abstract theories expressed by frameworks.
The operational semantics are straightforward, often very similar to programming
constructs, and are shown to apply to programs involving subtyping and mutually

recursive functions.

Most of the effort in this work was involved in specifying each problem. This was
the most significant problem we encountered, and that is the biggest surprise in this
work: although designing a formal model for each behavior proved difficult, by far
the most challenging task was simply organizing each system into manageable pieces

such that the behavior of each part could be formally defined. This was true even

129

130 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

for the frameworks carefully analyzed in previous publications. We see this as one
of the biggest barriers to widespread sharing of verification results, along with the
organization it takes to share these carefully crafted specifications. Each programming
language and library has slightly different semantics, usually for good reasons, and
although humans are adept at handling these problems, they make shared verification
efforts intractible if not impossible. Thus we emphasize again that the only proper
subjects for widespread verification are framework systems that are already stable
and well-understood.

While this work is useful for most object-oriented language features, we found
a large class of frameworks that this approach does not handle: many frameworks
generate class code or use object introspection to incorporate the components into
the framework. In fact, all the large systems we studied used one of these features
to some extent in order to use the components. Reasoning about such systems will
require a much more advanced set of tools.

Finally, we formally specified transaction attributes found in the EJB specification
and verified that a particular combination of server and bean satisfies it. It is our
hope that others will find this useful for further examination of EJB behavior or

transactions.

6.1 Future Work

This thesis was an exploration into software verification using many of the same
theorem proving tools found in hardware verification. It shows their effectiveness
and extends their methods for large, component-based systems. Although we have
shown the potential for system-wide verification, we believe the evolution of software
verification will follow the route taken by the hardware community: the first tools to
become popular handle common low-level mistakes such as bad memory references;

system-level abstractions are still difficult enough to be left to specialists in very

6.1. FUTURE WORK 131

focused, proprietary endeavors. We discovered in this work that the effort of writing
component and system specifications is almost prohibitive. So the next steps along

this line of research should address the following points:

e [s there a programming language and tool independant way to share component

abstractions and specifications?

e How are specifications for common ideas (eg. transactions and security) written

such that they are easy to understand and share?

e How can the actions of code-generation tools be expressed formally? How can

the properties of those tools or their output be specified?

o We found that our specifications evolved together with the framework and com-
ponent implementations and verifications. Is this inherent in the nature of large
systems? Is there a point of stability at which the formal definitions cover most
of the customers’ needs? If not, would it be beneficial to share multiple for-

malisms of a framework?

While everyday verification of high-level abstractions remains future work, some of
the more complex low-level details may be good material for automatic verification by
model-checkers: object reachability, liveness, and even equivalence. Theorem-provers
would be more useful if they handled some of these problems by delegating them to
symbolic model-checking or symbolic trajectory evaluation tools.

This work dealt with state in an ad-hoc way for each example. There are more
comprehensive theories such as [PH97] to handle object references; these could ease
verification involving more complex object data structures. In fact, [PH97] contains
a theory of object data which could be used as a standard and build upon for more

abstract methods such as this work.

132 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Furthermore, the formalisms of this thesis are not complete; although every issue
of framework verification is addressed, we have shown in some areas that further work
is required to make the specifications and proofs entirely accurate (eg. the state of
memory). We hope this thesis gives a useful overview and procedure for framework

verification effort as a whole.

Appendix A

Definitions and Proofs for

Examples

A.1 Calculates Framework Proof Steps
Following is a copy of the general description of the proof steps for the goal in

Section 3.2.1.4, along with the intermediate logic (HOL) results:

1. Rewrite with the definitions from previous sections to get a goal in terms of

fold_function:

vV yy z.
fold_function operates_class calc_ptr (state,oper ptr,yy) (state,z) ==>
XO0R
3 w.
(z = Pos_Number Number (Number w)) A

w <= operates_class.maximum oper_ptr)

J str. z = Pos_Number_Overflow (Overflow str)

2. Case-split on the variable yy, which is either an empty list or a list of at least

one item:

133

134 APPENDIX A. DEFINITIONS AND PROOFS FOR EXAMPLES

V h z.
fold function operates_class calcptr (state,oper ptr,h::yy) (state,z) ==>
XO0R
3 w.
(z = Pos_Number Number (Number w)) A
w <= operates_class.maximum oper_ptr)

J str. z = Pos_Number_Overflow (Overflow str)

YV z.
fold _function operates_class calcptr (state,operptr,[]) (state,z) ==>
XO0R
3 w.
(z = Pos_Number Number (Number w)) A
w <= operates_class.maximum oper_ptr)

J str. z = Pos_Number_Overflow (Overflow str)

(a) For the case with the empty list, rewrite with the definitions of

fold_function, XOR, and operates_obligs to get the following:

(V oper_ptr x y z state.
operates_class.identity oper_ptr <= operates_class.maximum oper_ptr A
(operates_class.operate oper_ptr (state,x,y) (state,z) ==
XO0R
3 w.
(z = Pos_Number Number (Number w)) A
w <= operates_class.maximum oper_ptr)

3 str. z = Pos_Number_Overflow (Overflow str))) ==>

A.1. CALCULATES FRAMEWORK PROOF STEPS 135

v z.
(z = Pos_Number Number (Number (operates_class.identity oper_ptr))) ==>
(3 w.
(z = Pos_Number Number (Number w))
A
w <= operates_class.maximum oper_ptr)
A

= (3 str. z = Pos_Number_Overflow (Overflow str)))

\
(= (3 w.

(z = Pos_Number Number (Number w))

A

w <= operates_class.maximum oper_ptr)
A

d str. z = Pos_Number_Overflow (Overflow str)))

Rewrite with theorems about the relationships of the classes, for example
that a Number does not equal an Overflow. At that point a value must
be chosen for an instance of w, and since this is the case of an empty list,

supply operator_class.identity to prove this case.

(b) For the case with at least one item in the list, rewriting with the
fold _function and then case splitting on its result yields the following

two goals:

136 APPENDIX A. DEFINITIONS AND PROOFS FOR EXAMPLES

fold function operates_class calc_ptr (state,operptr,yy)
(state,Pos Number Number n)
A
pos_number_obj_case
(A number.
number_obj_case
(A num. operates_class.operate oper ptr (state,h,num) (state,z))
number) (A message. Pos Number Overflow message = z)
(Pos Number Number n) ==>
XOR (3 w.
(z = Pos_Number Number (Number w))
A (w <= operates_class.maximum oper_ptr))

(3 str. z = Pos_Number_Overflow (Overflow str))

fold function operates_class calc_ptr (state,oper ptr,yy)
(state,Pos Number_Overflow o’)
A
pos_number_obj_case
(A number.
number_obj_case
(A num. operates_class.operate oper ptr (state,h,num) (state,z))
number) (A message. Pos Number Overflow message = z)
(Pos Number Overflow o’) ==>
XO0R (3 w.
(z = Pos_Number Number (Number w))
A (w <= operates_class.maximum oper_ptr))

(3 str. z = Pos_Number_Overflow (Overflow str))

Each of these cases is solved by rewriting with the definitions and the
properties of the PosNumber classes and then choosing the values for the

existential variables that match existing variables.

A.2. MULTIPLIES PROOF STEPS 137

A.2 Multiplies Proof Steps
Following is a copy of the general description of the proof steps for the goal in

Section 4.1.3, along with the intermediate logic (HOL) results:

1. Rewrite with the definitions from Section 4.1.2 to get a goal showing the specific

behavior expected from mult_operate:

V n mult_ptr m k. mult_operate mult_ptr (m,n) k = (k = m * n)

2. Induct on the variable n to get a base case and induction step:

(k

V mult_ptr m k. mult_operate mult_ptr (m,0) k m * 0)

V mult_ptr m k. mult operate mult ptr (m,n) k = (k = m * n)
=

V mult_ptr m k. mult_operate mult_ptr (m,SUC n) k = (k = m * SUC n)

3. The base case is proven with the following steps:

(a) Rewrite once with the definition of mult_operate:

V mult_ptr m k.
(if 0 = 0 then
k=0
else
(let i =0 -1 in
3 j. mult_operate mult_ptr (m,i) j A (k =m + j))) =

(k =m * 0)

(b) Induct on k for another base case and induction step. Each of these are
easily provable based on the properties of zero (with the HOL tactic

reducelLib.REDUCE_TAC):

138 APPENDIX A. DEFINITIONS AND PROOFS FOR EXAMPLES

(if 0 = 0 then

k=0
else

(let i =0 -1 in 3 j. mult_operate multptr (m,i) j A (k =m + j))) =
(k =m * 0)
—
(if 0 = 0 then

SUC k =0
else

(let i =0 -1 in

3 j. mult_operate mult ptr (m,i) j A (SUC k =m + j))) =

(SUC k = m * 0)

(if 0 = O then
0=0
else
(let i =0 -1 in 3 j. mult_operate multptr (m,i) j A (0 =m + j))) =

(0 =m *x 0)

4. The induction step for n is proven with the following steps:

(a) Rewrite once with the definition of mult_operate:

V mult_ptr m k. mult operate mult ptr (m,n) k = (k = m * n)
=
V mult_ptr m k.
(if SUC n = O then
k=0
else
(let i = SUCn - 1 in
3 j. mult_operate mult_ptr (m,i) j A (k =m + j))) =

(k = m * SUC n)

A.3. MULTIPLIES PROOF SCRIPT 139

(b) Simplify the phrase SUC n - 1 ton, expand the let phrase by substituting
n for i in the remainder of the goal, and eliminate the first arm of the if

clause since SUC n is never 0:

V mult ptr m k. mult operate mult_ptr (m,n) k = (k = m * n)
=

Y k.

(3 j. mult_operate mult_ptr (m,n) j A (k =m + j)) =

(k = m * SUC n)

(c) Rewrite with the hypothesis for the induction step to get the following:

Vk. (3j. (=m*n) A(k=m+ j)) = (k =m=* SUC n)

(d) The remainder depends on properties of multiplication and division. Note
that by instantiating m * n for j, the goal becomes (k = m + m * n) =

(k = m * SUC n) which is straightforward to solve.

A.3 Multiplies Proof Script

Following is the full HOL proof script for the goal found in Section 4.1.3.

MULTIPLIES_CLASS_TAC is the tactic that proves the entire theorem.

val MULT_SUC =

(CONJUNCT2 o CONJUNCT2 o CONJUNCT2 o CONJUNCT2 o CONJUNCT2 o SPEC_ALL)
arithmeticTheory.MULT_CLAUSES;

140 APPENDIX A. DEFINITIONS AND PROOFS FOR EXAMPLES

val MULTIPLIES_CLASS_MULT_CASES =
EQ_TAC
THENL [
STRIP_TAC
THEN FIRST_ASSUM (fn th => UNDISCH_TAC (concl th))
THEN ASM_REWRITE_TAC []
THEN STRIP_TAC
THEN ASM_REWRITE_TAC []
THEN REWRITE_TAC [MULT_SUC]

STRIP_TAC

THEN ASM_REWRITE_TAC []

THEN EXISTS_TAC (Term‘m * n‘)
THEN REWRITE_TAC []

THEN REWRITE_TAC [MULT_SUCI];

val MULTIPLIES_CLASS_TAC =

REWRITE_TAC [db.theorem "-" "multiplies_obligs_def",
db.theorem "-" "multiplier_class_def",
db.theorem "-" "multiplies_accupds"]

THEN GEN_TAC
THEN GEN_TAC
THEN GEN_TAC
THEN SPEC_TAC (Term‘m:num‘, Term‘m:num‘)
THEN SPEC_TAC (Term‘mult_ref:’a‘, Term‘mult_ref:’a‘)
THEN SPEC_TAC (Term‘n:num‘, Term‘n:num‘)
THEN Induct
THENL [

ONCE_REWRITE_TAC [mult_impl_def]

THEN GEN_TAC

THEN GEN_TAC

THEN Induct

THEN reduceLib.REDUCE_TAC

ONCE_REWRITE_TAC [mult_impl_def]

THEN GEN_TAC

THEN GEN_TAC

THEN REWRITE_TAC [arithmeticTheory.SUC_SUB1]
THEN CONV_TAC (TOP_DEPTH_CONV Let_conv.let_CONV)
THEN REWRITE_TAC [GSYM arithmeticTheory.SUC_NOT]
THEN ASM_REWRITE_TAC []

THEN POP_ASSUM (fn thm => ALL_TAC)

THEN Induct

THEN MULTIPLIES_CLASS_MULT_CASES];

A.4. FOLD_FUNCTION DEFINITION PROOF 141

A.4 fold function Definition Proof
Following is the well-foundedness proof that enables the definition of the

fold_function from Section 3.2.1.3:

val guess =
(Term‘measure ((LENGTH o SND o SND o FST o SND o SND)
(’operates_ptr, ’state) operates_iface_sig
’calculates_ptr
(’state # ’operates_ptr # num list)
(’state # pos_number_obj)
-> num) ‘) ;

Defn.tprove (fold_function_defn,
(EXISTS_TAC guess
THEN TotalDefn.TC_SIMP_TAC [] []
THEN REWRITE_TAC [listTheory.LENGTH]
THEN REPEAT STRIP_TAC
THEN numLib.ARITH_TAC));

142 APPENDIX A. DEFINITIONS AND PROOFS FOR EXAMPLES

A.5 Balances Definitions and Proof

Following are the full HOL definitions, the goal, and the proof script for the

Balances example with all the state details (from Section 4.3).

(x** Specifications **x)

load"bossLib";
open bossLib;

Hol_datatype®
consumes_iface =
<|
eat : ’consumes_ref -> (’state # num) -> (’state) -> bool;
eaten : ’consumes_ref -> (’state) -> (’state # num) -> bool
| >

<.
’

Define*
wf_con_obj con_class con_ref state =
(! state’ state’’ n .
(con_class.eaten con_ref (state’) (state’’, n))

(state’’ = state’))

/\

(! state’ state’’ state’’’ token n m .
(con_class.eat con_ref (state, token) (state’))
/\

(con_class.eaten con_ref (state) (state’’, n))

/\
(con_class.eaten con_ref (state’) (state’’’, m))
(m = n+1))

<.

Definef

consumes_obligs consumes_class =
! con_ref state .

(wf_con_obj consumes_class con_ref state)

[
’

A.5. BALANCES DEFINITIONS AND PROOF 143

Hol_datatype*®
consumes_factory_iface =
<|
generate : ’consumes_factory_ref -> (’state) -> (’state # ’consumes_ref)
-> bool
[>

[
’

Define®

wf_con_fac_obj con_fac_class con_fac_ref state =

! consumes_class .

! con_fac_ref con_ref state state’ state’’ how_many .
(con_fac_class.generate con_fac_ref (state) (state’, con_ref))

((wf_con_obj consumes_class con_ref state’)

/\

(consumes_class.eaten con_ref (state’) (state’’, how_many))
/\

(state’’ = state’)

/\

(how_many = 0))

<.
’

Define*
consumes_factory_obligs
(consumes_factory_class
:(’con_fac_ref,’state,’con_ref)consumes_factory_iface) =
! (con_fac_ref:’con_fac_ref) (state:’state)

(wf_con_fac_obj consumes_factory_class con_fac_ref state)

[
’

Hol_datatype*®
balances_iface =
<|
delegate : ’balances_ref -> (’state # num) -> (’state) -> bool;
retrieve : ’balances_ref -> (’state)
-> (’state # ’consumes_ref # ’consumes_ref) -> bool
[>

<.
’

144 APPENDIX A. DEFINITIONS AND PROOFS FOR EXAMPLES

load "res_quanLib";

Define‘

wf_bal_obj bal_class bal_ref state =

! (consumes_class: (’con_ref, ’state) consumes_iface)::consumes_obligs .
! conl_ref con2_ref state’

! countl count2 state’’ state’’’

(bal_class.retrieve bal_ref (state) (state’, conl_ref, con2_ref))

/\

(consumes_class.eaten conl_ref (state’) (state’’, countl))

/\

(consumes_class.eaten con2_ref (state’) (state’’’, count2))

(state’ = state)

/\

(state’’ = state’)

/\

(state’’’ = state’)

/\

((countl = count?2)
\/
(countl = count2+1)
\/

(countil+1l = count?2))

<.
’

Define*
balances_obligs balances_class =
! bal_ref state .

(wf_bal_obj balances_class bal_ref state)

¢
I

A.5. BALANCES DEFINITIONS AND PROOF 145

(x** Implementation ***)
(*x state helper functions *)

Hol_datatype*®
balancer_obj = Balancer of ’consumes_ref # ’consumes_ref # bool;
balancer_ref = Balancer_Ptr of num | Balancer_Null‘;

Hol_datatype®
state = State of (’consumes_ref balancer_obj) list # ’other_objs‘;

Define*
balancer_helper_new (State (bals, bal_facs)) consl cons2 consl_last =
let result_obj = Balancer (consl, cons2, consl_last)
in (State (APPEND bals [result_obj], bal_facs),
(Balancer_Ptr (LENGTH bals)))

<.
’

Define*
(balancer_helper_get_consl_obj (Balancer (consl, cons2, consl_last)) =

consl)

<.
’

Define*
(balancer_helper_get_consl (Balancer_Ptr offset) (State (bals, bal_facs))=
balancer_helper_get_consl_obj (EL offset bals))

¢
I

Define®
(balancer_helper_get_cons2_obj (Balancer (consl, cons2, consl_last)) =

cons?2)

[
’

Define®
(balancer_helper_get_cons2 (Balancer_Ptr offset) (State (bals, bal_facs))=
balancer_helper_get_cons2_obj (EL offset bals))

[
3

Define‘
(balancer_helper_get_consl_last_obj (Balancer (consl, cons2, consl_last))=

consl_last)
[4

Define‘
(balancer_helper_get_consl_last (Balancer_Ptr offset)
(State (bals, bal_facs)) =
balancer_helper_get_consl_last_obj (EL offset bals))

<.
’

146 APPENDIX A. DEFINITIONS AND PROOFS FOR EXAMPLES

load "rich_listTheory";

Define®
(balancer_helper_set_consl_obj

(Balancer (consl, cons2, consl_last)) new_consl =
Balancer (new_consl, cons2, consl_last))‘;

Define*

(balancer_helper_set_consl (Balancer_Ptr offset)

(State (bals, bal_facs)) new_consl new_state =
? new_balancer .

(new_balancer =
(new_state =
State (APPEND (FIRSTN offset bals)

(CONS new_balancer (BUTFIRSTN (offset+1) bals)),
bal_facs)))‘;

balancer_helper_set_consl_obj(EL offset bals)new_consl)/\

Define*
(balancer_helper_set_cons2_obj

(Balancer (consl, cons2, consl_last)) new_cons2 =
Balancer (consl, new_cons2, consl_last))‘;

Definef

(balancer_helper_set_cons2 (Balancer_Ptr offset)

(State (bals, bal_facs)) new_cons2 new_state =
? new_balancer .

(new_balancer =
(new_state =
State (APPEND (FIRSTN offset bals)

(CONS new_balancer (BUTFIRSTN (offset+1) bals)),
bal_facs)))‘;

balancer_helper_set_cons2_obj(EL offset bals)new_cons2)/\

Define®
(balancer_helper_set_consl_last_obj

(Balancer (consl, cons2, consl_last)) new_consl_last =
Balancer (consl, cons2, new_consl_last))‘;

Define*

(balancer_helper_set_consl_last (Balancer_Ptr offset)

(State (bals, bal_facs)) new_consl_last new_state =
? new_balancer .

(new_balancer =

balancer_helper_set_consl_last_obj (EL offset bals) new_consl_last) /\
(new_state =

State (APPEND (FIRSTN offset bals)

(CONS new_balancer (BUTFIRSTN (offset+1) bals)),
bal_facs)))‘;

A.5. BALANCES DEFINITIONS AND PROOF 147

(* method translations *)

Define‘
balancer_balancer (state, consumes_factory_ref) (state’, balancer_ref)

(? (con_fac_class::consumes_factory_obligs)
? inner_state inner_state’ consl cons2 .
(con_fac_class.generate consumes_factory_ref state (inner_state,consl))
/\
(con_fac_class.generate consumes_factory_ref inner_state

(inner_state’, cons2))
/\

((state’, balancer_ref)

((balancer_helper_new inner_state’ consl cons2 F))))*;

Define‘
balancer_delegate (balancer_ref:’consumes_ref balancer_ref)
(state, token) (new_state:(’consumes_ref, ’other_objs) state) =
? cons_class::consumes_obligs .
? inner_consl_last inner_state inner_state’
(inner_consl_last = balancer_helper_get_consl_last balancer_ref state)
/\
(if (inner_consl_last)
then (7 inner_cons .
(inner_cons = balancer_helper_get_cons2 balancer_ref state)
/\
(cons_class.eat inner_cons (state, token) inner_state))
else (? inner_cons .
(inner_cons = balancer_helper_get_consl balancer_ref state)
/\
(cons_class.eat inner_cons (state, token) inner_state)))
/\
(balancer_helper_set_consl_last
balancer_ref
state
(" (balancer_helper_get_consl_last balancer_ref state))
(inner_state’))
/\

(new_state = inner_state’)‘;

Define‘

balancer_retrieve (balancer_ref:’consumes_ref balancer_ref)
(state: (’consumes_ref, ’other_objs) state)
(new_state, consl, cons2) =
(consl = balancer_helper_get_consl balancer_ref state) /\
(cons2 = balancer_helper_get_cons2 balancer_ref state) /\
(new_state = state) ‘;

148 APPENDIX A. DEFINITIONS AND PROOFS FOR EXAMPLES

(x*x* Goal and Proof **x)

4

g
let balancer_class =
<|
delegate := balancer_delgate;
retrieve := balancer_retrieve
| >
in

! state con_fac_ref state’ bal_ref .
balancer_balancer (state, con_fac_ref) (state’, bal_ref)
(wf_bal_obj balancer_class bal_ref state’
/\

balances_obligs balancer_class)

load"Let_conv";

open Let_conv;

load"res_quanLib";

open res_quanlib;

load"arithLib";

val RES_QUAN_CONV =
TRY_CONV (CHANGED_CONV (DEPTH_CONV RESQ_FORALL_CONV))
THENC TRY_CONV (CHANGED_CONV (DEPTH_CONV RESQ_EXISTS_CONV))
THENC Rewrite.REWRITE_CONV [res_quanTheory.RES_SELECT,

res_quanTheory.RES_ABSTRACT] ;
val RES_QUAN_TAC = CONV_TAC RES_QUAN_CONV;

val BALANCER_CLASS_TAC =

REWRITE_TAC [db.theorem"-""balancer_balancer_def"]

THEN CONV_TAC let_CONV

THEN REWRITE_TAC [db.theorem"-""balances_iface_accupds"]
THEN REWRITE_TAC [db.theorem"-""wf_bal_obj_def"]

THEN RES_QUAN_TAC

THEN REWRITE_TAC [

db.theorem"-""balances_iface_accupds",
db.theorem"-""consumes_obligs_def",
db.theorem"-""wf_con_obj_def",
db.theorem"-""consumes_factory_obligs_def",
db.theorem"-""wf_con_fac_obj_def",
db.theorem"-""balancer_retrieve_def"

A.5. BALANCES DEFINITIONS AND PROOF 149

THEN REPEAT STRIP_TAC
THENL [

ASM_REWRITE_TAC [],

RES_TAC,

RES_TAC,

RES_TAC

THEN ONCE_ASM_REWRITE_TAC[]

THEN REPEAT STRIP_TAC

THEN CONV_TAC arithLib.ARITH_CONV,

REWRITE_TAC [
db.theorem"-""balances_obligs_def",
db.theorem"-""wf_bal_obj_def",
db.theorem'"-""balances_iface_accupds"
]

THEN RES_QUAN_TAC

THEN REWRITE_TAC [

db.theorem"-""consumes_obligs_def",
db.theorem"-""wf_con_obj_def",
db.theorem"-""balancer_retrieve_def"

]
THEN REPEAT STRIP_TAC
THENL [
ASM_REWRITE_TAC [1,
RES_TAC,
RES_TAC,
RES_TAC
THEN ONCE_ASM_REWRITE_TAC []
THEN CONV_TAC arithLib.ARITH_CONV
]
1;

e BALANCER_CLASS_TAC;

150 APPENDIX A. DEFINITIONS AND PROOFS FOR EXAMPLES
A.6 EJB Proofs
A.6.1 Framework

Following is the proof script for the EJB framework verification goal (for Sec-

tion 5.3).

load "res_quanLib";
open res_quanLib;

val RES_QUAN_CONV =
TRY_CONV (CHANGED_CONV (DEPTH_CONV RESQ_FORALL_CONV))
THENC TRY_CONV (CHANGED_CONV (DEPTH_CONV RESQ_EXISTS_CONV))
THENC Rewrite.REWRITE_CONV [res_quanTheory.RES_SELECT,
res_quanTheory.RES_ABSTRACT] ;
val RES_QUAN_TAC = CONV_TAC RES_QUAN_CONV;

fun FIRST_CH [] g = NO_TAC g
| FIRST_CH (tac::rst) g = CHANGED_TAC tac g
handle HOL_ERR _ => FIRST_CH rst g;

val CHECK_CH_ASSUME_TAC :thm_tactic = fn gth =>

FIRST_CH [CONTR_TAC gth, ACCEPT_TAC gth, DISCARD_TAC gth,

ASSUME_TAC gth];

val STRIP_CH_ASSUME_TAC = REPEAT_TCL STRIP_THM_THEN CHECK_CH_ASSUME_TAC;
fun RES_CH_TAC g =

RES_THEN (Thm_cont.REPEAT_GTCL IMP_RES_THEN STRIP_CH_ASSUME_TAC) g

handle HOL_ERR _ => ALL_TAC g;

REWRITE_TAC [DB.theorem "-" "EJB_server_xaction_demarc_obligs_def"]
THEN REWRITE_TAC [db.theorem "-" "ejb_server_accupds"]
THEN RES_QUAN_TAC
THEN GEN_TAC
THEN CONV_TAC (TOP_DEPTH_CONV RIGHT_IMP_FORALL_CONV)
THEN REPEAT GEN_TAC
THEN REWRITE_TAC [DB.theorem "-" "EJB_bean_xaction_obligs_def"]
THEN REWRITE_TAC [DB.theorem "-" "EJB_container_xaction_obligs_def"]
THEN RES_QUAN_TAC
THEN CONV_TAC (TOP_DEPTH_CONV LEFT_IMP_FORALL_CONV)
THEN EXISTS_TAC (Term‘(xaction :transaction) ‘)
THEN DISCH_THEN (fn th => ASSUME_TAC
(CONV_RULE (TOP_DEPTH_CONV RIGHT_IMP_FORALL_CONV) th))
THEN FIRST_ASSUM (fn th => UNDISCH_TAC (concl th))
THEN CONV_TAC (TOP_DEPTH_CONV LEFT_IMP_FORALL_CONV)

A.6. EJB PROOFS 151

THEN MAP_EVERY EXISTS_TAC
[(Term‘(container_ptr :container_ptr) ‘),
(Term‘(bean :(’a, ’b) ejb_bean)*‘),
(Term‘ (bean_ptr :bean_ptr) ‘),
(Term‘ (state’pre :state) ‘),
(Term‘ (state’post :state) ‘),
(Term‘ (state’pre_bean :state) ‘),
(Term‘ (state’post_bean :state) ‘),
(Term‘ (state’any_pre_bean :state) ‘),
(Term‘ (state’any_pre_bean2 :state)*®),
(Term‘ (transl :xaction_ptr) ‘),
(Term‘ (trans2 :xaction_ptr) ‘),
(Term‘ (trans3 :xaction_ptr) ‘),
(Term‘ (trans4 :xaction_ptr) ‘),
(Term‘ (trans_attr :xaction_attr) ‘),
(Term‘(x :’a)‘),
(Term‘(y :°b))]
THEN DISCH_TAC
THEN MAP_EVERY EXISTS_TAC
[(Term‘ (bean_ptr :bean_ptr) ‘),
(Term‘ (state’pre_bean :state) ‘),
(Term‘ (state’post_bean :state)),
(Term‘ (trans2 :xaction_ptr) ‘),
(Term‘ (trans3 :xaction_ptr) ‘),
(Term‘(x :’a)‘),
(Term‘(y :°b))]
THEN DISCH_TAC
THEN DISCH_TAC
THEN RES_TAC
THEN ASSUM_LIST(fn thl => MAP_EVERY (fn th => UNDISCH_TAC (concl th)) thl)
THEN DISCH_TAC
THEN POP_ASSUM_LIST (fn thl => ALL_TAC)
THEN REPEAT DISCH_TAC
THEN REPEAT STRIP_TAC
THEN RES_TAC
THENL [
ASM_REWRITE_TAC [],
ASM_REWRITE_TAC [],
FIRST_ASSUM (fn th => UNDISCH_TAC (concl th))
THEN BOOL_CASES_TAC (Term‘transl = Xaction_Null®)
THEN REWRITE_TAC []
THEN ASM_REWRITE_TAC []
THEN STRIP_TAC
THEN ASM_REWRITE_TAC [],
ASM_REWRITE_TAC []
THEN FIRST_ASSUM (fn th => UNDISCH_THEN (concl th)
(fn th => REWRITE_TAC [GSYM th]))

152 APPENDIX A. DEFINITIONS AND PROOFS FOR EXAMPLES

THEN ASM_REWRITE_TAC [],
ASM_REWRITE_TAC [1,
ASM_REWRITE_TAC []
THEN POP_ASSUM (fn th => ALL_TAC)
THEN FIRST_ASSUM (fn th => UNDISCH_THEN (concl th)
(fn th => REWRITE_TAC [GSYM th]))
THEN ASM_REWRITE_TAC [],
ASM_REWRITE_TAC []
THEN FIRST_ASSUM (fn th => UNDISCH_THEN (concl th)
(fn th => REWRITE_TAC [GSYM th]))
THEN FIRST_ASSUM (fn th => UNDISCH_THEN (concl th)
(fn th => REWRITE_TAC [GSYM th]))
THEN ASM_REWRITE_TAC []
1;

A.6.2 Component

Following is the component (bean) proof (for Section 5.3):

REWRITE_TAC [

db.theorem "-" "EJB_bean_xaction_obligs_def",
db.theorem "-" "bean_class_def",

db.theorem "-" "ejb_bean_accupds",
db.theorem "-" "a_bean_method_def"

]
THEN (REPEAT STRIP_TAC)
THEN (ASM_REWRITE_TAC [1)

A.7. STATE FUNCTIONS 153

A.7 State Functions

Following are the elements Poetzsch-Heffter uses [PH97] to model and reason
about objects and their states during program execution. A mature methodology
that finishes the work begun in Chapter 4 would have to include these ideas in order

to be complete.

e The following functions are analogous to elements described in in Chapter 4 of

this thesis (see [PHI7|, pp 43-44):

isvoid, obj, loc, init, static, update, read, alloc, new

e The following predicates are elements that require attention in a mature method-

ology (see [PHI7] on the pages listed next to each):

alive (44, also 21), disjoint (54, also 22), dirpart (25, also 114-5), part (26),
wfL (27, also 103, 115-6, 31, 96, 126) reach (52-3), reach,, (52-3), oreach (54),
x-equivalent (55), less-alive (55-6), treach (106), alien (112), extern

(113, also 124)

e The rest of the functions he uses are not necessary for this thesis but might
be useful when reasoning about the Java language itself, such as in [vOO01]

(see [PHI7] on the pages listed next to each):

aL (18), inv (98, also 27), typ and 1typ and dtyp and rtyp (43-44)

154 APPENDIX A. DEFINITIONS AND PROOFS FOR EXAMPLES

Bibliography

[Abro6|

[AF99)

[AG02]

[ALOS]

[Ala98]

[A1197]

[Bac80]

[BDBS99)

Jean-Raymond Abrial. The B-Book : Assigning Programs to Meanings.

Cambridge University Press, August 1996.

J Alves-Foss, editor. Formal Syntax and Semantics of Java. Number 1523

in Lecture Notes in Computer Science. Springer-Verlag, Berlin, June 1999.
Program Analysis and Verification Group. Rapide, January 2002.

Martin Abadi and K. Rustan M. Leino. A logic of object-oriented pro-
grams. Technical Report 161, Digital Systems Research Center, Palo Alto,
CA, September 1998.

V' S Alagar. Specification of Software Systems. Springer Verlag, 1998.

Robert J. Allen. A Formal Approach to Software Architecture. PhD thesis,

Carnegie Mellon University, May 1997.

R. J. R. Back. Correctness preserving program refinements: proof the-
ory and applications. MC Tracts, 131, 1980. Mathematisch Centrum,

Amsterdam.

Eerke Boiten, John Derrick, Howard Bowman, and Maarten Steen. Con-
structive consistency checking for partial specification in z. Science of

Computer Programming, 35(1):29-75, September 1999.

155

156

[BDHSO01]

[BDJ*01]

[BJLWO7]

[BRJ99)

[CCT7]

[DFH*93]

[DLNSO8]

BIBLIOGRAPHY

G Barthe, G Dufay, M Huisman, and S Sousa. Jakarta: a toolset for
reasoning about javacard. In E-smart, number 2140 in Lecture Notes in

Computer Science, pages 2-18. Springer-Verlag, 2001.

Gilles Barthe, Guillaume Dufay, Line Jakubiec, Bernard P. Serpette, and
Simao Melo de Sousa. A formal executable semantics of the javacard

platform. In European Symposium on Programming, pages 302-319, 2001.

Annette Bunker, Michael D. Jones, Trent N. Larson, and Phillip J. Wind-
ley. Alexandria: Libraries of abstract, verified hardware modules. In
2nd Workshop on Libraries, Component Modeling, and Quality Assur-

ance, Toledo, Spain, April 1997.

Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling
Language User Guide. Addison-Wesley, 1999.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or approx-
imation of fixpoints. In Fourth ACM Symposium on Principles of Pro-

gramming Languages, pages 238-252, 1977.

G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent,
C. Paulin-Mohring, and B. Werner. The coq proof assistant user’s guide

version 5.8. Technical Report 154, INRIA, May 1993.

David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe.

Extended static checking. Technical Report 159, Compaq SRC, 1998.

BIBLIOGRAPHY 157

[EHY99)]

[EKW92]

[FF97]

[FF00]

[FKN+92]

[Flo67]

[FSJ99]

[GCY4]

A H Eden, Y Hirshfeld, and A Yehudai. Towards a mathematical foun-
dation for design patterns. Technical Report 1999-004, Department of

Information Technology, Uppsala University, 1999.

D W Embley, B D Kurtz, and S N Woodfield. Object-Oriented Systems

Analysis. Yourdon Press, 1992.

Matthais Felleisen and Daniel P. Friedman. A Little Java, A Few Patterns.

MIT Press, December 1997.

Cormac Flanagan and Stephen N. Freund. Type-based race detection for
java. In SIGPLAN Conference on Programming Language Design and

Implementation, pages 219-232, 2000.

A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke.
Viewpoints: A framework for integrating multiple perspectives in system

development. International Journal of Software Engineering and Knowl-

edge Engineering, 2(1):31-58, March 1992.

R. W. Floyd. Assigning meanings to programs. In Proceedings of the
American Mathematical Society Symposia in Applied Mathematics, vol-

ume 19, pages 19-31, 1967.

Mohamed E Fayad, Douglas C Schmidt, and Ralph E Johnson, editors.
Implementing Application Frameworks: Object-Oriented Frameworks at

Work. Wiley Computer Publishing, 1999.

G. Birtwistle B. Graham and S.-K. Chin. new_theory ‘HOL®;; An Intro-

duction to Hardware Verification in Higher Order Logic, August 1994.

158

[Ge93]

[GHG*93]

[GHIV95]

[GMO0]

[GPZ94]

[Gro0la]

[Gro01b]

[GS93]

BIBLIOGRAPHY

M. J. C. Gordon and T. F. Melham (eds.). Introduction to HOL: A theorem
proving environment for higher order logic. Cambridge University Press,

1993.

John V. Guttag, James J. Horning, Stephen J. Garland, Kevin D. Jones,
Andros Modet, and Jeannette M. Wing. Larch: Languages and Tools for
Formal Specification. Springer-Verlag Texts and Monographs in Computer
Science, 1993.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Addison-Wesley Pub Co, October 1995.

Joseph A Goguen and Grant Malcolm, editors. Software Engineering
with OBJ: Algebraic Specification in Action. Kluwer Academic Publishers,
2000.

John D Gannon, Games M Purtilo, and Marvin V Zelkowitz. Software

Specification: a comparison of formal methods. Ablex Publishing Com-

pany, 1994.
Composable Software Systems Research Group.
Composable software systems, June 2001.

http://www.cs.cmu.edu/afs/cs.cmu.edu/project /compose/www/.

Software Composition Group. Software composition group, June 2001.

http://www.iam.unibe.ch/ scg/.

David Garlan and Mary Shaw. An introduction to software architecture.

In V. Ambriola and G. Tortora, editors, Advances in Software Engineering

BIBLIOGRAPHY 159

[Hoa69]

[HP0O]

[Jac95]

[Jon90]

[Lea95]

[Lei5]

[Lei97]

[LG86]

and Knowledge Engineering, pages 1-39, Singapore, 1993. World Scientific

Publishing Company.

C. A. R. Hoare. An axiomatic basis for computer programming. Commu-

nications of the ACM, 12(10):576-580, 583, October 1969.

Klaus Havelund and Tom Pressburger. Model checking java programs

using java pathfinder. International Journal on Software Tools for Tech-

nology Transfer (STTT), 2(4), April 2000.

Daniel Jackson. Structuring z specifications with views. ACM Transac-
tions on Software Engineering and Methodology, 4(4):365-389, October

1995.

Cliff B. Jones. Systematic Software Development Using VDM. Prentice-
Hall International, Englewood Cliffs, New Jersey, second edition, 1990.
ISBN 0-13-880733-7.

Ted Lewis and et al. Object Oriented Application Frameworks. Manning
Publications, 1995.

K. Rustan M. Leino. Toward Reliable Modular Programs. PhD thesis,

California Institute of Technology, Pasadena, California, January 1995.

K. Rustan M. Leino. Ecstatic: An object-oriented programming language
with an axiomatic semantics. In Fourth International Workshop on Foun-

dations of Object-Oriented Languages (FOOL 4), January 1997.

Barbara Liskov and John Guttag. Abstraction and Specification in Pro-

gram Development. MIT Press, 1986.

160

[LSS99]

[Mel89]

[Mey97]

[MH99]

[Nip01]

[Nor96]

[NTea95]

[ON99]

BIBLIOGRAPHY

K. Rustan M. Leino, James B. Saxe, and Raymie Stata. Checking Java
programs via guarded commands. Technical Report #1999-002, Compaq
SRC, Palo Alto, USA, 1999.

T. F. Melham. Abstraction mechanisms for hardware verification. In
G. Birtwistle and P. A. Subrahmanyam, editors, Current Trends in
Hardware Verification and Automated Theorem Proving, pages 267—291.

Springer-Verlag, 1989.

Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall,
1997.

Vlada Matena and Mark Hapner. Enterprise javabeans specification, v1.1.

Technical report, Sun Microsystems, December 1999.

Tobias Nipkow. Verified bytecode verifiers. In M. Miculan F. Honsell, ed-
itor, Foundations of Software Science and Computation Structures (FOS-

SACS 2001), volume 2030 of LNCS, pages 347-363. Springer, 2001.

Michael Norrish. Derivation of verification rules for ¢ from operational
definitions. In Jim Grundy Joakim von Wright and John Harrison, ed-
itors, Supplementary Proceedings of the 9th International Conference on

Theorem Proving in Higher Order Logics: TPHOLs 96, TUCS General

Publications. Turku Centre for Computer Science, August 1996.

Oscar Nierstrasz, Dennis Tsichritzis, and et al. Object-Oriented Software

Composition. Prentice Hall, 1995.

David von Oheimb and Tobias Nipkow. Machine-checking the java spec-

ification: Proving type-safety. In Jim Alves-Foss, editor, Formal Syntax

BIBLIOGRAPHY 161

[ORR*96]

[Pau94]

[PHO7]

[PHM99]

[PSSD00]

[Pus9g]

[PvJ0O]

and Semantics of Java, volume 1523 of LNCS, pages 119-156. Springer,

1999.

S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS:
Combining specification, proof checking, and model checking. In Rajeev
Alur and Thomas A. Henzinger, editors, Computer-Aided Verification,
CAV ’96, volume 1102 of Lecture Notes in Computer Science, pages 411—

414, New Brunswick, NJ, July/August 1996. Springer-Verlag.

Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Number 828

in Lecture Notes In Computer Science. Springer Verlag, 1994.

Arnd Poetzsch-Heffter. Specification and Verification of Object-Oriented

Programs. PhD thesis, Technical University of Munich, January 1997.

A. Poetzsch-Heffter and P. Miiller. A programming logic for sequential
Java. In S. D. Swierstra, editor, Furopean Symosium un Programming

(ESOP ’99), volume 1576, pages 162-176. Springer-Verlag, 1999.

D. Park, U. Stern, J. U. Skakkebaek, and D. L. Dill. Java model check-
ing. In First International Workshop on Automated Program Analysis,

Testing, and Verification, 2000.

Cornelia Pusch. Formalizing the java virtual machine in isabelle /hol. Tech-
nical Report TUM-19816, Institut fiir Informatik, Technische Universiat

Miinchen, 1998.

Erik Poll, Joachim van den Berg, and Bart Jacobs. Specification of the
JavaCard API in JML. In Fourth Smart Card Research and Advanced
Application Conference (IFIP Cardis). Kluwer Academic Publishers, 2000.

162

[Qia97]

[RJ96]

[Rog97]

[SBT]

[SG99]

5598]

[Stu93|

BIBLIOGRAPHY

Zhenyu Qian. A formal specification of java(tm) virtual machine instruc-

tions. Technical report, FB Informatic, September 1997.

Don Roberts and Ralph Johnson. Frameworks evolve to domain-specific
languages. In John Vlissides, Robert Martin, Dirk Riehle, and Frank
Buschmann, editors, Pattern Languages of Programs. University of Illi-

nois, Addison-Wesley, September 1996.

Gregory F. Rogers. Framework-based software development in C++. Pren-

tice Hall PTR, 1997.

William Swartout and Robert Balzer. On the inevitable intertwin-
ing of specification and implementation. Communications of the ACM,

25(7):438-440, July 1979.

Joao Pedro Sousa and David Garlan. Formal modeling of the enterprise
javabeans component integration framework. In Davies Wing, Woodcock,
editor, Proceedings of FM’99, World Congress on Formal Methods in the
Development of Software Systems, volume 1709 of Lecture Notes In Com-

puter Science, pages 1281-1300. Springer Verlag, 1999.

E. Sekerinski and K. Sere, editors. Program Development by Refinement :
Case Studies Using the B Method. Formal Approaches to Computing and

Information Technology. Springer Verlag, London, December 1998.

Object-Oriented Specification Case Studies. Kevin Lano & Howard

Haughton eds. Prentice Hall, 1993.

BIBLIOGRAPHY 163

[vOO1]

[Wah98]

[Win94]

[Wo0099]

[Zam97]

David von Oheimb. Hoare logic for java in isabelle/hol. Concurrency
and Computation: Practice and FExperience: Formal Techniques for Java

Programs, 13(13):1173-1214, 2001.

Matthew Wahab. Object Code Verification. PhD thesis, Department of

Computer Science, University of Warwick, Coventry, UK, December 1998.

P. J. Windley. A theory of generic interpreters. In G. J. Milne and
L. Pierre, editors, Correct Hardware Design and Verification Methods:
IFIP WG10.2 Advanced Research Working Conference: Proceedings, num-

ber 683 in Lecture Notes in Computer Science. Springer-Verlag, 1994.

Bobby Woolf. Frameworks development using patterns: Developing the
file reader. In Mohamed E Fayad, Douglas C Schmidt, and Ralph E
Johnson, editors, Implementing Application Frameworks: Object-Oriented

Frameworks at Work. Wiley Computer Publishing, 1999.

Vincent Zammet. A comparative study of coq and hol. In Elsa Gunter, ed-
itor, Proceedings of the 10th International Conference on Theorem Proving

in Higher Order Logics, New Jersey, August 1997. Springer Verlag.

	A Formal Method to Analyze Framework-Based Software
	BYU ScholarsArchive Citation

	ABSTRACT
	CONTENTS
	List of Tables
	List of Figures
	Introduction and Background
	Related Work
	A Formal Theory for Frameworks
	Translating Implementations to Logic
	Examples of Framework Verification
	Conclusions and Future Work
	Appendix A. Definitions and Proofs for Examples
	Bibliography

