
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2003-09-19

A Five-Zone Model for Direct Injection Diesel Combustion A Five-Zone Model for Direct Injection Diesel Combustion

Rich Asay
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Mechanical Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Asay, Rich, "A Five-Zone Model for Direct Injection Diesel Combustion" (2003). Theses and Dissertations.
100.
https://scholarsarchive.byu.edu/etd/100

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/100?utm_source=scholarsarchive.byu.edu%2Fetd%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

A FIVE-ZONE MODEL FOR DIRECT INJECTION

 DIESEL COMBUSTION

by

Richard J. Asay

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical Engineering

Brigham Young University

August 2003

 ii

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Richard J. Asay

This thesis has been read by each member of the following graduate committee
and by majority vote has been found to be satisfactory

Date Dale R. Tree, Chair

Date R. Daniel Maynes

Date Mardson Q. McQuay

 iii

BRIGHAM YOUNG UNIVERSITY

As chair of the candidates graduate committee, I have read the thesis of Richard J. Asay
in its final form and have found that (1) its format, citations, and bibliographical style are
consistent and acceptable and fulfill university and department style requirements; (2) its
illustrative materials including figures, tables, and charts are in place; and (3) the final
manuscript is satisfactory to the graduate committee and is ready for submission to the university
library.

Date Dale R. Tree
 Chair, Graduate Committee

Accepted for the Department

 Brent L. Adams
 Graduate Coordinator

Accepted for the College

 Douglas M. Chabries

Dean, College of Engineering and
Technology

 iv

ABSTRACT

A FIVE-ZONE MODEL FOR DIRECT INJECTION
 DIESEL COMBUSTION

Richard J. Asay

Department of Mechanical Engineering

Master of Science

 Recent imaging studies have provided a new conceptual model of the internal
structure of direct injection diesel fuel jets as well as empirical correlations predicting jet
development and structure. This information was used to create a diesel cycle simulation
model using C language including compression, fuel injection and combustion, and
expansion processes. Empirical relationships were used to create a new mixing-limited
zero-dimensional model of the diesel combustion process. During fuel injection five
zones were created to model the reacting fuel jet: 1) liquid phase fuel 2) vapor phase fuel
3) rich premixed products 4) diffusion flame sheath 5) surrounding bulk gas.
Temperature and composition in each zone is calculated. Composition in combusting
zones was calculated using an equilibrium model that includes 21 species. Sub models
for ignition delay, premixed burn duration, heat release rate, and heat transfer were also
included.

 Apparent heat release rate results of the model were compared with data from a
constant volume combustion vessel and two single-cylinder direct injection diesel engines. The
modeled heat release results included all basic features of diesel combustion. Expected trends
were seen in the ignition delay and premixed burn model studies, but the model is not predictive.
The rise in heat release rate due to the diffusion burn is over-predicted in all cases. The shape of
the heat release rate for the constant volume chamber is well characterized by the model, as is the
peak heat release rate. The shape produced for the diffusion burn in the engine cases is not
correct. The injector in the combustion vessel has a single nozzle and greater distance to the wall
reducing or eliminating wall effects and jet interaction effects. Interactions between jets and the
use of a spray penetration correlation developed for non-reacting jets contribute to inaccuracies
in the model.

 v

TABLE OF CONTENTS

LIST OF TABLES ..VII
LIST OF FIGURES ..VIII

1. INTRODUCTION...1

2. BACKGROUND ...3

2.1. THE DIESEL COMBUSTION PROCESS...3
2.2. THE OLD CONCEPTUAL MODEL OF DIESEL COMBUSTION..3
2.3. NEW CONCEPTUAL MODEL..4

2.3.1. Temporal model...4
2.3.2. Quasi-steady model..6

2.4. DIESEL COMBUSTION MODELS ..8
2.4.1. Three-dimensioinal models..8
2.4.2. One-zone models ..9
2.4.3. Two -zone models...9
2.4.4. Three-zone models ...10
2.4.5. Multi-zone models ...11

2.5. SUMMARY AND NEED FOR A NEW MODEL ...11
2.6. OBJECTIVES..13
2.7. CONTRIBUTION...13
2.8. DELIMITATION ...14

3. SPRAY CORRELATION AND EQUILIBRIUM MODEL 15

3.1. SPRAY MODEL..15
3.1.1. Spray penetration model..15
3.1.2. Liquid length model...18

3.2. EQUILIBRIUM MODEL...19
3.2.1. Species ...20
3.2.2. Equilibrium constants ..22
3.2.3. Newton-raphson for nonlinear systems ...23
3.2.4. Convergence methods..25

4. CYCLE SIMULATION DESCRIPTION ... 27

4.1. INTRODUCTION...27
4.2. OVERVIEW ...27
4.3. DETAILED DESCRIPTION...28

4.3.1. Cylinder geometry..28
4.3.2. Compression and expansion stroke ..29
4.3.3. Heat Release model..32
4.3.4. Five-zone model...38

5. EXPERIMENTAL SETUP .. 47

 vi

5.1. SANDIA BOMB..47
5.2. SANDIA ENGINE ..50
5.3. BYU DIESEL ENGINE TEST CELL...51

5.3.1. Engine and dynamometer...51
5.3.2. Instrumentation and data acquisition ...52
5.3.3. BYU Engine experimental conditions...53

5.4. DATA PROCESSING...54
5.5. MODEL RESULTS..57

5.5.1. Sandia bomb...57
5.5.2. Sandia engine...58
5.5.3. BYU engine..59

6. RESULTS .. 63

6.1. SPRAY MODEL RESULTS..63
6.2. EQUILIBRIUM MODEL RESULTS..66
6.3. HEAT RELEASE DATA ..72
6.4. SANDIA BOMB COMPARISON...77
6.5. SANDIA ENGINE COMPARI SON..88
6.6. BYU ENGINE COMPARISON..97
6.7. ZONAL TEMPERATURES ...99

7. SUMMARY AND CONCLUSIONS ...101

7.1. SUMMARY..101
7.2. CONCLUSIONS..104
7.3. RECOMMENDATIONS..106

REFERENCES ..107

APPENDIX A. CODE LIS TING...113

APPENDIX B. PREMIXED BURN MODEL ..175

APPENDIX C. DATA SETS ..183

 vii

LIST OF TABLES

Table 3.1. Species and assigned species number as occurs in the equilibrium code.........21
Table 3.2. The 16 equilibrium reactions used in this model..22
Table 5.1. Sandia bomb parameters ...49
Table 5.2. Sandia bomb operating conditions..49
Table 5.3. Sandia engine parameters. ..50
Table 5.4. Sandia engine running conditions...51
Table 5.5. BYU engine parameters ..52
Table 5.6. BYU engine running conditions ...54
Table 5.7. Model conditions for Sandia bomb data...58
Table 5.8. Model conditions for Sandia engine data ...59
Table 5.9. Model conditions for BYU engine data..60

 viii

LIST OF FIGURES

Figure 2.1. Quasi-steady diesel combustion plume as presented by Dec (1997) [2]. Used
by permission………………………………………………………………....6

Figure 2.2. Two zone model..10
Figure 2.3. Three zone model..10
Figure 2.4. Multi-zone models ...11
Figure 2.5. Five zone spray combustion model ...12
Figure 4.1. Spray Geometry used for Heat Release Calculations......................................36
Figure 4.2. Five zone spray model...39
Figure 4.3. Zone 2 Energy Balance..41
Figure 4.4. Masses Used in Zone-2 Temperature Calculations...42
Figure 6.1. Dimensionless Spray Model Results ...64
Figure 6.2. Liquid Length Results for Heptamethylnonane Fuel65
Figure 6.3. Liquid Length Results for Diesel Fuel ..65
Figure 6.4. Temperature vs. CO2 and H2O Mole Fractions ...67
Figure 6.5. Temperature vs. CO and H2 Mole Fractions ...67
Figure 6.6. Temperature vs. O2 Mole Fraction..68
Figure 6.7. Equivalence Ratio vs. O2, H2O, and CO2 Mole Fractions...............................69
Figure 6.8. Equivalence Ratio vs. CO and H2 Mole Fractions..69
Figure 6.9. Equivalence Ratio vs. HCN, C2H2, and C(s) Mole Fractions.........................70
Figure 6.10. Adiabatic Flame Temperature vs. Equivalence Ratio...................................71
Figure 6.11. Typical Heat Release...72
Figure 6.12. Raw and Smoothed Cylinder Pressure Data..73
Figure 6.13. Apparent Heat Release from Unfiltered Pressure Data.................................74
Figure 6.14. Effect of Number of Terms on AHRR ..75
Figure 6.15. Integrated Heat Release...77
Figure 6.16. Sandia Bomb Pressure Rise Using the 246-µm Nozzle.78
Figure 6.17. Sandia Bomb Pressure Rise Using the 180-µm Nozzle.79
Figure 6.18. Sandia Bomb Pressure Rise Using the 100-µm Nozzle.79
Figure 6.19. Sandia Bomb Pressure Rise Using the 71 µm Nozzle.80
Figure 6.20. Sandia Bomb Pressure Rise Using the 246-µm Nozzle with Extra Heat

Transfer..81
Figure 6.21. Sandia Bomb Pressure Rise Using the 180-µm Nozzle with Extra Heat

Transfer..82
Figure 6.22. Sandia Bomb Pressure Rise Using the 100-µm Nozzle with Extra Heat

Transfer..83
Figure 6.23. Sandia Bomb Heat Release Using the 246-µm Nozzle with Extra Heat

Transfer..85

 ix

Figure 6.24. Sandia Bomb Heat Release Using the 180-µm Nozzle with Extra Heat
Transfer..86

Figure 6.25. Sandia Bomb Heat Release Using the 100-µm Nozzle with Extra Heat
Transfer..86

Figure 6.26. Sandia Bomb Heat Release Using the 71-µm Nozzle.87
Figure 6.27 Sandia Engine Heat Release Comparison, 1200 RPM, Low Fuel Load,

Normal Timing, Constant Injection Pressure..90
Figure 6.28. Sandia Engine Heat Release Comp arison, 1200 RPM, Low Fuel Load,

Normal Timing, Ramping Injection Pressure..91
Figure 6.29. Sandia Engine Heat Release Comparison, 1200 RPM, Low Fuel Load,

Normal Timing, Constant Injection Pres sure, Extra Heat Transfer.93
Figure 6.30. Sandia Engine Heat Release Comparison, 1200 RPM, Low Fuel Load,

Normal Timing, Ramping Injection Pressure, Extra Heat Transfer..............93
Figure 6.31. Sandia Engine Pressure Comparison, 1200 RPM, Low Fuel Load, Normal

Timing, Ramping Injection Pressure, Extra Heat Transfer.94
Figure 6.32. Sandia Engine Heat Release Comparison, 1200 RPM, High Fuel Load,

Normal Timing, Ramping Injection Pressure, Extra Heat Transfer..............95
Figure 6.33. Sandia Engine Heat Release Comparison, 1680 RPM, High Fuel Load,

Normal Timing, Ramping Injection Pressure, Extra Heat Transfer..............96
Figure 6.34. Sandia Engine Heat Release Comparison, 1680 RPM, High Fuel Load,

Retarded Timing, Ramping Injection Pressure, Extra Heat Transfer............97
Figure 6.35. BYU Engine Heat Release Comparison, 1500 RPM, φ = .3, Ramping

Injection Pressure, Extra Heat Transfer...98
Figure 6.36. BYU Engine Heat Release Comparison, 2000 RPM, φ = .5, Ramping

Injection Pressure, Extra Heat Transfer...99
Figure 6.37. Zonal Temperatures vs. Crank Position ..100
Figure B.1. Fuel Burn vs. Time Using Equation B.1. ..176
Figure B.2. Premixed Burn Concentrations and Temperature Variations.......................177
Figure B.3 Time for the Premixed Burn..179
Figure B.4. Premixed Burn Heat Release..180

 1

1. INTRODUCTION

Combustion processes are important in most practical power generation devices,

among which diesel engines are the most efficient. Understanding the details of the

combustion processes in these applications is essential in predicting performance and

pollutant formation. The widespread use of diesel engines and the increasingly stringent

regulations on emissions make the diesel combustion process a subject of considerable

research importance.

Diesel combustion is extremely complex. At present, it is not p ossible to

construct models that predict engine operation from the basic governing equations alone

[1]. Computer models have been written that attempt to describe and predict the

combustion process. These codes vary in complexity from simple correlations and zero-

dimensional models with no spatial resolution to multi-dimensional finite difference

models. While multi-dimensional models attempt to incorporate more fundamental

equations and relationships, zero-dimensional models tend to rely more heavily on

correlations and empirical data. Recently, many of the correlations and empirical

relationships have been developed from imaging studies that have been performed to

determine the structure of the diesel flame. These studies have used lasers and other

methods to see inside the reacting fuel spray. Recently, in -cylinder and combustion

bomb studies have produced new information regarding spray penetration, ignition delay,

 2

NOx and soot formation zones and flame lift-off. The imaging studies give a temporal as

well as a spatial picture of the details of the combustion process.

The objective of this thesis is to produce a new zero dimensional, multi-zone

model of diesel combustion that incorporates this new information. The proposed model

will provide temperature, size, and species predictions for five zones: the liquid fuel,

premixed reaction, rich products core, diffusion flame sheath and surrounding bulk gas.

Sub models will include: 1) a spray geometry model, 2) an ignition delay model, 3) a heat

release rate model, 4) a product equilibrium model and 5) a simple heat transfer model.

This model will then be integrated to produce a cycle simulation model and used to

predict engine performance parameters and pollutant formation. Predicted heat release

rate and pressure will be compared to experimental data from a constant volume

combustion vessel and two diesel engines.

 3

2. BACKGROUND

2.1. THE DIESEL COMBUSTION PROCESS

The diesel cycle consists of five processes: intake, compression, fuel heat release,

expansion, and exhaust. Modeled heat release is determined by modeling fuel injection,

ignition delay, and combustion. A cycle simulation could model all of these processes.

This work will focus on the closed portion of the cycle and exclude the intake and

exhaust processes. The compression and expansion are adequately modeled using a first

law energy balance of the cylinder and an appropriate heat transfer model. The greatest

challenge lies in modeling the injection, ignition, and combustion process. The spray

geometry, ignition delay, heat release rate, heat transfer and product equilibrium

predictions must all be modeled in order to provide information necessary to produce

basic performance and emissions predictions. In order to provide the background for

modeling these processes, old and new conceptual models of diesel combustion will first

be reviewed in addition to a review of current zero -dimensional models in the literature.

A new zero -dimensional model will then be proposed based on the new conceptual

combustion model.

2.2. THE OLD CONCEPTUAL MODEL OF DIESEL COMBUSTION

Because of the difficulty of studying diesel combustion in the engine, early

conceptual models were based on models of other types of spray combustion. Generally,

the models assumed a spray with a liquid fuel core or atomized spray surrounded by a

 4

flame. The fuel was thought to burn at a mixture close to stoichiometric conditions but it

was uncertain as to whether combustion took place in a flame sheath around the entire

spray or around individual fuel droplets in an atomized spray. The size distribution and

penetration length of liquid droplets in non -reacting sprays were measured but were

essentially unknown in reacting sprays.

This former model was based on spray and combustion fundamentals and not on

direct observation. There was uncertainty about the details of combustion. Engineers

realized the uncertainty of this conceptual model but measurements were difficult to

obtain. A more complete discussion of the old model can be found in Dec [2].

2.3. NEW CONCEPTUAL MODEL

Taking advantage of optical diagnostics and improved experimental facilities,

laser and other imaging studies have been used during the past decade to improve our

understanding of the structure of the diesel flame. Dec [2] and Flynn et al. [3] have

compiled the results of many of these studies into a complete picture of the structure of

the diesel spray. The conceptual model describes how the spray develops and combustion

begins. It also describes the quasi-steady p ortion of combustion. A review of the

conceptual model introduced by Dec [2] is given below.

2.3.1. TEMPORAL MODEL

As liquid fuel is injected into the cylinder, high temperature air is entrained into

the fuel forming a cone shaped spray. This high temperature air evaporates and mixes

with the fuel. Studies done on this portion of the spray have determined that there is a

maximum penetration distance for the liquid fuel after which all the fuel will vaporize

 5

[4,5]. This distance is called the liquid length. This length varies with fuel properties,

combustion chamber conditions, and injector geometry, but is basically the result of an

energy balance between the energy of the air entrained and the energy required to

vaporize the fuel. Higher air density and temperature in the cylinder cause more air to be

entrained and reduce the liquid length. Surprisingly, the liquid length is not correlated

with droplet size or injection pressure except to the extent that these parameters cause

more or less air to be entrained.

Beyond the liquid length, the fuel vapor and air continue to mix and penetration

continues into the combustion chamber. With the high temperatures in the cylinder,

autoignition begins when the fuel-air equivalence ratio and the temperature in the spray

reach combustible limits. Ignitable mixtures would of necessity exist beyond the liquid

length or on the sides of the spray where the fuel has evaporated and has the opportunity

to heat above the boiling point. Combustion of this premixed, vaporized-fuel and air

mixture is thought to occur volumetrically in a premixed reaction rather than a

propagating premixed flame. The initial premixed burn involves the combustion of these

rich premixed vapors and consumes all the oxygen previously entrained in the vapor

portion of the spray. At the end of the initial premixed burn, a diffusion flame surrounds

the rich products of the premixed reaction. This diffusion flame appears to form where

the equivalence ratio of the mixture is close to one. Once the diffusion flame is formed

and the initial premixed burn ends, the combustion process becomes quasi-steady. A

schematic diagram of a quasi-steady diesel combustion flame jet is shown in Figure 2.1.

 6

Figure 2.1. Quasi-steady diesel combustion plume as presented by Dec (1997) [2].
Used by permission

2.3.2. QUASI-STEADY MODEL

During this phase the liquid length remains a feature of the spray. The liquid

length shortens a small amount due to combustion that increases the energy of the air

entrained into the jet. Beyond the liquid length the fuel is all in the vapor phase mixed

with hot entrained air. This mixture increases in temperature until reacting in the fuel

rich premixed combustion zone. For normal diesel operation the equivalence ratio of this

mixture upon reacting is thought to be between 2 and 4 (Dec [2]) and thus is termed a

rich premixed burn. The reaction consumes the available oxygen leaving combustible

materials such as CO and unburned hydrocarbon. The rich premixed burn produces

products at intermediate temperatures, 1600 – 1900 K, but does not reach the

stoichiometric flame temperature because a large portion of chemical energy remains in

the CO and unoxidized products due to a lack of oxygen.

 7

A diffusion flame forms an envelope not only around the rich premixed products

but also locates around the liquid spray forming a lifted diffusion flame. The distance

from the nozzle to the edge of the diffusion flame is called the lift-off length. The lift-off

length is extremely important in determining th e characteristics of the flame because it

determines how much air is entrained into the rich premixed reaction zone. It is in the

rich premixed reaction zone where soot is initially formed

The temperature of the flame sheath is near the stoichiometric adiabatic flame

temperature. The lift-off length is typically shorter than the liquid length for the current

operating conditions of most modern diesel engines. Longer lift-off lengths allow more

air entrainment increasing oxygen in the rich premixed reaction zone and thereby

decrease soot formation.

The products of this premixed reaction continue to move axially away from the

nozzle and spread radially outward. Because the liquid length and premixed burn

location remain fixed until the end of combustion, this portion of the combustion process

is termed quasi-steady although the leading edge continues to move forward and expand

radially.

At the end of injection, the liquid portion of the spray slows and stops flowing out

of the nozzle. The last bit of liquid moves away from the nozzle but the liquid length

remains relatively constant leading to an end of the liquid phase. The slowing of the

spray allows the flame to move closer to the nozzle, shortening the lift-off length.

Rapidly, the diffusion flame encircles the entire jet. At this point a significant portion of

the fuel energy remains unreacted but the conceptual model is no longer well understood.

Images of combustion in the cylinder following the quasi-steady phase show pockets of

 8

rich premixed products (containing soot) surrounded by a diffusion flame (a thin layer of

OH). It appears that the rich products within the jet are carried toward the wall where the

jet splits and forms large-scale turbulent structures that entrain air and continue to burn as

a diffusion flame.

2.4. DIESEL COMBUSTION MODELS

There are two categories of models used to describe diesel combustion,

comprehensive three-dimensional models and phenomenological models or zero

dimensional models. Three-dimensional models use computational fluid dynamic (CFD)

codes to describe the flow field and temperature conditions in the combustion chamber.

Sub models are included for spray breakup, ignition, heat transfer, and pollutant

formation. Phenomenological models separate the combustion chamber into different

zones and can be categorized by the number of these zones. There are one, two, three,

and multi-zone models. These models are often called zero-dimensional because they

provide no spatial resolution. More detailed explanations of these model types can be

found in [1], and [6-9].

2.4.1. THREE-DIMENSIOINAL MODELS

CFD has been used extensively for modeling engines. In addition to modeling the

three-dimensional flow, engine CFD codes require a moving boundary condition for

piston movement. With a complex flow model it is normally necessary to model

combustion using the same type of correlations that are used in zero dimensional models.

This diminishes the benefits of 3-D models. Due to the complexity of these models, they

demand large amounts of computer power. The time required for the calculations is also

 9

limiting. This is especially important when many iterations are required to determine

constants or to determine the effects of changing parameters. This type of model will not

be considered for this thesis. Examples of these models can be found in [10,11].

2.4.2. ONE-ZONE MODELS

Single zone models are advantageous because of their simplicity and are widely

used along with empirical data within the engine industry to make design decisions. This

method assumes that the entire volume of the combustion chamber is a homogeneous

mixture of air and combustion products. It then assumes that the fuel is burned

immediately on injection into the combustion chamber [7]. Examples of this type of

model can b e found in [1,12,13]. Often, the measured pressure rise in an engine is used

to tune the model or is used to provide a rate of heat release. Zero dimensional models

are therefore usually not entirely predictive but are used to extend the value of the

measured data.

The disadvantage of single zone models is that they cannot fully describe the

complex phenomena that comprise the compression-ignition engine combustion process

and substantial empirical input must be used [1].

2.4.3. TWO-ZONE MODELS

A two-zone model separates the combustion chamber into a fuel/air mixture zone

(zone 1) and a zone of air and combustion products (zone 2) as illustrated in Figure 2.2.

This two-zone structure is used extensively in spark ignition engine models [7].

However, Salem et al. [14] used this type of model for a diesel engine where the

spray was the air-fuel mixture zone. The fuel is assumed to burn at the edge of the spray.

 10

Figure 2.2. Two zone model

2.4.4. THREE-ZONE MODELS

Foster [7] describes a model by Gao et al that uses three zones to describe

combustion in an ethanol fumigated diesel engine (Fig. 2.3). In this model two of the

zones contain the air-fuel mixture. Zone 1 contains air and ethanol, and zone 2 contains

diesel fuel, air, and ethanol. The third zone contains the products of combustion. The

diesel fuel is assumed to burn first, resulting in the destruction of one of the air-fuel

zones. The air-ethanol zone is then assumed to burn.

Figure 2.3. Three zone model

 11

Figure 2.4. Multi-zone models

2.4.5. MULTI-ZONE MODELS

Multi-zone models separate the fuel spray into a large, finite number of zones.

Two examples of these types of models are shown in Figure 2.4. In one, the zones are

small packets of fuel that move through the combustion chamber. The state of the mass

in each packet is tracked as it moves. This method has been used by several researchers

[6, 15-21]. A second type of multi-zone model [22-24] follows the development of

equivalence ratio zones surrounding a central liquid core. The fuel is then assumed to

burn when the equivalence ratio is equal to one.

2.5. SUMMARY AND NEED FOR A NEW MODEL

The new conceptual model suggests several features of diesel combustion that are

not consistent with previous models. In the new conceptual model, the concept of a

liquid length has been introduced which is not described by any of the previous models.

It is also now known that there is not a solid liquid core but an atomized spray forming a

jet of fuel and air. The liquid length can be correlated with in-cylinder temperature and

pressure and fuel properties. It is now known that droplets do not penetrate beyond the

liquid length. This is different from the previous view of a liquid core penetrating deep

 12

into the spray. The new conceptual model involves a two -step combustion process that is

spatially separated and not a single diffusion flame combustion process. The new

conceptual model has shown that soot forms within the rich premixed product zone and

burns out as it passes through the flame sheath, NO is not formed inside of the flame but

only on the lean side of the flame sheath. A sub-model that describes the temperature

and stoichiometry of these two zones where soot and NO are formed does not exist in

current models. Describing the temperature of these zones with a zero dimensional

model will allow the computational power to be used on comprehensive kinetic

mechanisms describing NO and soot formation.

The conceptual model proposed by Dec [2] has been used to create a new multi-zone,

zero-dimensional, computer model written in C language. The computer program simulates the

initial spray formation and ignition process as well as the processes described in Dec’s

conceptual model. The quasi-steady model is separated into five zones (Fig. 5).

Figure 2.5. Five zone spray combustion model

 13

The five zones are:

1. Liquid phase fuel

2. Vapor phas e fuel

3. Rich products

4. Diffusion flame

5. Surrounding bulk gas

This model includes sub models for spray geometry, ignition delay, heat release

rate, product concentrations, and heat transfer. This model has been integrated into a

cycle simulation program.

2.6. OBJECTIVES

The objective of this thesis is to complete a five-zone diesel combustion model

including sub models for: 1) spray geometry, 2) ignition delay, 3) heat release rate, 4)

equilibrium product concentrations, and 5) heat transfer. Prediction o f the product

concentrations will require the development of a combustion equilibrium code. The

combustion model will be integrated into a cycle simulation model. The results of the

combustion model and cycle simulation code will be compared with experimental results

obtained from a constant volume combustion vessel and from the results of two diesel

engines.

2.7. CONTRIBUTION

Numerous zero dimensional models have been written based on the old

conceptual model to predict diesel combustion phenomena. The recent combustion

imaging studies of Dec [2] and the spray penetration studies by Siebers [4,27] provide

 14

new information, which has not yet been incorporated into modeling efforts. This work

will produce a new model of diesel combustion, which incorporates this new information.

By placing the new conceptual information in the quantitative framework of a model, the

information will become more useful for engine design and development.

2.8. DELIMITATION

Due to the complexity of the problem, the following simplifications will be made

in this initial effort to produce a new simulation program. The combustion chamber will

be assumed quiescent. Jet impingement on the cylinder wall will be neglected and the

combustion process will be assumed to continue in a quasi-steady manner. Only simple,

existing models for heat transfer and ignition delay will be used.

 15

3. SPRAY CORRELATION AND EQUILIBRIUM MODEL

Before describing the cycle simulation, two models used throughout the

simulation will be explained. First the spray mo del will be explained, followed by the

equilibrium model.

3.1. SPRAY MODEL

The spray model is used to calculate the geometry of the fuel spray and defines

the amount of cylinder gas entrained into the spray. The spray model predicts spray

penetration length, liquid length, dispersion angle, and local equivalence ratio axially

along the length of the jet. The jet geometry is used in the cycle simulation to define

zones that have distinct phase, species, or temperature characteristics. The following is a

brief description of the spray penetration and liquid length models and the equations

involved. For more information consult Refs. [25,27].

3.1.1. SPRAY PENETRATION MODEL

The spray penetration model was developed at Sandia National Laboratories [25]

and is given in Equation 3.1 below. The penetration correlation was developed using

mass and momentum balances for a non-vaporizing spray of uniform velocity,

temperature, and composition. The correlation was compared with penetration data from

both vaporizing and non-vaporizing sprays. The equation is shown to underpredict the

 16

penetration of a non-vaporizing spray by at most 18% and over predict the penetration of

an evaporating spray by at most 21%.

()22 S
~

161S
~

4ln
16
1

S
~

161
4
S
~

2
S
~

t~ +++++= (3.1)

In the spray penetration equation t~ is the dimensionless time and S
~

is the

dimensionless distance of the spray penetration defined by

+=
t
tt~ (3.2)

+
=

S
S

S
~

 (3.3)

where t and S are the actual time and spray penetration distance and t + and S+ are defined

as

()a/2tanU
1

?~dt
f

1/2
f=+ (3.4)

 ()a/2tan
1

?~dS 1/2
f=+ (3.5)

In these equations d f is the effective spray nozzle orifice diameter calculated by

multiplying the actual orifice diameter by the area contraction coefficient to the ½ power.

 o
1/2

f dCad = (3.6)

?~ is the ratio of fuel density to air density.

a

f

?
?

?~ = (3.7)

 17

Uf is the fuel injection velocity calculated as

()

f

af
vf ?

PP
2CU

−
= (3.8)

where Cv is the velocity contraction coefficient (Cd/Ca), Pf is the fuel injection pressure,

Pa is the air pressure and ρf is the fuel density.

 Because of the uniform velocity profile assumption stated earlier, a real spray

with the same momentum as the modeled spray will have a larger cone angle. The

relationship between the measured (θ) and modeled (α) spray angle, given by Equation

3.9, was found experimentally.

 () ()?tan.66atan = (3.9)

 A correlation given in [26] was used to predict the measured spray angle θ as seen

in Equation 3.10.

−

=

a

f

0.19

f

a

?
?

.0043
?
?

0.26
2
?

tan (3.10)

Given the shape of the spray (a cone), the volume filled with entrained gasses can

be calculated. Then, assuming the entrained gases to be air, the equivalence ratio at any

position can be calculated using Equation 3.10.

 ()
1S~161

A/F2
S~f

2

s

−+
= (3.10)

In this equation A/Fs is the stoichiometric air/fuel ratio.

 Equation 3.1 cannot be explicitly solved for S
~

, and therefore an iterative solution

was used to calculate the penetration length. These equations can be used to determine

either the penetration length at any given time after the start of injection, or the time

 18

required to reach a certain penetration length. Both are used in the cycle simulation

program along with the equivalence ratio calculation.

3.1.2. LIQUID LENGTH MODEL

The liquid length model predicts the maximum distance liquid fuel penetrates into

the cylinder [27]. An energy balance determines the energy from in -cylinder gasses

required to vaporize the injected fuel. When the energy entrained in the spray is

sufficient to vaporize the fuel, the spray is considered to have reached maximum liquid

fuel penetration called the liquid length. The correlation developed at Sandia [27] was

used as given by Equation 3.11.

ßa

o

B?~k
d
LL

= (3.11)

Where: LL is the liquid fuel penetration length,

 do is the orifice diameter

 ρ~ is the same density ratio as defined by Equation 3.7

 k = 10.5, α = 0.58, and β= 0.59 are empirical constants, Higgins (Ref [27])

B is termed the “specific energy ratio” and is given by Equation 3.12.

()

()bairairp,

vapfbliqp,

TTC

hTTC
B

−

+−
= (3.12)

In this equation Cp,liq, and Cp,air are the constant pressure specific heats for liquid fuel and

air respectively. Tb is the boiling temperature of the fuel, Tfuel is the fuel temperature in

the injector, and Tair is the temperature of the gasses in the cylinder. The heat of

vaporization of the fuel is h vap. The parameter B, then, is the ratio of energy required to

vaporize the fuel over the energy provided by the outside air.

 19

3.2. EQUILIBRIUM MODEL

The equilibrium code began as an extension of the program by Olikira and

Borman Ref [28], however, Olikara and Borman included only CO and CO2 as possible

species where carbon could be distributed in the products which caused the solution to

fail at equivalence ratios above approximately 2. The new equilibrium code is expanded

to include 21 species instead of only the 12 considered by Olikira and Borman. These

species allow the program to solve for equivalence ratios of up to at least 8. In the

following sections the species included will first be discussed, followed by the

equilibrium reactions used and the equilibrium constants. The solution method will then

be explained including the numerical methods employed to find a solution to this

complicated problem.

Several equilibrium codes have been developed and used among researchers in

the combustion community and some are available for open use. These include

STANJAN, a code by Olikira and Borman [28], and the NASA-Lewis code. A brief

explanation of the reason behind the development of this code will be briefly given.

STANJAN is a code written in FORTRAN at Stanford University. STANJAN is

distributed freely for research purposes as a compiled code, but the compiled version

requires a user interface, which cannot b e called as a subroutine by another program as

required for this application. Source code for STANJAN can be obtained by joining the

STANJAN research group.

The source code for Olikara and Borman was already available in FORTRAN,

was written specifically for engine combustion with a reduced set of species and

reactions, and was shorter and easier to understand.

 20

The NASA -LEWIS code, written by Gordon and McBride, is an extensive code

capable of solving equilibrium problems for several phases and over 100 species. This

code was considered to be more comprehensive than necessary and too computationally

intensive. It was also anticipated that NASA-Lewis would be more complex to learn and

incorporate.

All of the available codes were written in FORTRAN but it was desired to write

the cycle simulation code in C. All of the codes would therefore require either a

translation into C or a method for interfacing compiled FORTRAN subroutines with the

cycle simulation code written in C.

Initially it was decided to translate the relatively short and simple FORTRAN

code of Olikara and Borman into C. This was completed in a short time but as mentioned

above, the unanticipated need of solving equilibrium under rich conditions above φ = 2

required an expanded set of species and equations and a new method for solving the

equations. As a result, this research task became more time consuming than expected.

3.2.1. SPECIES

The NASA -Lewis equilibrium code was used to determine which species were

most important to consider. It was executed at various high equivalence ratio conditions.

The species with significant mole fractions were added to the equilibrium model. The

NASA-Lewis code predicted a significant amount of solid carbon above an equivalence

ratio of 3.5. Due to increased complexity of calculation solid carbon was neglected. The

species included are shown in Table 3.1.

 21

Table 3.1. Species and assigned species number as occurs in the equilibrium code

1. H 7. NO 13. CH3 19. HCN
2. O 8. O2 14. CH4 20. HCO
3. N 9. H2O 15. C2H2 21. C2H
4. H2 10. CO2 16. C2H4
5. OH 11. N2 17. NH2
6. CO 12. Ar 18. NH3

With the species determined the global reaction equation is shown in equation

3.13.

()

HCNHCONHCNNNHNNHNHCNHCNCHNCHNArN
NNCONOHNONNONCONOHNHNNNONHN

.0444Ar3.7274NO
f

l/2m/4n
NOHC

22120193182174216221541431312

211210292876524321

22klmn

+++++++++
+++++++++++

⇒++
−+

+

(3.13)

In this equation Ni are the number of moles of each species. The fuel composition

(n, m, l and k) and equivalence ratio (φ) are known and the equation is written assuming 1

mole of fuel. This leaves the moles of each of the 21 species as unknowns. In order to

solve this problem there must be 21 equations. The first 5 equations are the carbon,

hydrogen, oxygen, nitrogen, and argon balances. The rest of the equations come from the

16 equilibrium reactions shown in Table 3.2.

The order to these reactions was chosen with the solution method in mind. The

form of these reactions will be discussed further with the solution method. These

reactions can be used to write the remaining equations to solve the system.

 22

Table 3.2. The 16 equilibrium reactions used in this model.

H2⇔2H (R1) CH3+H⇔CH4 (R9)

O2⇔2O (R2) 2CO+H2⇔C2H2+O2 (R10)

N2⇔2N (R3) C2H2+H2⇔C2H4 (R11)

H2+O2⇔2OH (R4) N+H2⇔NH2 (R12)

O2+N2⇔2NO (R5) NH2+H⇔NH3 (R13)

2H2+O2⇔2H2O (R6) CH3+N⇔HCN+H2 (R14)

2CO+O2⇔2CO2 (R7) CO+H⇔HCO (R15)

CO+2H2⇔CH3+OH (R8) 2CO+H⇔C2H+O2 (R16)

3.2.2. EQUILIBRIUM CONSTANTS

For an arbitrary equilibrium reaction

dDcCbBaA +⇔+ (3.14)

the reaction constant, Kp, can be written as

() ()
() ()

()badc

0
b

B
a

A

d
D

c
C

p P
P

XX

XX
K

−−+

= (3.15)

where Xi are the mole fractions, P and P0 are th e reaction and atmospheric pressure in

atmospheres respectively. Because values of Kp are reported in the literature for P0 = 1

atm, it can be removed from the equation. Realizing that Xi=Ni /ΣNi the Kp equation can

be rewritten as

() ()
() ()

()badc

i

1
i

b
B

a
A

d
D

c
C

p

N

P
NN
NN

K

−−+

=

∑
 (3.16)

 23

This form was used for the 16 equilibrium reactions providing 21 equations for

the 21 unknowns in the global reaction. The set of 21 equations produced are non-linear

and can be quite difficult to solve.

 The value of Kp is a function of temperature. Curve fits for Kp are included in

Reference [28] for the 7 reactions considered in that work. The fits for the remaining

reactions were calculated using data from the JANAF thermochemical tables [30] and are

included in the code. The same form of equation was used for all of the fits.

3.2.3. NEWTON-RAPHSON FOR NONLINEA R SYSTEMS

The Newton-Raphson method was used to find the solution to the equation set.

An algorithm from Numerical Recipes in C [31] was modified for this equation set. The

algorithm requires that the set of equations be written in the form Fi(xi) = 0. For the

species balances this is easily accomplished by moving everything to one side of the

equation. For the equilibrium reactions one of the two forms shown in Equations 3.17

and 3.18 were used.

 () ()

()

b)(N)(NK
N

PNN0 B
a

Ap

badc

i

1
i

d
D

c
C −

=

−−+

∑
 (3.17)

 () ()

()dcbai

1
i

b
B

a
Ap

d
D

c
C P

N
)(N)(NKNN0

−−+

−=
∑

 (3.18)

The reason for using these two forms will be discussed when describing the

Jacobian matrix. The Newton-Raphson method solves for the array of values x, which

make the matrix functions F equal to zero as shown in Equation 3.19. This is done by

 24

first writing the matrix of functions F as a truncated Taylor’s series expansion as shown

in Equation 3.20.

0xF =)((3.19)

))(()()(000 xxxFxF0xF −′+== (3.20)

)(0xF′ represents the partial derivative of each of the 21 functions evaluated at

the initially guessed values of Ni. These partials form a Jacobian matrix J (x0).

Rearranging the expansion and substituting δx = (x-x0) gives the typical BxA =⋅ format

in Equation 3.21.

)(d 0xFxJ −= (3.21)

This equation is solved using LU decomposition. From an initial guess of values for x0, a

new set of values x are found using Equation 3.22 which should be closer to producing

the desired result of F(x) = 0.

 xxx doldnew += (3.22)

If F(x) does not equal zero, the new values of x replace the original guesses and the

process is repeated.

An example of the Jacobian matrix used in the solution is shown in Equation 3.23.

The matrix should be diagonally dominant and must have nonzero values along the

diagonal. The equations were ordered to provide for these criteria. In some cases this

was facilitated by the order in which the function was written and thus, both of the

arrangements shown in Equations 3.17 and 3.18 above were used.

 25

21

21

2

21

1

21

1

2

21

1

2

1

1

N
F

N
F

N
F

N
F

N
F

N
F

N
F

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

L

M

L1

J (3.23)

3.2.4. CONVERGENCE METHODS

Because equilibrium problems can be difficult to solve, additional methods were

used to make convergence more robust. To begin with, an initial guess near the correct

solution helps to avoid a solution at a local minima and helps to reduce computation time.

Olikara and Borman in Reference [28] suggested beginning with the simplified system

given by Equation 3.24.

()

ArNNNCONOHNON

CONHN.0444Ar3.7274NO
f

l/2m/4n
NOHC

122112102928

62422klmn

++++

++⇒++
−+

+

 (3.24)

Olikara and Borman demonstrate an iterative technique for solving the seven equations

and seven unknown species in this reaction and then show how these results can be used

in combination with the equilibrium constants through back substitution to obtain the

remaining unknowns.

This method works for equivalence ratios in the range of approximately 1-2. For

this work a guess was made at an equivalence ratio of 1.5 for all cases. The program then

steps through a series of equivalence ratios updating the initial guess at each solution

until it reaches the desired equivalence ratio. At each step the program tests the solution

 26

to determine if the resulting species are all positive. If they are not it changes the step

size of equivalence ratio and recalculates a result.

Another feature implemented to improve convergence is called line searches and

backtracking. This method is used within the Newton-Raphson algorithm. A function f

is defined as:

 FF
2
1

f = (3.25)

where F is the set of functions to be solved. A full Newton step does not insure a

decrease in f, but a small enough step in the same direction will decrease f. The initial

guess is first used to calculate f. A full Newton step is taken and f is recalculated. If f is

not reduced in a full Newton step then a smaller step is taken as indicated in Equation

3.26.

 1?0d?oldnew ≤<+= xxx (3.26)

The value of λ is determined by backtracking in the direction of the full Newton

step until λ reduces f sufficiently. Once a value for λ is successful at reducing f, the

algorithm is ready to proceed to the next iteration. This guarantees that the new solution

is closer than the old. Using this method, solutions for all of the conditions encountered

in this study were obtained.

 27

4. CYCLE SIMULATION DES CRIPTION

4.1. INTRODUCTION

Because the diesel combustion process is so complex, it is difficult to avoid

complexity in the model. A useful model should be able to predict all of the processes

involved in the cycle. In order to accomplish this with a reasonable model simplifying

assumptions must be made. This chapter will attempt to describe the cycle simulation

program. The theoretical basis for the models will be discussed and the assumptions will

be explained. An overview of the program will be first, followed by a detailed

description of the models used to describe the engine cycle. A complete listing of the

code can be found in Appendix A.

4.2. OVERVIEW

The cycle simulation program models the compression, combustion, and

expansion processes in the engine. During these processes the properties in the cylinder

are calculated each ¼ degree of crank angle rotation. The residual gas temperature is

factored into the initial conditions but the gas exchange processes are not modeled. The

compression and expansion processes are easily modeled. The temperature and pressure

at each step are calculated using an isentropic process. The composition of the gasses are

also determined during the expansion process. Heat transfer is accounted for throughout

the closed portion of the cycle. The five-zone model introduced in Section 2.5 is used to

 28

describe events d uring the fuel injection and combustion phase. The spray geometry used

in the model is from the correlation discussed in Chapter 3. This model outputs spray

geometry parameters such as the liquid length, the spray penetration length, and

equivalence ratio. The flame lift-off length is also incorporated into the program. In

addition to elements of the model described previously the ignition delay, lift-off length,

heat release, heat transfer, and zonal temperatures are calculated in the model as will be

described below

4.3. DETAILED DESCRIPTION

This description will discuss the equations and individual models that make-up

the cycle simulation program. No attempt will be made to describe the mechanics of

coding the information, but rather, the description will detail the models and ideas used in

the program. Some cylinder geometry will come first followed by a discussion of the

compression and expansion processes. The fuel injection and combustion phase will be

described next.

4.3.1. CYLINDER GEOMETRY

The volume in the cylinder can be easily calculated at any crank angle using the

slider crank formula in Equation 4.1.

()sal
4
Bp

VV
2

c −++= (4.1)

In this equation Vc is the clearance volume, B is the bore, l is the connecting rod length, a

is the crank radius, and s is given by

()1/2222 ?sinalcos?as −+= (4.2)

 29

To calculate the heat transfer, the surface area in the cylinder is also calculated,

using Equation 4.3.

 ()salBpAAA ph −+++= (4.3)

Ah is the cylinder head area and Ap is the piston area. These are not the same due to the

bowl shape in a typical diesel piston.

4.3.2. COMPRESSION AND EXPANSION STROKE

Defining top dead center during the gas exchange processes as 0 degrees, the

compression stroke begins at 180 degrees. The initial conditions in the cylinder at this

time are close to the conditions in the intake. The intake temperature and pressure are

read in from an input file along with the displacement volume. The intake air

composition is 21% oxygen, 78% nitrogen and 1% argon. The mass in the cylinder is

calculated using the ideal gas law. The initial enthalpy and Cp are calculated using curve

fits. Subtracting Pv from the enthalpy calculates the internal energy. This defines the

state at the start of the compression process. The model then steps through the cycle in ¼

crank angle increments.

An isentropic process calculates the cylinder conditions throughout the

compression and expansion processes. For the compression stroke the composition in the

cylinder is air. During the expansion stroke the composition is air and ideal products of

combustion. The mole fractions of product gasses are calculated based on the overall

equivalence ratio. The difference in composition, which is used to obtain the

thermodynamic property k = Cp/Cv, is the only distinction between the compression and

expansion process.

 30

An isentropic process, shown in Equations 4.4 and 4.5, is used to calculate the

pressure and temperature at each cylinder volume as calculated from Equation 4.1.

1k

1i

i
i1i V

V
TT

−

+
+

= (4.4)

k

1i

i
i1i V

V
PP

=

+
+ (4.5)

In these equations k is the specific heat ratio calculated as

up

p

RC

C
k

−
= (4.6)

 The internal energy at each step in the isentropic process can be calculated in two

ways. The internal energy at the start of compression is known from the initial

conditions. The internal energy at su bsequent steps can be calculated for each new

temperature. Alternatively the internal energy can be calculated by adding the P∆V work

done in each step to the internal energy of the previous step. Both methods were used to

verify the energy calculation.

Woschni’s correlation, found in ref. [1] was used to calculate the heat transfer

coefficient. This correlation was used during the entire cycle – compression, fuel

injection and combustion, and expansion. The correlation is shown in Equation 4.7

where B equals the cylinder bore, and T and P are the in-cylinder temperature and

pressure. The average velocity of in -cylinder gas, w, is given by Equation 4.8.

0.80.550.80.2
c wTPB3.26h −−= (4.7)

()

−+= m

rr

rd
2p1 PP

VP
TV

CSCw (4.8)

 31

In equation 4.8, C1 and C2 are constants. C1 is always equal to 2.28. C2 is equal

to 0 during the compression stroke and equal to .00324 during combustion and

expansion. pS is the mean piston speed and Vd is the displacement volume. T r, Pr, and Vr

are the temperature, pressure, and volume in the cylinder at a reference state. The

reference state used is the cylinder condition at the start of injection. P is the cylinder

pressure and Pm is the motored pressure at the same crank angle. Pm was calculated using

an isentropic process for the combustion and expansion processes without including

combustion effects.

The heat transfer coefficient can now be used to calculate the total heat transfer

for each time step as shown in Equation. 4.9.

()? tTTAhQ wallcout −= (4.9)

Qout is the energy removed from the cylinder due to heat transfer. The total area

in the cylinder is A. T is the average temperature in the cylinder and Twall is the

temperature of the cylinder surface. Twall was chosen to be 600 K based on published

data. The time for ¼ crank angle step is ∆t. The heat lost reduces the internal energy in

the cylinder at the end of each time step where the temperatures and pressures are

recalculated assuming an ideal gas and the calculated specific heat. The nature of this

model requires it to be adjusted to individual engines. This is accomplished by

multiplying the heat transfer coefficient by a constant to produce the proper total heat

release.

The simulation begins with a cylinder full of air at the intake temperature and

pressure but this does not account for residual gasses that are left in the clearance volume

from the previous cycle. In order to improve the initial condition used, the residual mass

 32

and temperature are calculated at the end of the cycle and used to produce an improved

initial temperature and pressure by assuming that the residual mass in the clearance

volume is mixed with the incoming mass at the intake temperature and pressure in the

displacement volume. Using the new initial condition the cycle simulation is repeated.

The process continues until there is no change in the initial condition.

The temperature of the residual mass is calculated assuming the mass in the

cylinder at the end of expansion is allowed to expand isentropically to the exhaust

pressure as described by Equation 4.10. The subscript 540 refers to the crank angle at the

end of expansion and Pex is the pressure in the exhaust manifold. Although residual gas

temperature calculations are done, the initial composition of the gas in the cylinder

remains that of air.

k
1k

540

ex
540res P

P
TT

−

= (4.10)

4.3.3. HEAT RELEASE MODEL

The fuel injection and combustion portion of the cycle is the most challenging to

model. The energy balance in the cylinder is shown in Equation 4.11. It should be noted

here that the reference state for enthalpy calculations is 298 K. In the following

equations h T = h T-h298 which represents only the sensible enthalpy.

() HRHTfgTinjf QQ
dt
dV

Phhm
dt
dU &&& +−−−= (4.11)

The boundary work term can be easily calculated using a b ackward difference

integration. Pressure is known at the beginning of every step and the volume can be

calculated at any time (i.e. crank angle) using Equation 4.1.

 33

The mass flow rate of fuel m& is calculated using the injection velocity, Uf, given

in the spray model (Equation. 3.8), and injector parameters using Equation 4.12.

 ffinjaf U?ACm =& (4.12)

In this equation A inj is the nozzle hole area in the injector, Ca is the area

contraction coefficient, and ρf is the fuel density. The area contraction coefficient must

be measured for a given fuel injector and orifice to produce an accurate prediction of the

flow rate and consequently injection duration. The accuracy of the model in predicting

the spray penetration, which is subsequently used for heat release, is largely dependent

upon this area contraction coefficient. Often the published literature for an engine only

supplies the orifice diameter, and the peak injection pressure is only estimated. When

this is the case, uncertainty in the injection duration is high. Under well-characterized

conditions, the injection duration, injection pressure history, and contraction coefficient

are known and the problem is actually over specified. The model will be compared with

data from both well-characterized and poorly characterized injectors to investigate the

associated error.

After the start of injection and prior to the start of combustion, the apparen t heat

released from the fuel is negative due to evaporative cooling. This is due to the heat of

vaporization of the fuel, h fg, in Equation 4.11. Evaporation reduces the sensible internal

energy producing a dip in the apparent heat release determined fro m pressure

measurement just before the start of combustion that is seen in the data. The enthalpy of

vaporization continues throughout the injection event but is not obvious after combustion

due to the large amounts of heat release from the fuel burning.

 34

Heat transfer from the cylinder HTQ& is calculated using Equations 4.7 - 4.9 as in

the compression and expansion strokes.

HRQ& in Equation 4.11 is the heat release rate from combustion. The basic

principle of the heat release calculation is to assume that all of the oxygen entrained in

the jet has reacted with the fuel to produce ideal stoichiometric combustion products and

unburned fuel. At any period of time during injection, the spray correlation defines the

boundary of the jet and the total mass of air entrained in the jet. The heat release is

therefore mixing limited and proceeds only as fast as O2 is entrained with the air into the

jet. For the purposes of calculating the heat released from this reaction, the products are

assumed to contain only CO2, H2O, N2, and unburned fuel and they are assumed to be at

298 K. The total heat release at time t is calculated using Equation 4.13. Since the

reference state is 298 K this only includes the heat of formation of each species. This is

the heat of combustion or the lower heating value of the fuel QLHV. The heat release rate

at any crank angle can then be calculated using Equation 4.14.

 react,298prod,298tTot, HHQ −= (4.13)

 tTot,ttTot,HR QQQ −= ∆+
& (4.14)

It should be noted that the heat release calculation is uncoupled from the five-

zone model and the temperatures in the zones. An attempt was made to couple the heat

release but instability was produced in the code resulting in this simplification.

Unfortunately there are portions of the combustion process that are not limited by

the air entrainment rate, which complicated the calculation of the heat release rate. These

exceptions and the method selected for handling them are discussed below.

 35

First, air entrained within the liquid length section of the jet cannot react with the

fuel because the mixture is not at a combustible temperature. However, the fuel along the

outer surface does burn back to the lift-off length, which is generally u pstream of the

liquid length. Also, fuel entrained beyond the flame length or length of the jet where the

equivalence ratio is greater than 1 also cannot contribute to combustion because the fuel

is already burned in this region. Second, the fuel jet initially penetrates well beyond the

liquid length before auto ignition occurs and combustion begins. This ignition delay time

must be determined before heat release can begin. This delay in combustion would

produce a large spike in heat release if all of the fuel were allowed to burn

instantaneously after the delay period. Therefore, a sub -model for determining the burn

rate of the initial premixed reactants was developed which spreads the combustion out

over the appropriate period of time.

Two factors affect ignition delay in engines, a mixing time and a kinetic time.

The mixing time arises from the need of the fuel to vaporize before it can ignite.

Assuming the jet develops as modeled, the time delay for mixing was determined by the

time to reach the liquid length, tll. The kinetic delay time was calculated using an

exponential function as shown in Equation 4.15.

 ()2aigk TC-expt = (4.15)

The constant Cig was determined to be .012 by fitting data at the 1200-RPM, low

fuel lo ad, normal injection timing condition in the Sandia engine. The temperature used,

T2a, is the temperature of vaporized fuel at the end of the liquid length or the temperature

at the boundary of the liquid length and zone 2 representing the evaporated fuel. The

method for determining this temperature is discussed later with zone 2 calculations.

 36

Ignition delay was set equal to the sum of the mixing delay and the kinetic delay as

shown in Equation 4.16.

 kllid ttt += (4.16)

 Once ignition takes place heat release begins. Figure 4.1 shows the jet at an

arbitrary time after ignition to illustrate the heat release calculations.

Figure 4.1. Spray Geometry used for Heat Release Calculations.

 Region A is fuel rich and includes everything beyond the lift-off length up to the

flame length. Region B includes everything beyond the flame length and is lean. The

total heat release at any time becomes Equation 4.17.

 BAtTot, QQQ += (4.17)

 QA and QB are calculated using Equations 4.18 and 4.19.

 LHV
s

Aair,A Q
A
F

mQ

= (4.18)

 LHVBfuel,B QmQ = (4.19)

Flame
Length
φ=1

Spray Penetration
Length Ignition

Length

Lift-off

A B

 37

 The mass of air in region A is given by the volume in the region determined from

the spray model and the density using Equation 4.20. The density used is the density at

the start of injection. The mass of fuel in region B is determined using the time

calculations from the spray model and the fuel flow rate. In Equation 4.21 tsp is the time

to the spray penetration length and t fl is the time to the flame length.

 Ainjair,Aair, V?m = (4.20)

 () fflspBfuel, mttm &−= (4.21)

 Once the heat released is calculated the heat release rate can be calculated using

Equation 4.14.

After the start of combustion region A grows outward as the spray continues to

penetrate into the cylinder until reaching the flame length. At this point region B forms.

Region A also grows toward the injector initially until it reaches the lift-off length. The

time required between the start of injection and the start of combustion when a quasi-

steady reaction zone is set up is the premixed burn duration. There is no clear data on

how fast the premixed burn will occur. An estimate was made using a global kinetic

reaction rate for C10H22. Details of this can be found in Appendix B. The Appendix

shows how a premixed burn time and a shape for the rate of heat release are determined

for the premixed burn.

Region A will begin to disappear after the end of injection. The back end of the

spray is assumed to move at the same velocity as predicted by the spray penetration

model for the leading edge. Once the back end of the spray reaches the flame length all

of the heat has been released from the fuel and the model begins the expansion stroke.

 38

Using the description above to calculate the heat release rate, HRQ& , the right-hand

side of Equation 4.11 is known allowing integration to determine the internal energy “U”

at each time step (1/4 crank angle). The internal energy in the cylinder is used to

calculate the cylinder temperature using an iterative method. Since internal energy is

enthalpy minus PV the enthalpy curve fits are used. The cylinder pressure is then

calculated using the ideal gas law.

The heat release produced from this model can be compared with data taken from

an engine. The goal now is to produce the 5-zone model to determine temperatures in the

zones. Since pollutant formation is very dependent on temperature this information is

useful in understanding where and how the pollutants form.

4.3.4. FIVE-ZONE MODEL

The spray geometry and the five zones seen in Figure 4.2 are calculated at each ¼

crank angle after the start of injection. Information provided by the spray model

includes: the penetration length, spread angle, liquid length, and fuel air equivalence ratio

as a function of spray length. The spray model assumes the spray evolves in a constant

temperature, pressure, and density environment. This is obviously not the case in the

engine but the only available spray correlation upon which the model was based was

developed for non -reacting (no combustion) conditions. It is one of the objectives of this

work to determine the accuracy of applying this non -reacting spray model to results from

a reacting spray.

Figure 4.2 shows a quasi-steady jet where each of the 5 zones has developed. The

lift-off length is set arbitrarily in the input file and read into the code. Since the diffusion

flame surrounds the jet from the lift-off length outward there are combustion products

 39

entrained in zones 1 and 2. However this does not mean that zones 1 and 2 no longer

exist past the lift-off length. There is still unburned fuel and entrained air in these zones

due to the rich mixture and the zones are still differentiated by the fuel being liquid or

vapor phase.

Figure 4.2. Five zone spray model

The size and shape of the zones shown in Figure 4.2 can all be determined from

the spray model, ignition delay model, and assigned lift-off length. Using the geometry

from the spray model the volume of each zone can be determined and the mass of fuel in

each zone can be calculated from the correlation given in Equation 3.8. The density in

the cylinder is multiplied by the volume of each zone to obtain the mass of air entrained

in each zone. A description of how temperature and enthalpy in each zone is calculated

is given in the following paragraphs.

At the start of injection zone 1 begins to form. Zone 1 is fully formed when the

spray reaches the liquid length. After the start of combustion the lift-off length is allowed

 40

to move from the border between zones 2 and 3 to the position given in the input file.

This causes a shortening of the liquid length because high temperature products are

entrained that help evaporate the fuel. The composition of this zone is liquid fuel and

entrained air, beyond the lift-off length entrained products are also added. The

temperature in this zone is defined to be the boiling temperature of the fuel since the

temperature is approximately constant during the fuel vaporization process. The enthalpy

is calculated using the boiling temperature and the fuel, air, and products composition.

Zone 2 begins to form once the liquid length is reached. It comprises the rest of

the fuel jet until the start of combustion. At the start of combustion, or ignition delay

time, zone 2 begins to react and continues until ¾ of the initial mass is consumed. This is

accomplished using the exponential decay function in Equation 4.22 at each crank angle

step until the minimum mass is reached.

 ()

 −
−−=+

boilu

A
2min2i2i12i TR

E
expmmmm (4.22)

Here m2i+1 and m2i are the new and old mass respectively within zone 2 for a given ¼ CA

step. m2min is the minimum mass in zone 2. EA is the same activation energy used in the

ignition delay model and Tboil is the boiling temperature of the fuel. Once the mass in

zone 2 reaches the minimum, the position of the division between zone 2 and zone 3

remains constant until the end of injection. This zone is made up of vaporized fuel and

entrained air. When the premixed burn begins and the flame sheath moves back to the

lift-off length products are entrained instead of air.

 Consuming ¾ of the initial mass in zone 2 and leaving ¼ as the minimum mass is

arbitrary. There is no good data indicating where or even if a well-defined boundary

exists between the premixed vapor and the products. If the zone 2 / zone 3 boundary is

 41

moved closer to the nozzle, the equivalence ratio and flame temperatures are such that the

equilibrium model has difficulty finding a solution also indicating that the fuel would not

readily react. As additional information is made available the model can be improved in

this area.

Figure 4.3. Zone 2 Energy Balance

The temperature variation across zone 2 can be calculated using an energy

balance. Figure 4.3 illustrates the energy balance at a distance, x, from the nozzle. The

entire spray from the nozzle to x is the control volume. Assuming the spray is steady to

position x and there is no heat transfer the first law reduces to Hin=Hout. Enthalpy from

the fuel, air and products of the flame sheath are entering and enthalpy is leaving at

distance x from the nozzle. Since enthalpy entering equals enthalpy exiting the energy

balance becomes Equation 4.23.

prodairfuelx HHHH ++= (4.23)

x
Zone 4

Zone 2 Zone 1 Hfuel

Hair

Hprod

Hx

 42

The absolute sensible enthalpy is evaluated using H = mCp∆T and ∆T = T-298K with

298 K as a reference temperature. Substituting into Equation 4.23 and solving for

temperature yields Equation 4.24.

()

xp,x

prodprodp,prodairairp,airboilfuelp,fgfuel
x Cm

TCmTCmTCh-m
T

+++
= (4.24)

Since the fuel is injected in liquid phase the heat of vaporization, h fg, must be included.

The temperature of the air in this equation is the zone 5 temperature, and Tprod is the

adiabatic flame temperature calculated in zone 4. The mass of the unburned air and the

burned air is calculated using the density at the start of injection and the air volume

Figure 4.4. Masses Used in Zone-2 Temperature Calculations

shown in Figure 4.4. The mass of the products is the mass of the air and the mass of the

fuel calculated using Equation 4.25.

s

pair,pair,prod A
F

mmm

+= (4.25)

Tx is found at 1/4 mm increments throughout zone 2. The temperature at each x is

multiplied by the mass in an axial cross section of the spray between steps. These are

mair mair,p

 43

added up and divided by the total mass in zone 2 to produce a mass averaged

temperature. This temperature and the overall composition are used to calculate the total

enthalpy in the zone.

At the start of combustion zone 3 begins to form. While zone 2 is shrinking, zone

3 grows toward the injector as well as outward with the spray tip. After zone 2 reaches

its minimum, zone 3 continues to grow only at the spray tip as penetration continues.

This zone is made up of products of combustion.

The product composition and the temperature in this zone are determined using

the equilibrium model and an adiabatic flame calculation. This zone is divided into slices

as shown in Figure 4.4 allowing an axial determination of the zonal temperature and

product composition. The stoichiometry of each slice is a function of axial position as

given by Equation 3.10 and is assumed uniform in the radial direction. The adiabatic

flame temperature must be found by an iterative approach. The enthalpy of the reactants

in each step is calculated from the stoichiometry. The temperature of a step is guessed

until the equilibrium program calculates a matching enthalpy for the products of

combustion. This gives a temperature for each slice. The overall temperature is

calculated as a mass average and enthalpy in the zone is calculated using curve fits.

At some axial distance in the downstream direction of the jet, the correlation

predicts an average equivalence ratio of one. The distance between this axial location

and the injector nozzle is called the flame length. This is the axial position where the

flame will be positioned due to the stoichiometry being the most favorable for reaction.

Beyond the flame length the jet entrains air and therefore becomes more dilute of

 44

products decreasing the temperature. Temperatures and enthalpies in zone 3 beyond the

flame length are calculated as discussed for the rest of zone 3 above.

 Zone 4 also develops at the start of combustion. It is a massless zone representing

the diffusion flame sheath surrounding the spray. The flame envelope initially surrounds

zones 2 and 3 during the initial premixed burn period. The flame envelope continues

toward the injector and also surrounds a portion of zone 1 beyond the lift-off length but

does not move all the way back to the nozzle tip. Zone 4 is characterized by the adiabatic

flame temperature that is produced at an assumed equivalence ratio of 1 on the boundary

between the fuel rich jet (zones 2 and 3) and the surrounding air (zone 5). This adiabatic

flame temperature is calculated using the equilibrium code to determine the species, the

enthalpy curve fits, and an iterative technique that finds the temperature at which the

enthalpy of the products equals the enthalpy of the reactants.

 Zone 5 is the surrounding bulk gas. Its composition is always air and its mass is

calculated by sub tracting the mass of air entrained in the spray from the total air mass in

the cylinder.

The internal energy in zone 5 is calculated by subtracting the internal energy in

the other three zones within the fuel jet from the total cylinder internal energy g iven in

Equation 4.11. The internal energy in zone 5 is used to determine the temperature in

zone 5, again using an iterative method with the enthalpy curve fits.

Following this method the state in the cylinder can be determined at any time

during fuel injection. The composition and temperature in each zone of the model can

also be calculated at any time.

 45

 At the end of injection, all of the zones begin to be consumed as the combustion

process proceeds. The last parcel of fuel injected is assumed to penetrate according to the

jet correlation in the same way that the previous fuel entered. Therefore the spray model

is also used to determine the position of the back end of the fuel jet. As the back end of

the jet moves across zone 1 the mass in the zone decreases until the zone is consumed

when the end of the spray reaches the liquid length. Similarly, the end of the jet moves

through zone 2 and zone 3 until the mass in each zone is zero.

 Finally, diesel fuel injectors typically produce between four and eight fuel jets for

each injector that proceed radially outward from a centrally located injector. We assume

symmetry for the jets and their location in the cylinder and therefore model only a single

jet and the wedge shaped section of the combustion chamb er occupied by a single jet.

The above discussion describes calculations done for one wedge and, consequently for

one fuel jet.

In Chapter 6 results of the model will be compared with data taken from a

constant volume combustion vessel and two diesel engines.

 46

 47

5. EXPERIMENTAL SETUP

Experimental data was used to evaluate the accuracy of the model and suggest

areas for future improvement. Data from the Cummins single-cylinder research engine at

BYU was used as well as data from the optically accessible engine and constant volume

combustion vessel at Sandia National Labs in California. The experimental setup of

these apparatus and their operating conditions will be explained in this chapter. The

method for processing the data will also be explained. Th e inputs to the model required

for a prediction of each set of experimental results will be discussed.

5.1. SANDIA BOMB

The diesel combustion bomb at Sandia is a constant volume chamber capable of

producing typical top -dead-center cylinder conditions for modern diesel engines. The

chamber is approximately a cube of 1.2-liter volume with each side measuring 108 mm.

Each wall of the cube has a 105mm diameter opening where a window or other device

may be located. One opening was filled with a metal plug that housed the injector.

Another was filled with a plug that contained two spark plugs and a mixing fan. The

remaining openings were filled with sapphire windows having a 102 mm diameter

aperture that allowed almost complete optical access to the diesel spray .

There are ports in each of the eight corners of the cube measuring 19 mm in

diameter. Three of these contain valves, two of which are for intake and one for exhaust.

 48

One contains a thermocouple that provides information on the state in the chamber prior

to an injection event. A piezoelectric crystal type pressure transducer provides a pressure

trace for the combustion event. The rest of the openings were plugged for the

experiments reported here.

The Sandia injector is a prototype built by Detroit Diesel. It is a common rail

type injector that is activated with an electronically controlled solenoid. The tip of the

injector has one opening that injects fuel directly into the center of the bomb. Fuel is

supplied to the injector by an accumulator that is pressurized using a high-pressure pump.

The pressure line into the injector is instrumented with another piezoelectric pressure

transducer to acquire injection pressures. The needle is instrumented with a Hall effect

sensor to detect needle lift g iving start of injection and injection duration. Fuel injection

is also detected optically using an extinction measurement from a HeNe laser.

Control of the bomb and the acquisition of the data are handled with two PC’s

that are networked together. More detailed information on the bomb can be found in

Reference [4]. Parameters describing the Sandia bomb and the conditions used in this

work are found in Tables 5.1 and 5.2 respectively.

In order to reach diesel operating temperatures and pressures in the constant

volume combustion vessel a lean mixture of combustible gasses was burned. The spark

plugs were used to ignite this mixture. The proportions of the mixture were such that

after the reaction 21 % oxygen remained in the hot products simulating a compression

process. The mixing fan insures a homogeneous mixture. After this simulated

compression, the injector is activated at a prescribed time to produce a diesel injection

into the chamber.

 49

Table 5.1. Sandia bomb parameters

Side Length 108 mm
Side Op ening Diameter 105 mm
Window Diameter 102 mm
Volume 1.2 liters
Injector Nozzle Size 246, 180, 100, 71 µm
Number of Nozzles 1

Table 5.2. Sandia bomb operating conditions

Run Tin (K) Pin (kPa) Pinj (MPa) Nozzle Dia µm
1 1000 4247 140 246
2 1000 4247 143 180
3 1000 4247 143 100
4 1000 4247 143 71

It is important to note that the constant volume combustion chamber has a longer

distance between the injector nozzle and the opposite wall than is usually the case in a

real engine. The jet can travel 102 mm in the combustion vessel before wall

impingement while the range of travel in the two engines also described in the chapter are

approximately 13 and 25 mm which are typical of the range found in commercially

available small and large truck diesel engines respectively. The independent variable

being changed in the combustion vessel experiments is the nozzle diameter. The two

larger diameter jets have significant wall impingement while the two smaller diameter

jets reach their flame lengths before the wall is reached. The ability of the combustion

vessel to observe reacting jets without wall interaction is valuable in evaluating the model

even though it is not realistic.

 50

5.2. SANDIA ENGINE

The Sandia research engine is based on a Cummins N-series engine. The engines

dimensions remain largely stock and are listed in Table 5.3. The piston has been

modified to allow optical access, as has the cylinder wall. Because of this the

compression ratio is lower than stock. The intake air is heated to 426 K and pressurized

to 192 kPa to provide typical diesel conditions (1000 K and a density of 16.6 kg/m3) after

compression. The cylinder head also has a window replacing one of the exhaust valves.

The injector used is a Cummins CELECT unit type injector. The injector is instrumented

for needle lift providing injection-timing data. This engine is attached to a dynamometer

that is used to keep the engine at a constant speed. In order to accommodate optical

access by keeping the windows clean and to synchronize the laser with fired engine

events, the engine is only fired once every 20 cycles. A mo re detailed description of this

engine can be found in Dec [2] and Siebers [4].

Table 5.3. Sandia engine parameters.

Bore .1397 m
Stroke .1524 m
Compression Ratio 10.75
Connecting Rod Length .3048 m
Piston Area .024 m2
Injector Nozzle Size 194 µm
Number of Nozzles 8

Ensemble averaged pressure data were received for this engine at several

operating conditions from which heat release was calculated. Data are included for 1200

and 1680 RPM conditions as well as a normal and a retarded injection timing. There are

 51

also two fuel loads for the 1200 RPM condition, while the 1680 RPM condition only

includes the high fuel load. The data sets are ensemble averages of 20 cycles. Table 5.4

gives the speed, load, timing, intake pressure, and intake temperature for each of the

conditions for which data was received from Sandia.

Table 5.4. Sandia engine running conditions.

Run RPM Fuel Load
(kg)

Injection
Timing
(ºBTC)

Pin (kPa) Tin (K)

1 1200 .00007189 11.5 192 426
2 1200 .00007189 0 192 426
3 1200 .000138 11.5 192 426
4 1200 .000138 0 192 426
5 1680 .000138 11 192 426
6 1680 .000138 1 192 426

5.3. BYU DIESEL ENGINE TEST CELL

The BYU engine will be described in three sections. First the engine itself and

the dynamometer will be described. Then the instrumentation and data acquisition will

be explained. Last, the experimental conditions used in this work will be described.

5.3.1. ENGINE AND DYNAMOMETER

The research engine at BYU is a single-cylinder, 0.96 L, direct-injection,

turbocharged diesel modified from a Cummins B-series 6-cylinder, 5.9 L engine. Holes

were cut in five of the pistons eliminating compression and expansion for those cylinders.

Valves for those five cylinders were deactivated so that only a single cylinder remained

operational. Weight was added to the five modified pistons so the engine would remain

 52

balanced. The injector pump was modified to provide fuel to only the operating cylinder.

The injection system is a standard common rail type system. A micrometer attached to

the fuel rail gives repeatable fuel load settings. A compressor and tank provide clean and

dried air that can be regulated to the desired intake pressure for the engine. The pressure

is typically elevated to simulate turbo charging. Engine and injector specifications are

included in Table 5.5. The engine is connected to a 150 horsepower motoring

dynamometer. The dynamometer can be used to power or load the engine.

Table 5.5. BYU engine parameters

Bore .102 m
Stroke .120 m
Compression Ratio 17.9
Connecting Rod Length .192 m
Piston Area .014 m2
Injector Nozzle Size 250 µm
Number of Nozzles 5

5.3.2. INSTRUMENTATION AND DATA ACQUISITION

The air and fuel lines into the engine are instrumented to provide measured flow

rates. The airflow was measured using an Omega (Model FV-510B-D) flow meter. This

instrument reads a volume flow rate. The intake line is also instrumented with a pressure

gauge and a thermocouple that are used with the volume flow rate to provide mass flow.

The intake pressure and temperature were also measured near the engine and were

assumed to be equal to the cylinder conditions at the start of the compression process.

The fuel flow was measured using a Micro Motion (Model D6) mass flow meter that uses

 53

the Coriolis acceleration of the fuel as it passes through a vibrating tube to determine the

mass flow. Using these two measurements for fuel and air allow the overall equivalence

ratio to be determined. A thermocouple in the exhaust was used to determine when the

engine reaches steady state and can be compared with model temperatures at the end of

the expansion process.

The cylinder head has been drilled to accommodate a pressure transducer. A

piezoelectric crystal type transducer was used (AVL Model QC32C). The pressure data

was acquired using a PC with LabVIEW. A 2-channel encoder is attached to the crank.

One channel provides a pulse at top dead center. This pulse tells the computer when to

start taking pressure data. The other channel gives a pulse every ¼ crank angle. The

voltage from the pressure transducer is recorded at each pulse. This provides 2880 data

points for each cycle. The LabVIEW program has been written to process the data and

produce an ensemble average. To get a reasonably smooth pressure trace, 100 cycles are

averaged.

5.3.3. BYU ENGINE EXPERIMENTAL CONDITIONS

Data was taken at four different engine conditions. Overall nominal equivalence

ratios of .3 and .5 were used. The engine tests were run at 1500 and 2000 RPM for each

equivalence ratio. The fuel load and the dynamometer force were adjusted to reach these

conditions. The intake air was held at a constant guage pressure of 103.4 kPa

(approximately 189.6 kPa absolute) for all tests. Fuel and airflow measurements were

recorded along with intake air pressures and temperatures. The exhaust temperature and

RPM were also recorded. These were used to provide inputs for the cycle simulation

 54

model. The injection timing is not known on this engine. Five data sets of 100 averaged

cycles were also recorded. Operating conditions for this engine are included in Table 5.6.

Table 5.6. BYU engine running conditions

Run RPM φ Pin (kPa) Tin (K)
1 1500 .3 189.6 304
2 1500 .5 189.6 307
3 2000 .3 189.6 304
4 2000 .5 189.6 306

5.4. DATA PROCESSING

The method of converting pressure data from each of the experimental facilities to

heat release data will be discussed first for the constant volume combustion vessel and

then for the constant volume combustion vessel and both engines combined.

The pressure history in the constant volume combustion vessel differs from an

engine in that the compression process is produced not by mechanical work but through

an initial premixed burn combustion process. After the initial combustion event, the

bomb cools by heat transfer until reaching a predetermined pressure after which the

injection event is triggered. Without fuel injection the pressure would continue to

decrease in a smooth and repeatable monotonic fashion. The pressure data provided by

Sandia is the difference between the vessel pressures with and without injection. This

removes some of the effects of heat transfer from the data b ut since the flame is now

hotter and radiates to the walls, heat transfer during the second or diesel combustion

 55

event is higher than would have existed without the second combustion event and this

additional heat transfer is not accounted for.

Sandia provided smoothed pressure data from the bomb in order to produce

smooth heat release rates. The smoothing method was dependent on the temporal

location of the data. A cubic spline fit was used to smooth the data up to the time when

half of the pressure rise due to the premixed burn had taken place. After this point a filter

that incorporates a fast Fourier transform was used. This method of smoothing the bomb

data attempts to preserve the magnitude and temporal location of the premixed burn spike

at the expense of an apparently noisy heat release before the premixed burn. The latter

smoothing removes all high frequency fluctuations and would remove the premixed

spike. The smoothing technique also adds a low frequency component apparent in the

resulting heat release rates as will be shown. A more detailed discussion of method used

to process the Sandia bomb data can be found in [32].

The engine data sets were smoothed using a Fourier series expansion (Eqns. 5.1-

5.4). This is a different method than was used at Sandia. 200 terms were used in the

series. The “points” variable is the number of data points in the set; 1440 for the Sandia

engine and 2880 for the BYU engine. The crank angle resolution is ∆?; .5 degrees for the

Sandia engine and .25 for the BYU engine.

() ∑∑
==

+

+=

200

1n

j
n

200

1n

j
n

0
j 360

?pn
sinb

360

?pn
cosa

2
a

?P (5.1)

∑
=

∆=
points

1j
j0 ?P

360
1

a (5.2)

 56

?
360

?pn
cosP

360
1

a j
points

1j
jn ∆

= ∑

=

 (5.3)

 ?
360

?pn
sinP

360
1

b j
points

1j
jn ∆

= ∑

=

 (5.4)

A roll off function was used to reduce the influence of high frequency

components by multiplying each term an and b n in the Fourier series by a value between 0

and 1. The power function in Equation 5.5 was used calculate the multiplier m.

8

1

−=

terms
n

m (5.5)

Once the pressure was smoothed, the apparent heat release rate was calculated

using Equation 5.6.

dPV
1k

1dVP
1k

k
dT
dQ

−
+

−
= (5.6)

In this equation the specific heat ratio k was held constant at a value of 1.3. For the

combustion bomb the first term in Equation 5.6 is zero because, dV, the change in

volume is zero. Further inspection shows that dQ/dt is directly proportional to dP/dt,

therefore dP/dt represents the rate of apparent heat release in the constant volume vessel

and is used for heat release comparisons.

The heat release rate at each ¼ crank angle was numerically integrated to produce

a total heat release. The apparent heat release rate (AHRR) and cumulative heat release

were plotted as a function of time or crank angle. Log P – log V graphs were also

produced for the engine pressure data.

 57

5.5. MODEL RESULTS

An input file for the model was produced for each operating condition on the

BYU engine, the Sandia Engine, and the Sandia Bomb. Input file decisions for each data

set are discussed below.

5.5.1. SANDIA BOMB

To produce results for the constant volume combustion chamber the compression

ratio was set to 1. The bore and stroke used in the input were set equal to each other and

calculated to produce the volume of the bomb. The intake temperature and pressure, the

injection pressure, and injection duration were set equal to measured values supplied with

the data. The model requires an engine speed, which in this case is only relevant in

producing a time step. In order to make time steps in the bomb model similar to those in

the engine, a speed of 1200 RPM was selected. The heat transfer model was initially

removed in the code since mo st of the heat transfer has been removed from the data.

Heat transfer was then added and another data set produced. In this set the heat transfer

was adjusted to produce matching peak pressures.

The mass of fuel injected was determined from the injection pressure and the

injection duration using Equation 4.13. The actual mass injected was not supplied with

the data. The input data for the Sadia Bomb results are in Table 5.7.

 58

Table 5.7. Model conditions for Sandia bomb data

Case Inj dia
(µm)

Pinj
(MPa)

fuel
(mg)

T
(K)

P
(kPa)

B & S
(m)

Rc RPM Heat
Tran

1 246 140 .0850 1000 4247 .115 1 1200 6.5
2 180 143 .0295 1000 4247 .115 1 1200 3
3 100 143 .0120 1000 4247 .115 1 1200 .25
4 71 143 .0090 1000 4247 .115 1 1200 -

5.5.2. SANDIA ENGINE

The bore, stroke and compression ratio along with other geometry data are given

in Table 5.3. The piston area, from Table 5.3, to be used in the heat transfer model was

calculated using the bowl shape and measurements given in [2]. The intake air

conditions were also given along with the mass of fuel injected, injection duration, and

injector nozzle geometry. The injection pressure was calculated based on constant

pressure injection using the measured duration and measured total fuel injected. The

flame lift-off length used in the engine was 12 mm, which is reasonable based on

published data.

Originally, cases were run assuming a constant injection pressure, but it was also

recognized that the injection pressure might ramp up during the injection event. This

injection rate was investigated as part of a parametric study using the model. For ramped

injections the pressure profile increased linearly beginning at 15 MPa. In order to match

injection duration data the ending pressure was the same as the constant pressure setting

for each case. The conditions used for the Sandia engine are summarized in Table 5.8.

For all cases, both engines and the combustion bomb, the integrated apparent heat

release was higher for the model than the engine. The total heat release in the model is

 59

Table 5.8. Model conditions for Sandia engine data

Case RPM Tin
(K)

Pin
(kPa)

SOI
(CA)

fuel
(mg)

Pinjmax
(MPa)

Pinjmin
(MPa)

Heat
Tran x

1 1200 429 192 348.5 .01789 40 15 12.3
2 1200 429 192 360 .01789 40 15 18
3 1200 429 192 348.5 .138 58 15 7.75
4 1200 429 192 360 .138 44 15 8.25
5 1680 429 192 349 .138 58 15 6.75
6 1680 429 192 360.5 .138 59 15 10.5

equal to the energy in the fuel (mfQhv) minus the heat transfer given by Equation 4.7.

The total predicted heat release was always too high, suggesting that the heat transfer

model underpredicts the actual heat transfer. This is consistent with the expected

accuracy of the heat transfer correlation as proposed which must be “tuned” or calibrated

to each engine configuration. The model heat transfer was multiplied by a constant until

the total heat release from the model was equal to the total heat release from the engine.

The constant used for each case is included in Table 5.8.

The constant used in the ignition delay model (Eqn. 4.11) was determined using

the 1200-RPM, low fuel load, normal injection timing condition. Using the injection

pressure ramping model the value of the constant was chosen to match the start of the

premixed burn spike. This constant was used for all cases in both engines and in the

bomb. This is an admittedly simplified approach to correlating the ignition delay model

to data but an improved ignition delay model is beyond the scope of this work.

5.5.3. BYU ENGINE

The geometry of the BYU engine was measured or taken from technical literature.

The area of the piston in Table 5.5 was found using a piston that was cut in half. The

 60

shape was plotted and the area calculated from the profile. The intake conditions and fuel

mass injected were measured experimentally .

The injector nozzle was removed from the engine and the diameter was measured.

The orifice coefficients, Cd and Ca, used in the spray model presented in Chapter 3 were

not measured but were assumed to be those of a similar injector nozzle given in the

Sandia data [4]. As with the Sandia engine the lift-off length was assumed to be 12 mm.

The start of injection and injection duration in the BYU engine are not known.

Therefore, given the fuel mass injected, the start of injection and injection pressure were

adjusted to give the best agreement with the data. These cases were run using constant

injection pressure and a ramping pressure following the same procedure as the Sandia

engine. The heat transfer model was also adjusted to produce the same total heat release

as the measured data. The conditions used in the model for the BYU, single cylinder

engine are included in Table 5.9.

Table 5.9. Model conditions for BYU engine data

Case RPM Tin
(K)

Pin
(kPa)

SOI
(CA)

fuel
(mg)

Pinjmax
(MPa)

Pinjmin
(MPa)

Heat
Tran x

1 1500 304 189.6 354.5 .0439 30 15 3.25
2 1500 307 189.6 354 .0763 40 15 2.75
3 2000 304 189.6 359 .0430 55 15 3.25
4 2000 306 189.6 358.75 .0705 62 15 3.5

 61

The results of all BYU engine cases are similar to the Sandia cases and will b e

compared in Chapter 6. Figures for all cases of both engines and the combustion bomb

can be found in Appendix C. A sample input file can be found in Appendix A with the

code listing.

 62

 63

6. RESULTS

This chapter will present the results of the spray model, equilibrium model, and

cycle simulation program. In order to provide a context for the comparison of the cycle

simulation results, a general explanation of heat release data will first be presented. Then

the results of the cycle simulation model will be compared to data taken in the

combustion bomb, Sandia engine, and BYU engine. Observations regarding similarities

and differences between the model and experimental data will be made.

6.1. SPRAY MODEL RESULTS

Once the spray and liquid length models were comp leted they were compared

with results from the papers from which they were taken [25], [27] in order to

demonstrate they had been coded correctly. Dimensionless spray penetration (S) and

equivalence ratio (φ) are plotted as a function of dimensionless time (t~) on logarithmic

scales in Figure 6.1. In this figure the model using the correlation developed in [25] is

plotted. Comparing Figure 6.1 with Figure C.2 of Naber and Siebers [25] shows that the

spray model and equivalence ratio are being calculated correctly.

Calculated liquid lengths were also compared with experimental data for diesel fuel and

heptamethylnonane as reported by Higgins et al [27]. The liquid length was calculated

for densities of 7.3, 14.8, and 30.0 kg/m3 and at temperatures between 700 and 1300 K.

The results are shown in Figures 6.2 and 6.3 where the solid lines represent the model

 64

results and the symbols are data taken from the published literature [27]. The results

show very good agreement especially in the temperature ranges (≈1000 K) and densities

(≈15 kg/m3) typical of diesel engines.

0.1

1

10

100

0.1 1 10 100 1000

t

S
 o

r φ

Spray L
φ

Figure 6.1. Dimensionless Spray Model Results

 Calculated liquid lengths were also compared with experimental data for diesel

fuel and heptamethylnonane as reported by Higgins et al [27]. The liquid length was

calculated for densities of 7.3, 14.8, and 30.0 kg/m3 and at temperatures between 700 and

1300 K. The results are shown in Figures 6.2 and 6.3 where the solid lines represent the

model results and the symbols are data taken from the published literature [27]. The

results show very good agreement especially in the temperature ranges (≈1000 K) and

densities (≈15 kg/m3) typical of diesel engines.

 65

0

10

20

30

40

50

60

70

80

700 800 900 1000 1100 1200 1300

T(K)

LL
(m

m
)

7.3 S
7.3 BYU
14.8 S
14.8 BYU
30.0 S
30.0 BYU

Figure 6.2. Liquid Length Results for Heptamethylnonane Fuel

0

10

20

30

40

50

60

70

80

700 800 900 1000 1100 1200 1300

T(K)

L
L

(m
m

)

7.3 S
7.3 BYU
14.8 S
14.8 BYU
30.0 S
30.0 BYU

Figure 6.3. Liquid Length Results for Diesel Fuel

 66

6.2. EQUILIBRIUM MODEL RESULTS

The NASA -Lewis code was used as a benchmark to demonstrate the accuracy of

the equilibrium code written for this program. Both codes were executed over a series of

temperatures between 1500 and 3500 K at an equivalence ratio of 1. They were also run

over a range of equivalence ratios between .5 and 5 at a temperature of 2500 K. The

pressure for all cases was 100 atmospheres.

The results for mole fractions of major species as function of the temperature at a

constant equivalance ratio (φ = 1) are shown in Figures 6.4-6.6. The mole fractions of

CO2 and H2O are in very good agreement over the entire temperature range. The

agreement for CO, H2, and O2 are also very good above 1900 K but there is significant

deviation below 1900 K (see Figures 6.5, 6.6). This discrepancy is a result of the

numerical method used in the solution and can be minimized in two ways. First, by

increasing the number of iterations allowed in the solution. This allows the solution to

come closer to convergence. Second, by decreasing the size of the equivalence ratio step.

The equilibrium program always starts by finding a solution at an equivalence ratio of 1.5

and then steps to the desired equivalence ratio. The solution at an equivalence ratio of 1

is very sensitive at low temperatures. Stepping down in smaller increments of

equivalence ratio provides a better guess value for the final solution. Both methods were

used and accurate solutions were obtained. However computational time increased

dramatically. Since adiabatic flame tempreratures will be higher than 1900 K when the

equivalence ratio is 1, increased number of iterations and smaller step size were not used

to decrease computational time. The results shown were produced with the code as is

appears in Appendix A.

Comment: Why look at Figs 4.2 and
4.3?

Comment: We need to talk about this.
It was my impression that the solution
simply is not correct at these low
temperatures because carbon is not
included as one of the products and
perhaps other hudrocarbons are also
important at low temperatures that are not
included. Is this true? I have suggested
an alternative explanation in the
paragraph I wrote but you need to let me
know if I am correct.

 67

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

1500 2000 2500 3000 3500

T(K)

x

CO2 BYU
CO2 N-L
H2O BYU
H2O N-L

Figure 6.4. Temperature vs. CO2 and H2 O Mole Fractions

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1500 2000 2500 3000 3500

T(K)

x

CO BYU
CO N-L
H2 BYU
H2 N-L

Figure 6.5. Temperature vs. CO and H2 Mole Fractions

 68

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1500 2000 2500 3000 3500

T(K)

x

O2 BYU
O2 N-L

Figure 6.6. Temperature vs. O2 Mole Fraction

Species mole fractions as a function of equivalence ratio are shown in Figures 6.7,

- 6.9. In these figures, the temperature of the products is held constant at 2500 K. For the

equivalence ratio tests the mole fractions of O2, H2O, and CO2 are accurate across the

whole range (see Figure 6.7). The mole fractions of the rest of t he species are accurate

up to an equivalence ratio of about 3.5. In Figure 6.8 the mole fractions of CO and H2

provided by the equilibrium code begin to deviate from NASA-Lewis above an

equivalence ratio of 3.5. The CO is over predicted while the H2 is under predicted. The

source of this discrepancy can be seen in Figure 6.9. NASA-Lewis predicts significant

amounts of solid carbon above an equivalence ratio of 3.5. The equilibrium code

presented here compensates by sending the excess carbon to other carbon containing

species such as CO, HCN, and C2H2. Because many of these species also contain

 69

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.5 1.5 2.5 3.5 4.5
φ

x
O2 BYU
O2 N-L
H2O BYU
H2O N-L
CO2 BYU
CO2 N-L

Figure 6.7. Equivalence Ratio vs. O2, H2O, and CO2 Mole Fractions

0

0.05

0.1

0.15

0.2

0.25

0.3

0.5 1.5 2.5 3.5 4.5

φ

x

CO BYU
CO N-L
H2 BYU
H2 N-L

Figure 6.8. Equivalence Ratio vs. CO and H2 Mole Fractions

 70

hydrogen, H2 is reduced. The data show that the equilibrium code uses an adequate

number of species in the temperature range between 1900 and 2500 K and in a range of

equivalence ratios between 0.5 and 3.5. This is adequate to describe most diesel

combustion applications.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.5 1.5 2.5 3.5 4.5

φ

x

HCN BYU
HCN N-L
C2H2 BYU
C2H2 N-L
C(s) N-L

Figure 6.9. Equivalence Ratio vs. HCN, C2H2, and C(s) Mole Fractions

One of the primary purposes of the equilibrium code is to calculate the adiabatic

flame temperature. The effects of leaving out solid carbon and using a reduced set of

species in the equilibrium code have been investigated. The equilibrium code was used

to calculate flame temperatures in the same range of equivalence ratios as above and

compared with flame temperature results from NASA-Lewis. The results are shown in

Figure 6.10.

 71

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000

0.5 1.5 2.5 3.5 4.5
φ

T
 (

K
)

BYU
N-L

Figure 6 .10. Adiabatic Flame Temperature vs. Equivalence Ratio

 Temperature agreement between φ of .5-1.5 is excellent. Above φ=1.5 the model

begins to over predict the temperature but follows the same trend. The greatest

difference in temperature throughout the range of equivalence ratios shown is 3.4%.

These results demonstrate that the equilibrium code produced for this simulation program

can predict temperature with 3.4% over the range of conditions needed in a diesel

combustion application. Thus, the equ ilibrium code produced has succeeded at providing

a simplified and less computationally intensive equilibrium calculation that is flexible for

use in engine simulation programs.

 72

6.3. HEAT RELEASE DATA

The features of diesel engine heat release must be understood in order to compare

real data to modeled results. Figure 6.11 shows a typical Apparent Heat Release Rate

(AHRR) plot for the Sandia engine. This plot comes from applying Equation 5.6 to the

smoothed pressure data. The start of injection (SOI) in this case occurs at 348.5°, after

which there is an ignition delay period before the fuel starts to burn. During this time the

heat release appears to be negative due to fuel evaporation and heat transfer from the

cylinder gas to the cylinder walls. The heat release may also appear negative in this

period due to the method selected for smoothing the pressure data. There are a number of

ways in which ignition delay has been defined and determined in the literature. In Figure

6.10 it is defined as the time between SOI and when the heat release rate becomes

-0.05

0

0.05

0.1

0.15

0.2

0.25

340 350 360 370 380

t (CA)

A
H

R
R

 (k
J/

C
A

)

tidSOI

Premixed
Burn

Diffusion Burn

EOI

Figure 6.11. Typical Heat Release

 73

positive. It can also be defined as the time when the slope of the heat release goes

positive. The choice is somewhat arbitrary and, as will be shown later, changes

depending on the smoothing technique used.

The ignition delay is followed by a premixed burn spike in which the vaporized

fuel that has mixed with air to within combustible limits burns rapidly. A second peak

characterizing the diffusion burn follows the premixed burn. The peak of the diffusion

burn roughly corresponds with the end of injection (EOI) when the fuel jet is largest,

which in this case is at 360°. After EOI, the rate of apparent heat release decreases as the

fuel jet or pockets of remaining fuel are consumed.

Smoothing the pressure data has a significant effect on the shape of the heat

release. This is a result of the pressure derivative in Equation 5.6. Figure 6.12 shows a

5000

6000

7000

8000

9000

10000

11000

12000

350 360 370 380 390

t (CA)

P
 (

kP
a)

Raw
Smoothed

Figure 6.12. Raw and Smoothed Cylinder Pressure Data

 74

raw and smoothed pressure data set from the BYU engine. The raw data oscillates during

the combustion event. The result of heat release calculations on the raw data produces

the meaningless plot in Figure 6.13.

Filtering the pressure data is necessary to remove the oscillations that produce

these results. It should be understood that filtering also smoothes out some of the details

of the combustion process. Depending on the filter used, the smoothed heat release can

be drastically different. Figure 6.14 shows AHRR results using the Fourier filter

described in Chapter 5 changing the number of terms in the series from 100 to 300.

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

350 360 370 380 390

t (CA)

A
H

R
R

 (k
J/

C
A

)

Figure 6.13. Apparent Heat Release from Unfiltered Pressure Data

 Using 100 terms the premixed burn spike does not show up at all. The premixed

burn can be seen in both the 200 and 300 term cases. Using more terms produces more

oscillation and approaches the raw data. As noted earlier 200 terms were used when

 75

-0.05

-0.03

-0.01

0.01

0.03

0.05

0.07

0.09

0.11

0.13

0.15

350 360 370 380 390
CA (deg)

A
H

R
R

 (k
J/

C
A

)
100
200
300

Figure 6.14. Effect of Number of Terms on AHRR

smoothing the data in this work. This seemed to give the best compromise between detail

and removing oscillation.

As can be seen, the details of heat release are uncertain because of noise in the

pressure data and the need for smoothing. Ignition timing appears to change based on the

filter used, as does the shape of the premixed and diffusion burns. Attempts to compare

heat release from the engines with results from the model must therefore be made with

the uncertainty of the measured data in mind.

Work is being done to better understand and analyze pressure data. The data from

the bomb was smoothed using more sophisticated methods developed at Sandia [32].

These methods seek to retain as much information about the premixed spike as possible

 76

by employing different smoothing methods before and after the spike as discussed in

Chapter 5.

As a result of work done at Sandia [32] it has been shown that the premixed burn

is in reality much shorter and the spike is much higher than is normally shown by the

methods used to processes data as shown in Figure 6.11. For years, modelers have been

attempting and succeeding in producing premixed burn duration similar to that of Figure

6.11, but Siebers showed that the two factors present in taking the data but not present in

the model produce the inaccurate width and height for the premixed burn. First, in an

engine there are normally between four and eight fuel jets and each jet ignites at a

different time. Thus, the pressure rise of a single jet is smeared by the pressure rise from

multiple jets igniting. This smearing is exacerbated by the fact that the distance from

each jet to the pressure transducer is different and therefore the time when the transducer

records the pressure rise relative to the timing of ignition is different for each jet.

Second, the smoothing routine broadens and lowers any premixed spike. Since models

normally predict only the behavior of a single jet and they do not contain noise or include

wave dynamics within the cylinder, they should predict narrower and higher premixed

burn spikes than are seen smoothed pressure data from multiple nozzle injectors in real

engines.

The total heat release obtained by numerically integrating the AHRR is shown in

Figure 6.15 for one of the BYU engine cases. The integrated heat release shows the

amount of energy released up to any point in the combustion process and reaches its peak

at approximately 390° for this case. In the absence of heat transfer, the integrated heat

release should equal the total fuel energy released during combustion in the engine of

 77

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

350 360 370 380 390
CA(deg)

A
H

R
R

 (
kJ

/C
A

)

-0.5

0

0.5

1

1.5

2

2.5

Q
to

t
(k

J)

AHRR
Qtot

mfQhv

Figure 6.15. Integrated Heat Release

mf Qhv, which is 1.93 kJ for this case. The difference between the total fuel energy

released and the integrated apparent heat release rate, or heat transfer from the engine, is

about 32%, which is typical for an engine.

6.4. SANDIA BOMB COMPARISON

The pressure rise results will first be compared followed by the apparent heat

release comparison. The pressure rise is given as P-P0 where P is the pressure in the

chamber and P0 is the pressure without injection and combustion as discussed in Chapter

5. It should be noted that since the AHRR in this case is represented by dP/dt, the

pressure rise represents the integrated heat release.

 78

The pressure increase from SOI for each of the four combustion bomb cases can

be seen in Figures 6.16-6.19. The shape of the pressure curve is similar for model and

data but there are notable differences. The modeled pressure begins to rise earlier than the

experimental data for all cases. The abrupt increase in the bomb pressure data at the start

of combustion results from the premixed burn being more rapid in the experiments than

in the model results. The rate of pressure rise for the 246-µm and 180-µm nozzles is over

predicted while the 100-µm and 71-µm nozzles are reasonably close. The predicted total

pressure for the 246-µm and 180-µm nozzles was also higher than the measurement. The

100-µm and 71-µm nozzles are once again reasonably close though the 100-µm is also

higher than the data.

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

-1 0 1 2 3 4 5 6 7 8 9 10

t (ms)

P
-P

0
(M

P
a)

Bomb
Model

Figure 6.16. Sandia Bomb Pressure Rise Using the 246-µm Nozzle.

 79

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-1 0 1 2 3 4 5 6 7 8 9 10

t (ms)

P
-P

0
(M

P
a)

Bomb
Model

Figure 6.17. Sandia Bomb Pressure Rise Using the 180-µm Nozzle.

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

-1 0 1 2 3 4 5 6 7 8 9 10

t (ms)

P
-P

0
(M

P
a)

Bomb
Model

Figure 6.18. Sandia Bomb Pressure Rise Using the 100-µm Nozzle.

 80

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

-1 0 1 2 3 4 5 6 7 8 9 10

t (ms)

P
-P

0
(M

P
a)

Bomb
Model

Figure 6.19. Sandia Bomb Pressure Rise Using the 71 µm Nozzle.

There are several possible reasons for the discrepancies. First the fuel mass

injected is unknown in the combustion bomb experiments and the calculated value has

more uncertainty. The calculated fuel injected was determined using Equations 4.13 and

3.8 which are repeated below. Uncertainty in any of the nozzle parameters or the

injection pressure produce uncertainty in the calculated fuel injected..

 ffinja

.

U?ACm = (4.13)

()

f

af
vf ?

PP2CU −= (3.8)

A second reason for the differences may be caused by heat transfer effects, which

have not been included in the model for the bomb cases. One compelling argument for

 81

this explanation is that heat transfer would be expected to decrease with decreasing

nozzle size. This is because radiating soot is the dominant mode of heat transfer and as

the nozzle becomes smaller, the flame actually transitions from heavily sooting to soot

free. Assuming heat transfer to be the cause of the discrepancy, cases were run for all

nozzles, (except the 71-µm which already matched the total heat release) as shown in

Figures 6.20 – 6.22. Heat transfer was increased in each case until the peak pressures in

the model matched the data. The multiplier used in the heat transfer model is included in

Table 5.7. These Figures eliminate potential differences in heat transfer or fuel injected,

and show that in spite of these potential differences in the model and data, the model still

over predicts the rate at which the fuel is burned. In each case, the peak pressure is

reached in the model before it is reached in the data.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-1 0 1 2 3 4 5 6 7 8 9 10

t (ms)

P
-P

0
(M

P
a)

Bomb
Model

Figure 6.20. Sandia Bomb Pressure Rise Using the 246 -µm Nozzle
with Extra Heat Transfer.

 82

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-1 0 1 2 3 4 5 6 7 8 9 10

t (ms)

P
-P

0
(M

P
a)

Bomb
Model

Figure 6.21. Sandia Bomb Pressure Rise Using the 180 -µm Nozzle
with Extra Heat Transfer.

It is interesting to note that the slope of pressure rise over the later three fourths of

the combustion process is similar for the model and the experiment in each case but it is

the first quarter of combustion that differs. The period immediately following the

premixed burn is not a linear increase in the actual data but is linear in the model. This

difference can be explored more easily using the rate of pressure rise or AHRR results.

Results for heat release rate are shown in Figures 6.23-6.26 for the cases with heat

transfer added to match peak pressures except for the 71-µm, which compared well

without heat transfer. The model heat release results produce the expected features of

diesel combustion. In all of the heat release plots, there is a delay before any fuel is

burned followed by a short premixed burn spike. The heat release then increases almost

 83

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

-1 0 1 2 3 4 5 6 7 8 9 10

t (ms)

P
-P

0
(M

P
a)

Bomb
Model

Figure 6.22. Sandia Bomb Pressure Rise Using the 100 -µm Nozzle
with Extra Heat Transfer.

linearly until reaching a maximum. If the amount of injected fuel is large enough, the

heat release reaches a plateau and remains fairly constant until the end of injection. At

the end of injection the heat release then drops off to the end of combustion.

These features can be explained by recalling the physical processes occurring

during combustion. After ignition the burning fuel jet penetrates into the chamber and

increases in size. The rate of air entrainment increases proportional to the surface area

growth of the jet increasing the rate of heat release. This increase in entrainment rate

continues until the jet reaches the flame length or the point where the leading edge of the

jet is stoichiometric. Beyond this flame length the fuel in the jet is completely burned

therefore additional air entrainment no longer increases the heat release rate. The heat

 84

release rate then remains approximately constant until the end of injection. This is clearly

seen in both modeled and measured data in Figures 6.23, 6.25, and 6.26. In Figure 6.24

the measured data shows the linear increase in the heat release rate but no plateau. This

is because the injection duration was short enough that the flame length had not been

reached or had just been reached by the end of injection. It should be noted that the

oscillations appearing in the data are most likely due to the filtering process and may not

be real. When fuel injection ends the remainder of the fuel in the chamber burns out until

the all of the heat has been released.

While the basic features are identifiable in the model there are quantitative

differences between the model and the data. The start of combustion occurs to early in

the model accompanied by a premixed burn that is too long. This is seen in all the

combustion bomb modeling and is consistent with the early and slower initial pressure

rise as seen earlier in the pressure data.

The rise in the heat release rate just after the premixed spike is different in the

model results than in the data. This rise is more rapid in the model and in the case of the

two smaller injector nozzles, the flame length or steady state apparent heat release rate

has already been reached at the end of the premixed burn period. The magnitude of the

apparent heat release rate at the end of the premixed burn as shown in the figures can be

altered by the selection of the filtering routine. The magnitude and slope of the apparent

heat release rate predicted by the model are also affected by the quantitative inaccuracies

in the ignition delay and premixed burn sub models. Perhaps the best way to compare the

model and measured data is to look at the time between the SOI and the time to reach the

flame length or steady state of apparent heat release. In each case the model reaches the

 85

flame length before the data, indicating that the model over predicts the rate of air

entrainment.

The peak level of heat release agrees reasonably well between the model and the

data. This suggests that although the model predicts more rapid air entrainment, the

flame length and the amount of air entrain ed prior to the flame length are reasonably

accurately predicted.

At the end of injection the model predicts a burnout that is more rapid than the

data. This is also consistent with the air entrainment rate being over-predicted in the

model.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

-1 0 1 2 3 4 5 6 7 8 9 10

t (ms)

dP
/d

t
(M

P
a/

m
s)

Bomb
Model

Figure 6 .23. Sandia Bomb Heat Release Using the 246-µm Nozzle
with Extra Heat Transfer.

 86

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

-1 0 1 2 3 4 5 6 7 8 9 10

t (ms)

d
P

/d
t

(M
P

a/
m

s)

Bomb
Model

Figure 6.24. Sandia Bomb Heat Release Using the 180-µm Nozzle
with Extra Heat Transfer.

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

-1 0 1 2 3 4 5 6 7 8 9 10

t (ms)

dP
/d

t
(M

P
a/

m
s)

Bomb
Model

Figure 6.25. Sandia Bomb Heat Release Using the 100-µm Nozzle
with Extra Heat Transfer.

 87

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-1 0 1 2 3 4 5 6 7 8 9 10

t (ms)

dP
/d

t
(M

P
a/

m
s)

Bomb
Model

Figure 6.26. Sandia Bomb Heat Release Using the 71-µm Nozzle.

The use of the combustion bomb data allows a unique analysis of the model

because in the case of jets coming from the two smaller orifices, the flame length was

reached before the jet could reach the wall. In the case of the two larger orifices, the jet

ran into the wall before reaching the flame length. It is interesting to note that the data

from the 246-µm orifice jet (Figure 6.23) shows the rate of heat release to remain

relatively constant even though the jet has reached the wall before the flame length is

reached (before 1.7 ms). This suggests that wall effects, which are assumed to be

negligible in the model, may actually cause little change to the rate of heat release.

This combustion bomb data does however clearly suggest that the penetration rate

of the jet is too rapid in the model. The penetration model is based on a non-reacting,

non-vaporizing spray and therefore, poor prediction of reacting and vaporizing sprays

 88

might be expected. In a reacting and vaporizing spray, the density of the jet is decreased

relative to a non-reacting spray. Studies of gas jet penetration suggest that lower gas

density will decrease jet penetration. The over prediction of penetration leads to an over

prediction of entrainment rate and heat release. Similar results will be seen in the engine

data which follows but in the engine data, all jets have significant wall impingement

before reaching the flame length, therefore, the bomb data presented above is the only

evidence that the higher heat release rates are not caused by wall interactions.

6.5. SANDIA ENGINE COMPARISON

The first set of data presented is the 1200-RPM, low fuel load, normal injection

timing data set. Heat release results are graphed for constant injection pressure, ramping

injection pressure, constant injection pressure with added heat transfer, and ramping

injection pressure with added heat transfer in Figures 6.27-6.30 respectively. It should be

noted that the constant used in the ignition delay model is derived from the data in Figure

6.28, and therefore the ignition delay in that figure matches by matter of definition.

The basic features of the engine heat release are present in the model. Injection

begins at 348.5 CA and apparent heat release drops initially due to evaporating fuel. The

sudden rise and first peak in the model apparent heat release are a result of the initial

premixed burn where evaporated fuel in zone 2 is burned. This period ends at

approximately 354 CA after which combustion limited by air entrainment into the jet

begins. Since the jet has already penetrated a fixed distance into the chamber, this burn

rate does not start at zero and increases as the jet grows larger. The second peak occurs

when fuel injection ends. At this point, the jet and the rate of air entrained into the jet is a

maximum and afterwards decreases. An inflection point is visible in the decreasing

 89

apparent heat release at approximately 372 CA. At this point, the jet has reached the

flame length and therefore additional air entrainment no longer contributes to combustion

in the portion of the jet beyond the flame length. The apparent heat release decreases

more rapidly after this point is reached. These same features (premixed burn peak,

mixing limited peak or end of injection, and flame length inflection point) can be seen in

all of the engine modeling results.

Comparing the modeling results to the engine data, the constant injection pressure

results (Fig. 6.27) produce an early ignition similar to the results seen in the bomb data.

The heat release following the premixed spike is higher in the model. In the engine

injection ends before the jet reaches the flame length and the heat release never reaches a

steady value. At the end of injection the model AHRR initially drops faster than the

engine data. As with the bomb data, these differences appear to be produced by the faster

air entrainment of the model. The inflection point produced by the model at 372 crank

angle degrees, when the flame length is reached, is not seen in the engine data. After

studying numerous AHRR profiles, it can be seen that engines often produce an inflection

point in the heat release near the end of combustion but opposite of the modeling results,

the decrease of heat release normally slows at the inflection point producing what is often

referred to as a “tail” to the AHRR rather than the decrease in AHRR shown by the

model. This suggest that the physical processes near the end of combustion are not well

characterized by the model which is not surprising because late in the combustion

process, the assumed conical shape of the jet has been completely changed by fluid

motion within the chamber.

 90

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

345 350 355 360 365 370 375 380 385 390

CA (deg)

A
H

R
R

 (k
J/

C
A

)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

Figure 6.27 Sandia Engine Heat Release Comparison, 1200 RPM, Low Fuel Load,
Normal Timing, Constant Injection Pressure.

Ramping the injection pressure in the model improves agreement with the

measurement during the early part of heat release as shown in Figure 6.28. Ramping the

injection pressure produces a slower start to the injection processes, reducing the initial

spray penetration and air entrainment. There is a longer time (more crank angles) from

the start of injection until the vapor phase is formed and less vapor in the premixed burn

region (zone 2) when ignition begins. This increases the ignition delay period and

decreases the peak of the premixed burn to better match the data. Experimental data from

the Sandia Cummins engine shows that the injection pressure actual does increase

linearly from approximately 60 MPa at the start of injection to 100 MPa and the end

injection justifying this modeling approach. The jet penetration correlation presented in

 91

Equation 3.1 was developed with an injector that had a “top hat” or flat pressure profile

throughout injection. The results in this figure and the results from the combustion bomb

data presented above both suggest that the jet penetration correlation over-predicts the

penetration rate of the fuel.

It should be noted that the exact agreement for the start of combustion between

the model and the data in this case is caused by the fact that this was the data set used to

determine the activation energy constant in the ignition delay model. This operating

condition was selected because the good agreement in the magnitude of the peak of the

premixed burn fraction (the first peak of the apparent heat release rate). This suggests

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

345 350 355 360 365 370 375 380 385 390

CA (deg)

A
H

R
R

 (k
J/

C
A

)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

Figure 6.28. Sandia Engine Heat Release Comparison, 1200 RPM, Low Fuel Load,
Normal Timing, Ramping Injection Pressure.

 92

that for the ignition delay selected, the correct amount of fuel has been evaporated and

burns during the initial premixed burn period.

In both the constant pressure and ramping injection pressure cases, the total heat

release is almost double in the model compared to the engine data. Since the model

produces the same total heat release as the energy in the fuel, the discrepancy must be the

result of heat transfer, blow-by, or incorrect compression ratio. Usually, heat transfer is

25 – 35 % of the total heat release. Since this is an optical engine that is skip fired

(therefore the wall are cooler), the heat transfer and blow-by may be greater than is

normal. One option commonly used for eliminating the effects of heat transfer to allow a

comparison of the model and engine combustion is to increase the heat transfer in the

model until the peak heat release in the model and data match. The heat transfer

coefficient was multiplied until the total heat release from the model matched the total

from the engine data. Results for both the constant pressure and ramping pressure cases

are shown in Figures 6.29 and 6.30.

The basic shape of the AHRR is unchanged by increased heat transfer even

though heat transfer is not constant. With increased heat transfer the AHRR is decreased

at all crank angles and produces a better match to the engine data. It is still clear

however, particularly in the constant pressure injection case that the AHRR occurs earlier

in the model indicating that the jet penetration and air entrainment are over-predicted

causing the heat release to occur too early. As with the no heat transfer results, the

ramped pressure improved the model prediction.

 93

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

345 350 355 360 365 370 375 380 385 390

CA (deg)

A
H

R
R

 (k
J/

C
A

)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

Figure 6.29. Sandia Engine Heat Release Comparison, 1200 RPM, Low Fuel Load,
Normal Timing, Constant Injection Pressure, Extra Heat Transfer.

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

345 350 355 360 365 370 375 380 385 390
CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

Figure 6.30. Sandia Engine Heat Release Comparison, 1200 RPM, Low Fuel Load,
Normal Timing, Ramping Injection Pressure, Extra He at Transfer.

 94

Figure 6.31 shows a lnP-lnV plot for the ramping injection pressure case in

comparison to the measured data. In this case no difference can be seen between the data

and the experiments, as most of the detail of the combustion process is lost in showing

only the pressure and in using a log scale. Because of this only the heat release results

will be used for the remainder of the comparisons. The figure does show however, that if

the details of the combustion process are not important, the model does and excellent job

of reproducing the basic features of the diesel cycle.

The model was also tested using different fuel loads, engine speeds, and timings.

The fuel load for the case seen in Figure 6.30 was raised while all other parameters

remained constant and the results are shown in Figure 6.32. The model uses a ramping

injection pressure and heat transfer is increased. The ignition delay and premixed burn

10

100

1000

10000

0.1 1 10

lnV (dm3)

ln
P

 (k
P

a)

Engine
Model

Figure 6.31. Sandia Engine Pressure Comparison, 1200 RPM, Low Fuel Load,
Normal Timing, Ramping Injection Pressure, Extra Heat Transfer.

 95

are almost identical to the low fuel load case seen in Figure 6.30. The diffusion burn

begins similarly but continues to increase until the end of injection. The heat release rate

then drops rapidly. This is due to greater jet penetration and air entrainment rate of the

model compared with the actual spray. Although the peak heat release rate is

overpredicted the diffusion burn duration is increased in the model, as is the case in the

engine.

Figure 6.33 illustrates the results of increasing the engine speed. The ignition

delay timing from the model is still reasonable. The modeled premixed burn spike is

underpredicted and to short in duration. This could result from the model itself or the

injection pressure ramping. If the injection pressure ramping starts too low there will not

-0.15

-0.05

0.05

0.15

0.25

0.35

0.45

345 355 365 375 385 395

CA (deg)

A
H

R
R

 (k
J/

C
A

)

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

Figure 6.32. Sandia Engine Heat Release Comparison, 1200 RPM, High Fuel Load,
Normal Timing, Ramping Injection Pressure, Extra Heat Transfer.

 96

-0.15

-0.05

0.05

0.15

0.25

0.35

0.45

345 355 365 375 385 395 405

CA (deg)

A
H

R
R

 (k
J/

C
A

)

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

Figure 6.33. Sandia Engine Heat Release Comparison, 1680 RPM, High Fuel Load,
Normal Timing, Ramping Injection Pressure, Extra Heat Transfer.

be enough fuel in the premixed burn. The diffusion burn is similar to the cases discussed

earlier.

The final case for the Sandia engin e, seen in Figure 6.34, uses retarded injection

timing. Here again the modeled ignition delay is accurate and as with the normal timing

case at this speed the premixed burn is to small and the premixed duration is short

compared with the data. In this case the modeled diffusion burn is much greater in

magnitude and much shorter than the data shows. The model results for the retarded

timing are similar to the normal timing results in shape and timing. In the engine the fuel

burns slower at retarded timin g because of cooler in cylinder temperatures as the piston

 97

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

355 365 375 385 395 405 415

CA (deg)

A
H

R
R

 (k
J/

C
A

)

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

Figure 6.34. Sandia Engine Heat Release Comparison, 1680 RPM, High Fuel Load,
Retarded Timing, Ramping Injection Pressure, Extra Heat Transfer.

moves down and the cylinder volume increases. The model does not duplicate this

accurately.

6.6. BYU ENGINE COMPARISON

The results of the model for the BYU engine are generally less accurate. Figures

6.35 and 6.36 show results of the 1500-RPM low fuel load and the 2000-RPM high fuel

load cases respectively. As with the Sandia engine cases the model results include

ramping injection pressures and adjusted heat transfer.

The model ignition delay in these cases was too long. Because of this, the

premixed burn was very fast and too large. The diffusion burn results are similar to the

 98

results from the Sandia engine. The trends when the speed and fuel load are changed are

the same as with the Sandia engine.

Part of the difficulty of producing accurate model results for this engine is a lack

of engine information. The injection timing and injection duration are unknown on this

engine. The nozzle diameter was measured but the coefficients Ca, Cd, and Cv are

estimated using values for a similar nozzle taken from the literature. These examples

show the loss in accuracy that can occur when less information is known about the

engine.

-0.1

0

0.1

0.2

0.3

0.4

0.5

355 365 375 385 395

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6

Q
to

t
(k

J)

AHRR
AHRR m
Qtot
Qtot m

Figure 6.35. BYU Engine Heat Release Comparison, 1500 RPM, φ = .3,

Ramping Injection Pressure, Extra Heat Transfer.

 99

-0.1

0

0.1

0.2

0.3

0.4

0.5

355 365 375 385 395

CA (deg)

A
H

R
R

 (k
J/

C
A

)

-0.5

0

0.5

1

1.5

2

2.5

3

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

Figure 6.36. BYU Engine Heat Release Compa rison, 2000 RPM, φ = .5,

Ramping Injection Pressure, Extra Heat Transfer.

6.7. ZONAL TEMPERATURES

The temperatures in each of the five zones are shown in Figure 6.37 for the

Sandia engine 1200 RPM, low fuel load, normal timing case. The average temperature in

the cylinder is also included. There is no data available to compare these temperatures

with, except for flame temperatures (measured at approximately 2500 K), which should

compare with the temperature of zone 4. Zone 4 temperatures produced by the model are

overpredicted beginning at 2750 K and increasing to 2834 K at 360 crank angle degrees

and reducing to 2650 at the end of combustion. Adiabatic flame temperature calculations

overpredict temperatures due to the lack of heat transfer effects. The flame temperature

 100

rises to 2834 K and falls to 2650 K following the temperature in the surrounding bulk gas

(Zone 5), which is used to calculate the enthalpy of the reactants.

The zonal temperatures are important in pollutant formation, specifically NOx and

soot. The temperatures inside the spray (Zone 3) are important in the soot formation

process. The temperature of the flame sheath surrounding the spray (Zone 4) is important

in NOx formation. While the heat release rate may not be completely accurate at this

point, the temperatures of these zones should be very representative of those existing in

the engine. Given the lack of experimental data, these temperatures become our best

estimate of conditions in critical regions responsible for soot and NOx formation.

0

500

1000

1500

2000

2500

3000

348 350 352 354 356 358 360 362 364 366 368 370 372 374 376

Crank Position (CA)

Te
m

pe
ra

tu
re

 (
K

)

Zone 1

Zone 4

Zone 3

Zone 5

Zone 2

Avg

Figure 6.37. Zonal Temperatures vs. Crank Position

 101

7. SUMMARY AND CONCLUSIONS

7.1. SUMMARY

A diesel cycle simulation code has been developed using C language. The code

predicts the closed portion of the cycle including the compression, fuel injection auto-

ignition, combustion and expansion processes. The model describes the temperature and

pressure during compression and expansion using an isentropic process. The

composition is also modeled using air and adding ideal combustion products during

expansion.

There were two primary objectives of the model. The first was to apply the

conceptual ideas of Dec [2] to a computer simulation. This conceptual model is based on

recently reported optical diesel combustion measurements. This allowed the creation of

five zones to model the quasi-steady burning diesel jet: 1) Liquid phase fuel 2) Vapor

phase fuel 3) Rich products 4) Diffusion flame 5) Surrounding bulk gas. These five

zones are of equal pressure but differing temperature and describe one burning fuel jet in

the engine. The second objective was to investigate the use of a new mixing limited

model for diesel combustion using a recently published spray penetration model. This

spray model provides information on spray penetration and air entrainment to be used in

defining the zones sizes and temperatures. Simplified ignition delay and premixed burn

duration models were developed to complete the model.

 102

To determine the temperature and composition of the rich products and the

diffusion flame, an equilibrium code was developed. The equilibrium model uses a set of

21 gasseous species but does not include solid carbon due to added complexity though it

occurs in significant amounts under certain conditions.

The results of the equilibrium code were compared with results from the NASA-

Lewis code. The results matched over wide ranges of temperature and equivalence ratios

common to diesel engines. There were discrepancies in two areas. At an equivalence

ratio of 1 and temperatures below 1900 K the equilibrium code solution did not converge

to the NASA-Lewis solution due to the numerical method used. This does not affect the

cycle simulation due to adiabatic flame temperatures of about 2700 K at an equivalence

ratio of 1. Because the equilib rium code omits solid carbon as a possible product species

the solution did not match the NASA-Lewis at equivalence ratios above 3.5.

Nevertheless, the temperature of combustion products was predicted to within 3.5% over

a large range of equivalence ratios (.5 – 5).

The combustion model produced the typical features of a diesel combustion event

including an ignition delay period, a premixed burn spike, and a diffusion burn. The

apparent heat release rate (AHRR) produced by the model was compared with data from

a constant volume combustion vessel and real engines. Realizing that the shape of the

AHRR from the data is altered when the data is averaged and smoothed complicates the

comparison. The changes in ignition delay timing and the premixed burn when changing

engine operating conditions followed the expected trends but were not predictive.

Greater differences were seen when engine data such as injection timing and duration,

and injector constants were unknown and had to be approximated. The shape of the

 103

diffusion burn was similar for the combustion bomb cases although the heat release rose

more rapidly for the model, reached its peak early and decreased faster after the end of

injection. The shape of the heat release for the engine cases was significantly different

than the data. For these cases the heat release also rose too rapidly and the peak was

greater than the data. After the end of injection in the engines the heat release decreases

in two phases. The first occurs between the end of injection and when the tip of the jet

reaches the flame length. The second begins at the end of the first and ends when the last

of the fuel injected reaches the flame length ending combustion. These two periods are

not clearly identifiable in engine data.

The model also provides temperatures in each of the zones. The liquid fuel zone

temperature is defined as the boiling temperature of the fuel, which is typically near 550

K. Once the fuel is vaporized the temperature rises until it ignites. The average

temperature in the vapor fuel zone is approximately 700 K. At the start of combustion

the average temperature of the rich premixed products is approximately 1600 K and

increases to about 2600 K at the end of combustion when the equivalence ratio is near 1.

The diffusion flame sheath begins at an adiabatic flame temperature of approximately

2700 K, peaks just over 2800 K, and reduces to approximately the temperature of the

premixed products zone at the end of combustion. This adiabatic flame follows the

temperature of the surrounding gas as it is heated from combustion and cools due to

expansion of the cylinder. These temperatures are important in the formation of

pollutants such as soot and NOx.

 104

7.2. CONCLUSIONS

The new diesel combustion model produced for this work provides a framework

for a more accurate zero-dimensional model by providing physical zones within the

model that correspond to real structures within a diesel engine. The approach of

modeling diesel combustion through a mixing limited jet and determining the mixing

limit through an empirical correlation of jet penetration shows promise but also exhibits

some obvious shortcomings.

As discussed above the modeled heat release increases more rapidly and reaches

its peak earlier than the data and the heat release reduces more quickly after the end of

injection. This suggests that jet penetration is overpredicted in the model providing more

air and a quicker burn rate. There are several explanations for this. First, the spray

model was developed for a non-vaporizing, non-combusting fuel jet. Measurements

indicate that the spray model overpredicts penetration in a vaporizing jet by as much as

18% [25]. Second, the spray model is sensitive to injector coefficients, particularly Cv.

This could in part explain the greater discrepancy in the BYU engine results where

injector coefficients were approximated using a similar injector but actual measurements

were not taken. Constants in the spray model could be adjusted to reduce spray

penetration but changing the values for these constants could not be justified without new

data.

Once the flame length is reached the heat release rate matches the results from the

combustion bomb cases where wall effects and jet interactions are not present. Therefore

once the flame length is reached the model does a reasonably good job of predicting the

air entrainment into an individual unobstructed jet and the assumption that combustion is

 105

mixing limited also seems reasonable. In the combustion bomb cases where wall

interaction was involved the limited data used in this work showed little influence of jet

impingement. It seems reasonable that the spray penetration correlation is relatively

accurate for wall interaction conditions.

In diesel engine the jet impinges on the wa ll soon after the premixed burn and

usually after only 15 – 25 % of the fuel is burned. Because there are multiple nozzles in a

typical engine injector, shortly after the jets reach the wall they begin to interact with

adjacent jets. At this point the mo deled and real AHRR are fundamentally different.

This suggests that the air entrainment rate into the jet is different at this point and a

different mixing model is needed.

The ignition delay and premixed burn sub-models were not a focus of this work

but the simple models selected produced expected trends when compared with the data.

Quantitatively, the ignition delay and premixed burn models were unable to match data

from various engines. The proposed model should offer advantages in predicting the

duration of the premixed burn because the model is kinetically controlled. The new zero-

dimensional model should be able to provide better predictions of temperature to be used

in the kinetics than previous zero -dimensional models. The premixed burn duration is,

however, coupled to the ignition delay model and can appear inaccurate if the ignition

delay model incorrectly predicts the mass of fuel available.

The ignition delay is very difficult to predict because non-uniformity in the spray

is typical and has a large effect on when and where ignition occurs. The model proposed

here has both a mixing (liquid length) and kinetic (temperature) component that could

allow improved prediction of ignition delay, but the assumption that concentration and

 106

temperature are uniform in the spray in the radial direction severly restrict the possibility

of achieving large improvements in predicting ignition delay.

7.3. RECOMMENDATIONS

The mixing-limited model for diesel combustion shows promise but will require

several improvements before being useful as a predictive tool for engine testing,

development, and control. The spray penetration should be modified to account for

vaporization effects and more accurate injector parameters should be obtained. A mixing

model for the time period after jet interaction should be developed. A model predicting

mixing based in the kinetic energy could be investigated as a first step. A lift -off length

correlation is now available, which could be easily added to the model inplace of the

constant included in the input file. Improvements to the ignition delay and premixed

burn sub models sould be investigated and at a minimum, constants optimal for the range

of data investigated could be used.

Future modeling work could involve coupling detailed kinetic mechanisms with

the current code to predict soot and NOx formation. The current model makes a time,

temperature stoichiometry relationship available for important zones within the

combustion process that are responsible for the formation and destruction of pollutants.

It would be of interest to see if this zero -dimensional model could be used with detailed

kinetics to produce a reasonable prediction.

 107

REFERENCES

[1] Heywood, J. B. Internal Combustion Engine Fundamentals. McGraw-Hill, New

York, 1988.

[2] Dec, J. E.: A Conceptual Model of Diesel Combustion Based on Laser-Sheet

Imaging, SAE paper 970873, 1997.

[3] Flynn, P. F., Durrett, R. P., Hunter, G. L., zur Loye, A. O., Akinyemi, O. C., Dec,

J. E., and Westbrook, C. K.: Diesel Combustion: An Integrated View Combining

Laser Diagnostics, Chemical Kinetics, and Empirical Validation, SAE paper

1999-01-0509, 1999.

[4] Siebers, D. L.: Liquid-Phase Fuel Penetration in Diesel Sprays, SAE paper

980809, 1998.

[5] Espey, C., and Dec, J. E.: The Effect of TDC Temperature and Density on the

Liquid-Phase Fuel Penetration in a D. I. Diesel Engine, SAE paper 952456, 1995.

[6] Kouremenos, D. A., Rakopoulos, and C. D., Hountalas, D. T.: Multi-Zone

Combustion Modelling for the Prediction of Pollutants Emissions and

Performance of DI Diesel Engines, SAE paper 970635, 1997.

[7] Foster, D. E.: An Overview of Zero -Dimensional Thermodynamic Models for IC

Engine Data Analysis, SAE paper 852070, 1985.

[8] Primus, R. J., and Wong, V. W.: Performance and Combustion Modeling of

Heterogeneous Charge Engines, SAE paper 850343, 1985

 108

[9] Schihl, P. J., Atreya, A., Bryzik, W., and Schwarz, E.: Simulation of Combustion

in Direct-Injection Low Swirl Heavy-Duty Type Diesel Engines, SAE paper

1999-01-0228, 1999.

[10] Miyamoto, T., Hayashi, A., Harada, A., Sasaki, S., Akagawa, H., and Tsujimura,

K.: A Computational Investigation of Premixed Lean Diesel Combustion, SAE

paper 1999-01-0229, 1999.

[11] Kong, S. C., Zhiyu, H., and Reitz, R.D.: The Development and Application of a

Diesel Ignition and Combustion Model for Multidimensional Engine Simulation,

SAE paper 950278, 1995.

[12] Whitehouse, N. D., and Way, R. J. B.: Simple Method for the Calculation of Heat

Release Rates in Diesel Engines Based on the Fuel Injection Rate, SAE paper

710134, 1971.

[13] Woschni, G., and Anisits, F.: Experimental Investigation and Mathematical

Presentation of Rate of Heat Release in Diesel Engines Dependent Upon Engine

Operating Conditions, SAE paper 740086, 1974.

[14] Salem, H., El-Bahsasy, S. H., and Elbaz, M.: Prediction of the Effect of Injection

Parameters on NOx Emission and Burning Quality in the Direct Injection Diesel

Engine Using a Modified Multi-Zone Model, Proceedings of the Inst. Of Mech.

Eng. Pt. D5 vol. 212, pg. 427, 1998.

[15] Gupta, A. K., Mehta, and Gupta, C. P.: Model for Predicting Air-Fuel Mixing and

Combustion for Direct Injection Diesel Engine, SAE paper 860331, 1986.

 109

[16] Lipkea, W. H., and Dejoode, A. D.: A Model of a Direct Injection Diesel

Combustion System for use in a Cycle Simulation and Optimization Studies, SAE

paper 870573, 1987.

[17] Nishida, K. and Hiroyasu, H.: Simplified Three-Dimensional Modelling of

Mixture Formation and Combustion in a D.I. Diesel Engine, SAE paper 890269,

1989.

[18] Mehta, P. S., Singal, S. K., and Pundir, B. P.: A Comprehensive Simulation

Model for Mixing and Combustion Characteristics of Small Direct Injection

Diesel Engines, Proceedings of the Inst. Of Mech. Eng. Pt. D2 vol. 209, pg. 117,

1995.

[19] Hiroyasu, H. Nishida, K.: Fuel Spray Trajectory and Dispersion in a D.I. Diesel

Combustion Chamber, SAE paper 890462, 1989.

[20] Stiesch, G., and Merker, G. P.: A Phenomenological Model for Accurate and

Time Efficient Prediction of Heat Release and Exhaust Emissions in Direct-

Injection Diesel Engines, SAE paper 1999-01-1535, 1999.

[21] Rakopoulos, C. D., Hountalas, D. T., and Agaliotis, N.: Application of a Multi-

Zone Combustion Model for the Prediction of Large Scale Marine Diesel Engines

Performance and Pollutants Emissions, SAE paper 1999-01-1227, 1999.

[22] Chiu, W. S., Shahed, S. M., and Lyn, W. T.: AA Transient Spray Mixing Model

for Diesel Combustion, SAE paper 790128, 1976.

[23] Dent, J. C., and Mehta, P. S.: Phenomenological Combustion Model for a

Quiescent Chamber Diesel Engine, SAE paper 811235, 1981.

 110

[24] Kuo, T. W., Yu, R. C., and Shahed, S. M.: A Numerical Study of the Transient

Evaporating Spray Process in the Diesel Environment, SAE paper 831735, 1983.

[25] Naber, J. D., and Siebers, D. L.: Effects of Gas Density and Vaporization on

Penetration and Dispersion of Diesel Sprays, SAE paper 960034, 1996.

[26] Siebers, D. L.: Scaling Liquid-Phase Fuel Penetration in Diesel Sprays Based on

Mixing-Limited Vaporization, SAE paper 1999-01-0528, 1999.

[27] Higgins, B. S., Mueller, C. J., and Siebers, D. L.: Measurement of Fuel Effects On

Liquid-Phase Penetration in DI Sprays, SAE paper 1999-01-0519, 1999.

[29] Hardenberg, H. O., and Hase, F. W.: An Empirical Formula for Computing the

Pressure Rise Delay of a Fuel from its Cetane Number and from the Relevant

Parameters of Direct Injection Diesel Engines, SAE paper 790493, 1979.

[28] Olikara, C., and Borman, G. L.: A Computer Program for Calculating Properties

of Equilibrium Combustion Products with Some Applications to I.C. Engines,

SAE paper 750468, 1975.

[30] Chase, M. W.: “JANAF Thermochemical Tables,” 4th Ed., American Chemical

Society, Woodbury, N.Y. 1998.

[31] Press, M.W., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: “Numerical

Recipes in C,” 2nd Ed., Cambridge University Press, New York, N.Y. 1994.

[32] Higgins, B., Siebers. D., and Aradi, A.: Diesel Spray Ignition and Premixed Burn

Behavior, SAE paper 2000-01-0940, 2000.

[33] Turns, Stephen R. An Introduction to Combustion. 2nd ed. McGraw-Hill, Boston,

2000.

 111

APPENDIX

 112

 113

APPENDIX A. CODE LIS TING

Sample input file for the Sandia engine 1200 RPM low fuel load normal injection timing

condition including ramping injection pressure.

.1397 B(m)

.1524 L(m)

.3048 l(m)
10.75 rc
192 Pin(kPa)
426 Tin(K)
348.5 SOI(TDC=360)
8 fuel
.00007189 mf(kg)
2 nozzle
8 #holes
15000 Pinj0
40000 Pinj(kPa)
1200 RPM
12 flameLO(mm)
.024 Apiston(m^3)

/**/
/* Diesel Cycle Simulation Code */
/* Programmed by Rich Asay */
/* Version Completed Feb. 2003 */
/* */
/* This code models the compression combustion and expansion processes in */
/* direct injection diesel engines. The compression and expansion are */
/* isentropic processes. The combustion process uses the conceptual model */
/* by Jon Dec and the spray model by Dennis Siebers to define the spray and */
/* combustion zones. An equilibrium model gives products of combustion. */
/* The code also allows for constant volume combustion simulations */
/**/

#include <stdlib.h> // c function libraries
#include <stdio.h>
#include <math.h>
#include <conio.h>
#include <ctype.h>
#define PI 3.14159 // global constants

 114

#define Ru 8.314
#define INFILE "cyclein.txt" // input and output file names
#define OUTFILE "cycleout.txt"

main()
{
 /* main function variable definitions

 B ----------- bore
 L ----------- stroke
 l ----------- rod length
 rc ---------- compression ratio
 Pin --------- intake pressure
 Tin --------- intake temperature
 SOI --------- start of injection
 phi --------- overall equivalence ratio
 Pinj -------- ending injection pressure
 Pinj0 ------- starting injection pressure (same as ending for constant injection pressure cases)
 RPM --------- engine speed
 Ap ---------- piston area
 name -------- # corresponding to fuel choice
 inj --------- # corresponding to injector choice
 holes ------- number of nozzles in the injector
 dummy[15] --- dumps units info from input file
 Vt ---------- total cylinder volume
 Vd ---------- displacement volume
 Vc ---------- clearance volume
 a ----------- crank radius
 A ----------- bore area for Vd calculation
 Rl ---------- rod length to crank radius ratio
 Sp ---------- mean piston speed
 Cr[3] ------- reference state for heat transfer model (ht)
 Cr[0] ---- reference temperature
 Cr[1] ---- reference pressure
 Cr[2] ---- reference volume
 Pm ---------- motored pressure for ht in combustion and expansion
 Tres -------- old residual temperature
 Tresn ------- new residual temperature
 Tin1 -------- first temperature with residual gas
 dTres ------- change in residual temperature i n loop
 k ----------- specific heat ratio
 h[21] ------- enthalpies of all species (see enthalpy function for definitions of each)
 Cp[21] ------ const pressure specific heats for species (see enthalpy function for
 definitions of each)
 Cpa --------- total specific heat
 ma ---------- air moles
 mres -------- residual moles
 mt ---------- total moles of air and residual
 mf ---------- fuel mass or moles
 AFs --------- stoichiometric air fuel ratio
 Cv ---------- nozzle velocity coefficient
 w ----------- fuel flow rate constant
 Ufuel ------- fuel injection velocity
 Ainj -------- injector hole area
 mdotf ------- fuel flow rate
 mdotCA ------ fuel injected per 1/4 crank angle

 115

 Lf ---------- lift -off length
 in1[9] ------ passes info between functions
 in1[0] --- cylinder temperature
 in1[1] --- cylinder pressure
 in1[2] --- cylinder volume
 in1[3] --- start of loop crank angle
 in1[4] --- end of loop crank angle
 in1[5] --- specific heat ratio
 in1[6] --- cylinder energy
 in1[7] --- motored pressure
 in1[8] --- motored temperature
 injdata[3] -- carries nozzle specs (see injector function for definitions of each)
 fuel[7] ----- carries fuel properties (see properties function for definitions of each)
 fuelcomp[4] - carries fuel composition (see properties function for definitions of each)
 i ----------- loop control variable
 st ---------- stroke variable for isentropic function 0 for compression 1 for expansion */

 // define variables
 double B, L, l, rc, Pin, Tin, SOI, phi, Pinj, Pinj0, RPM, Ap; // input variables
 int name, inj, holes;
 char dummy[15]; // space for description column in input file
 double Vt, Vd, Vc, a, A, Rl, Sp, Cr[3]={0}, Pm=0; // engine geometry
 double Tres=751, Tresn, Tin1=0, dTres=2, k, h[21], Cp[21], Cpa;
 // thermodynamic variables
 double ma, mres, mt, mf, AFs; // mass variables
 double Cv, w, Ufuel, Ainj, mdotf, mdotCA, Lf; // injection variables
 double in1[9], injdata[3], fuel[7], fuelcomp[4]; // program variables
 int i=0, st;

 FILE *input; // file pointers
 FILE *output;

 /* function prototypes
 isentropic function for compression and expansion processes
 injection function for fuel injection and combustion process
 enthalpy function retrieves enthalpy values for all species
 injector function retrieves injector parameters
 properties function retrieves fuel properties and composition
 airfuel function calculates molar stoichiometric air fuel ratio */

 void isentropic(double in1[], double Vc, double rc, double Rl, double mt, FILE *output, int st,
 double phi, double fuel[], double fuelcomp[], double AFs, double Sp, double B,
 double Ap, double a, double l, double RPM, double Vd, double Cr[]);
 void injection(double in1[], double Vc, double rc, double Rl, double fuel[], double fuelcomp[],
 double mt, double mf, FILE *output, double mdotCA, double Ufuel, double Sp,
 double RPM, int holes, int inj, double Lf, double B, double Vd, double a, double l,
 double Ap, double Pinj, double injdata[], double Ainj, double Pinj0);
 void enthalpy(double T, double h[], double Cp[]);
 void injector(int inj, double injdata[]);
 void properties(int name, double fuel[], double fuelcomp[]);
 double airfuel(double fuelcomp[]);

 // open file
 input=fopen(INFILE, "r");

 if (input==NULL)

 116

 {
 printf("could not open input file\n"); // check for input file
 return EXIT_FAILURE; // end program if input file doesn't exist
 }

 // read input data
 fscanf(input,"%lf %s",&B,&dummy); // bore
 fscanf(input,"%lf %s",&L,&dummy); // stroke
 fscanf(input,"%lf %s",&l,&dummy); // rod length
 fscanf(input,"%lf %s",&rc,&dummy); // compression ratio
 fscanf(input,"%lf %s",&Pin,&dummy); // intake pressure
 fscanf(input,"%lf %s",&Tin,&dummy); // intake temperature
 fscanf(input,"%lf %s",&SOI,&dummy); // start of injection
 fscanf(input,"%i %s",&name,&dummy); // fuel choice
 fscanf(input,"%lf %s",&mf,&dummy); // fuel mass injected
 fscanf(input,"%i %s",&inj,&dummy); // injector choice
 fscanf(input,"%i %s",&holes,&dummy); // # holes in injector
 fscanf(input,"%lf %s",&Pinj0,&dummy); // starting injection pressure
 fscanf(input,"%lf %s",&Pinj,&dummy); // ending injection pressure
 fscanf(input,"%lf %s",&RPM,&dummy); // engine speed
 fscanf(input,"%lf %s",&Lf,&dummy); // lift-off length
 fscanf(input,"%lf %s",&Ap,&dummy); // piston area

 // cylinder geometry calculations
 A=PI/4*pow(B,2); // bore area
 Vd=A*L; // displacement volume
 if(rc==1) // geometry for constant volume combustion bomb
 {
 Vc=0; // no clearance volume for constant V bomb
 }
 else
 {
 Vc=Vd/(rc-1); // clearance volume for engine cases
 }
 Vt=Vd+Vc; // total volume
 a=.5*L; // crank radius
 Rl=l/a; // rod l to crank radius ratio
 ma=Pin*Vd/(Ru*Tin); // air mole calculation [kmol]
 injector(inj,injdata); // get injector geometry and coefficients
 Cv=injdata[1]/injdata[2]; // velocity coefficient Cd/Ca
 Ainj=pow(injdata[0]/1000000,2)*PI/4; // nozzle area [m^2]
 properties(name,fuel,fuelcomp); // retrieve fuel properties
 mf=mf/fuel[7]; // fuel mole calculation
 AFs=airfuel(fuelcomp); // molar air/fuel ratio
 Sp=2*RPM*L/60; // mean piston speed

 // loop calculates residual gas temperature
 do
 {
 output=fopen(OUTFILE, "w"); // open output file

fprintf(output,"theta T(K) P(kPa) V(dm^3) h(kJ/kg)
 E1(kJ/kg) E2(kJ/kg) liquid L(mm) Tad(K) k\n"); // output
 file header

 mres=Vc*Pin/(Ru*Tres); // residual moles [kmol]
 mt=ma+mres; // t otal moles during compression [kmol]

 117

 phi=mf*AFs/mt; // overall equivalence ratio
 Tin1=(Tin*ma+Tres*mres)/mt; // initial temp

 // compression process
 in1[0]=Tin1; // initialize variables to be passed to isentropic function for
 compression process
 in1[1]=Pin;
 in1[2]=Vt;
 in1[3]=180;
 in1[4]=SOI;
 st=0; // st=0 for compression
 isentropic(in1,Vc,rc,Rl,mt,output,st,phi,fuel,fuelcomp,AFs,Sp,B,Ap,a,l,RPM,Vd,Cr);
 // compression process calculated using isentropic function

 // inject ion and combustion process
 w=2*((Pinj-in1[1])*1000/fuel[3]); // fuel flow rate calculations
 Ufuel=Cv*sqrt(w); // injection velocity
 mdotf=injdata[2]*Ainj*fuel[3]*Ufuel/1000; // fuel flow rate [kg/ms]
 mdotCA=holes*mdotf/(.006*RPM*fuel[7]); // fue l flow rate [kmol/CA]
 in1[3]=SOI; // initialize for start of injection and combustion process

 injection(in1,Vc,rc,Rl,fuel,fuelcomp,mt,mf,output,mdotCA,Ufuel,Sp,RPM,holes,inj,Lf,B,
 Vd,a,l,Ap,Pinj,injdata,Ainj,Pinj0); // injection function called to calculate
 injection and combustion process

 // expansion process
 in1[4]=540.25; // initialize to tell expansion when to stop
 mt=mt+mf; // total moles in expansion process
 st=1; // st=1 for expansion
 isentropic(in1,Vc,rc,Rl,mt,output,st,phi,fuel,fuelcomp,AFs,Sp,B,Ap,a,l,RPM,Vd,Cr);
 // expansion process calculated using isentropic function

 // residual gas temperature calculations
 enthalpy(in1[0],h,Cp); // retrieve enthalpies at end of expansion process
 Cpa=(Cp[7]+3.7274*Cp[10]+. 0444*Cp[11])/(1+3.7274+.0444); // specific heat of
 air at end of expansion
 k=Cpa/(Cpa-Ru); // specific heat ratio
 Tresn=in1[0]*pow(Pin/in1[1],(k-1)/k); // calculates new residual temp using
 isentropic process
 dTres=Tresn-Tres; // change in residual temp from last guess
 Tres=Tresn; // update Tres
 if(Vc==0) // for bomb cases no Tres calculations
 {
 dTres=1; // dTres set below tolerance for continuing loop
 }
 fclose(output); // close output file (opening and closing in each loop insures only the
 final set is saved)
 }while(fabs(dTres)>2); // when residual temp change is small end loop
 fclose(input); // close input file

 return EXIT_SUCCESS; // end program successfully
}
/***/
/* function calculates properties at each crank angle */
/* using a isentropic process for compression */
/* and expansion strokes */
/***/

 118

void isentropic(double in1[], double Vc, double rc, double Rl, double mt, FILE *output, int st, double phi,
double fuel[], double fuelcomp[], double AFs, double Sp, double B, double Ap, double a, double l, double
RPM, double Vd, double Cr[])
{
 /* isentropic function variable definitions

 theta ------- crank angle
 j ----------- CA loop counter
 S ----------- starting crank angle for loops
 E ----------- ending crank angle for loops
 dur --------- crank angle duration for compression or expansion stroke
 T ----------- cylinder temperature
 Ta1 --------- first temperature guess for secant method
 Ta2 --------- second temperature guess for secant method
 Ta3 --------- updated temperature guess for secant method
 Tm ---------- motored temperature for ht in expansion stroke
 Tr ---------- reference temperature for ht
 P ----------- cylinder pressure
 Pi ---------- new cylinder pressure
 Po ---------- old cylinder pressure
 Pa3 --------- new pressure from temperature after secant method
 Pr ---------- reference pressure for ht
 Vf ---------- new volume
 vr ---------- volume ratio
 Vi ---------- old volume
 Vr ---------- reference volume for ht
 n ----------- # C atoms in fuel molecule
 m ----------- # H atoms in fuel molecule
 f ----------- # O atoms in fuel molecule
 g ----------- # N atoms in fuel molecule
 r[4] -------- simplifying constants for stoichiometry
 Nsum -------- total number of moles
 MWa --------- molecular weight of air or air and products
 x[21] ------- mole fractions of all species
 ha ---------- enthalpy of air or air and products units
 h[21] ------- enthalpies of all species (see enthalpy function for definitions of each)
 Cp[21] ------ const pressure specific heats for species (see enthalpy function for definitions of
 each)
 Cpa --------- specific heat of air or air and products
 k ----------- specific heat ratio
 Ecyl -------- cylinder energy calculated from E + P*dV
 Ecyl2 ------- cylinder energy calculated from temperatures
 hc ---------- heat transfer function
 q0 ---------- secant function at first guess updated in subsequent loops
 q1 ---------- secant function at second guess updated in subsequent loops
 E1 ---------- energy in secant function at first guess updated in subsequent loops
 E2 ---------- energy in secant function at second guess updated in subsequent loops
 dq ---------- change in secant function
 Ach --------- surface area in the cylinder
 sl ---------- variable used in area calculation
 C1 ---------- constant in heat transfer correlation
 C2 ---------- constant in heat transfer correlation
 w ----------- variable in heat transfer model
 km ---------- specific heat ratio for motored calculation
 MW[] -------- molecular weights of all species

 119

 hf[] -------- heats of formation of all species
 i ----------- loop counter
 ii ---------- loop counter */

 // declare variables
 double theta, j, S, E, dur ; // loop variables
 double T, Ta1, Ta2, Ta3, Tm=1, Tr=0; // temperature variables
 double P, Pi, Po, Pa3, Pr=1, Pm, Vf=0, vr, Vi, Vr=1; // Pressures and volumes
 double n, m, f, g, r[4], Nsum, MWa=0, x[21]={0}; // composition variables
 double ha=0, h[21], Cp[21], Cpa, k, Ecyl=0, Ecyl2, hc; // energy variables
 double q0, q1, E1, E2, dq, Ach, sl, C1=2.28*Sp, C2=.00324, w, km; // energy and heat tran
 variables
 double MW[]={1.00794, 15.9994, 14.00674, 2.0159, 17.0079, 28.0104, 30.006, 31.999, 18.016,
 44.011, 28.013, 39.948, 15.035, 16.043, 26.038, 28.054, 16.023, 17.030, 27.026, 29.019,
 25.030}; // molecular weights

double hf[]={217977, 249197, 472629, 0, 38985, - 110541, 90297, 0, -241845, -393546, 0, 0,
 145687, -74873, 226748, 52283, 167653, -45898, 135143, 12134, 476976};
 // heats of formation

 int i=0, ii; // loop counters

 /* function prototypes
 enthalpy function retrieves enthalpy values for all species */
 void enthalpy(double T, double h[], double Cp[]);

 // initialize variables using inputs from main
 T=in1[0]; // state variables
 P=in1[1];
 Vi=in1[2];
 S=in1[3]; // CA loop controls
 E=in1[4];
 Ecyl=in1[6]; // energy
 Pm=in1[7]; // motored state
 Tm=in1[8];
 Tr=Cr[0]; // reference state for ht
 Pr=Cr[1];
 Vr=Cr[2];
 Po=P ; // old pressure
 dur=(E-S)*4; // # of steps to loop through process
 n=fuelcomp[0]; // fuel composition
 m=fuelcomp[1];
 f=fuelcomp[2];
 g=fuelcomp[3];

 // initial specific heat ratio and energy calculation for compression stroke (st=0)
 if (st==0)
 {
 x[7]=.209126; // mole fractions for air
 x[10]=.781589;
 x[11]=.009258;
 enthalpy(T,h,Cp); // enthalpies and specific heats of species at start of
 compression
 Cpa=x[7]*Cp[7]+x[10]*Cp[10]+x[11]*Cp[11]; // specific heat of air
 k=Cpa/(Cpa-Ru); // specific heat ratio
 ha=x[7]*h[7]+x[10]*h[10]+x[11]*h[11]; // air enthalpy
 MWa=x[7]*MW[7]+x[10]*MW[10]+x[11]*MW[11]; // molecular weight of air
 mt=mt*MWa; // mass of air [kg]

 120

 Ecyl=mt*ha/MWa-Po*Vi; // energy in cylinder to start compression
 }
 // initial specific heat ratio and energy calculation for expansion stroke (st=1)
 if (st==1)
 {
 r[0]=(n+0.25*m-0.5*l)/phi; //r0 // stoichiometry constants
 r[1]=0.5*l+r[0]; //r
 r[2]=0.5*g+3.7274*r[0]; //r'
 r[3]=0.0444*r[0]; //r"
 Nsum=m/4+r[2]+r[3]+r[0]+l/2; // total number of moles
 x[7]=(r[0]+l/2-n-m/4)/Nsum; // O2 // mole fractions of product species
 x[8]=(m/2)/Nsum; // H2O
 x[9]=n/Nsum; // CO2
 x[10]=r[2]/Nsum; // N2
 x[11]=r[3]/Nsum; // Ar
 enthalpy(T,h,Cp); // specific heats of species at start of expansion (energy from
 injection function)
 for(Cpa=0,ii=0;ii<21;ii++)
 {
 Cpa=Cpa+x[ii]*Cp[ii]; // calculate total specific heat
 MWa=MWa+x[ii]*MW[ii]; // calculate total molecular weight
 }
 mt=(mt+phi*mt/AFs)*MWa; // total mass in expansion
 k=Cpa/(Cpa-Ru); // specific heat ratio
 }

 // calculate properties at each 1/4 CA
 for(i=0; i<dur; i++) // loops from start CA to end CA
 {
 j=i; // loop counter as double instead of int for CA calculation
 theta=(S+j/4)*PI/180; // CA in radians

 Vf=Vc*(1+.5*(rc-1)*(Rl+1-cos(theta)-pow(Rl*Rl-(sin(theta)*sin(theta)),.5)));
 // volume at end of step

 if(Vc==0)
 {
 Vf=Vi; // new volume equal old volume for constant volume case
 }
 vr=Vi/Vf; // volume ratio for step
 sl=a*cos(theta)+pow((l*l-a*a*sin(theta)*sin(theta)),.5); // calculate sl variable fore
 area equation
 Ach=Ap+PI*B*B/4+PI*B*(l+a- sl); // cylinder area for ht
 if(Vc==0)
 {
 Ach=Ap; // area equal to input file area for constant volume case
 }
 Pi=P; // save initial pressure
 T=T*pow(vr,(k-1)); // new temperature and pressure using isentropic process
 P=P*pow(vr,k);
 if (st==0) // enthalpy, specific heat ratio, and energy for each step in compression
 stroke
 {
 enthalpy(T,h,Cp);
 ha=x[7]*h[7]+x[10]*h[10]+x[11]*h[11];
 Cpa=x[7]*Cp[7]+x[10]*Cp[10]+x[11]*Cp[11];
 k=Cpa/(Cpa-Ru);
 w=C1; // value for ht correlation

 121

 Ecyl2=mt*ha/MWa-(Pi+P)/2*Vi;
 }
 if (st==1) // enthalpy, specific heat ratio, and energy for each step in expansion
 stroke
 {
 enthalpy(T,h,Cp);
 for(Cpa=0,ha=0,ii=0;ii<21;ii++)
 {
 Cpa=Cpa+x[ii]*Cp[ii];
 ha=ha+x[ii]*(h[ii]);
 }
 k=Cpa/(Cpa-Ru);
 Ecyl2=(mt)*ha/MWa-(Pi+P)/2*Vi;
 enthalpy(Tm,h,Cp);
 for(Cpa=0,ii=0;ii<21;ii++)
 {
 Cpa=Cpa+x[ii]*Cp[ii]; // specific heat at motored conditions

}

 km=(Cp[7]+3.7274*Cp[10]+.0444*Cp[11])/(1+3.7274+.0444)/((Cp[7]+3.7274*
 Cp[10]+.0444*Cp[11])/(1+3.7274+.0444)-Ru);
 // specific heat ratio at motored conditions

 Tm=Tm*pow(vr,(km-1)); // new motored Temp and Press
 Pm=Pm*pow(vr,km);
 w=C1+C2*Vd*Tr/(Pr*Vr)*(P-Pm); // value for ht correlation
 }
 Ecyl=Ecyl-(Pi+P)/2*(Vf-Vi); // new energy
 hc=(3.26*pow(B, -.2)*pow(P,.8)*pow(T,-.55)*pow(w,.8)/1000)*Ach*
 (T-600)*(.25/(.006*RPM))/1000; // heat transfer correlation
 //hc=0; // zeros heat transfer correlation - can be uncommented to neglect heat transfer

 // calculate new temperature and pressure after heat transfer
 Ta1=T; // temperature guesses for secant method
 Ta2=T -50;
 enthalpy(Ta1,h,Cp); // secant method using enthalpy to get avg Temperature
 for(E=0,ii=0;ii<21;ii++)
 {
 E=E+x[ii]*h[ii]; // enthalpy at first temp guess
 }
 q0=(ha*mt/MWa-hc)*MWa/mt-E; // calculate function at first temp - trying to zero
 enthalpy(Ta2,h,Cp);
 for(E1=0,ii=0;ii<21;ii++)
 {
 E1=E1+x[ii]*h[ii]; // enthalpy at first temp guess
 }
 q1=(ha*mt/MWa-hc)*MWa/mt-E1; // calculate function at second temp - trying
 to zero
 do
 {
 dq=(q1-q0); // change in function between temp guesses
 Ta3=Ta2-q1*((Ta2-Ta1)/dq); // new temperature guess
 Ta1=Ta2; // update values for next guess
 q0=q1;
 Ta2=Ta3;
 enthalpy(Ta3,h,Cp);
 for(E2=0, ii=0;ii<21;ii++)

 122

 {
 E2=E2+x[ii]*h[ii]; // enthalpy at subsequent temp guesses
 }
 q1=(ha*mt/MWa-hc)*MWa/mt-E2; // calculate function at

 subsequent temps - trying to zero
 }while(fabs(q1)>.00001); // when function is small exit loop
 Pa3=P*Ta3/T; // new pressure after heat transfer
 T=Ta3; // update cylinder pressure and temperature
 P=Pa3;

fprintf(output,"%.2lf %lf %lf %lf %lf %lf %lf %lf
 %lf %lf\n",S+j/4,T,P,Vf*1000,ha,Ecyl,Ecyl2,g,g,hc); // print output file
 for step

 printf("CA=%.2lf \n",S+j/4); // print current crank angle to screen
 Vi=Vf; // update volume
 } // end of CA for loop
 in1[0]=T; // update variables to send to main
 in1[1]=P;
 in1[2]=Vf;
 in1[4]=S+j/4;
 in1[5]=k;
 in1[6]=Ecyl;
 Cr[0]=T;
 Cr[1]=P;
 Cr[2]=Vf;

 return; // end function and return to main function
}
/*---*/
/* function calculates properties during fuel injection */

void injection(double in1[], double Vc, double rc, double Rl, double fuel[], double fuelcomp[], double mt,
double mf, FILE *output, double mdotCA, double Ufuel, double Sp, double RPM, int holes, int inj, double
Lf, double B, double Vd, double aa, double la, double Ap, double Pinj, double injdata[], double Ainj,
double Pinj0)

{
 /* injection function variable definitions
 theta ------- crank angle
 j ----------- loop counter for crank angle
 S ----------- starting crank angle
 rhoa -------- air density for spray model (only calculated at SOI)
 no1[21] ----- mole fraction guess for equilibrium - when stepping through zone 3 guess for new
 step is old step
 Pinj1 ------- injection pressure at current CA
 phia -------- equivalence ratio past flame length for heat release model
 durCA ------- injection duration in crank angles
 AFs --------- stoichiometric air fuel ratio
 phi --------- equivalence ratio up to flame length for heat release model
 rst[6] ------ simplifying constants for st oichiometry for heat release model
 Nsum -------- total number of moles
 x3fuel ------ mole fraction of fuel in zone 3 before combustion begins for premixed burn
 duration
 ll[10] ------ array passed to spray model
 ll[0] ---- liquid length
 ll[1] ---- equivalence ratio at liquid length (molar)

 123

 ll[2] ---- spray length at given time
 ll[3] ---- equivalence ratio at x (molar)
 ll[4] ---- time to reach liquid length
 ll[5] ---- spray spread angle
 ll[6] ---- time to reach given length
 ll[7] ---- equivalence ratio at given length (mass)
 ll[8] ---- distance to back of spray after EOI
 ad[2] ------- array passed to adiabatic flame temp calculator for flame sheath phi=1
 ad[0] ---- flame temperature
 ad[1] ---- product enthalpy
 ad3[2] ------ array passed to adiabatic flame temp calculator for zone 3 kept separate for
 equilibrium code and temperature guesses
 C ----------- # C atoms in fuel molecule
 H ----------- # H atoms in fuel molecule
 O ----------- # O atoms in fuel molecule
 N ----------- # N atoms in fuel molecule
 LL ---------- liquid length
 LS ---------- spray penetration length
 L2 ---------- end of zone 2 length
 rxe --------- spray radius at xe
 xe ---------- back end of spray after EOI
 Lstoic ------ flame length (phi=1)
 rL2 --------- spray radius at L2
 rLstoic ----- spray radius at Lstoic
 LL1 --------- new liquid length when calculating liquid length with lift -off length in place
 LLd --------- change in liquid length when it moves back with lift-off length
 rL ---------- spray radius at liquid length
 rLf --------- spray radius at lift-off length when liquid length moves back with lift - off length
 r ----------- spray radius at step for zone 2
 dLf --------- change in lift-off length
 Lfa --------- lift- off length that moves back to given Lf
 dLL --------- change in liquid length when calculating liquid length with lift-off length in place
 rS ---------- spray radius at penetration length
 rLfa -------- spray radius at penetration length
 an ---------- spray angle multiplier from Siebers =.66
 angle ------- spray spread angle
 dur --------- injection duration (ns)
 te ---------- time at EOI
 tstoic ------ time to reach flame length
 tlf --------- time lift -off length reaches minimum
 time0 ------- time at beginning of slice when stepping through zone 3 (for fuel mass calculation)
 tid --------- ignition delay time
 t ----------- time after SOI
 dtCA -------- time for 1/4 CA step
 A2 ---------- constant in exponential that burns back zone 2
 r0 ---------- radius at beginning of slice while stepping through zone 3
 r1 ---------- radius at end of slice while stepping through zone 3
 l0 ---------- length to beginning of slice while stepping through zone 3
 l1 ---------- length to end of slice while stepping through zone 3
 steps ------- # steps taken through zones 2 and 3
 t1 ---------- starting length for stepping through zones 2 and 3
 t2 ---------- ending length for stepping through zones 2 and 3
 ts ---------- step size
 P ----------- cylinder pressure
 cfuel ------- fuel concentration for premixed burn duration
 cO2 --------- oxygen concentration for premixed burn duration

 124

 sl1 --------- slope of oxygen concentration for premixed burn duration
 sl2 --------- slope of temperature for premixed burn duration
 Tpm --------- temperature in premixed burn durat ion model
 timepm ------ premixed burn time
 dfuel ------- change in fuel concentration for premixed burn duration
 cO2a -------- change in oxygen concentration for premixed burn duration
 Tdel -------- temperature for ignition delay model =T at L2
 T ----------- cylinder temperature
 Tinj -------- fuel injection temperature
 Tsm --------- spray model temperature (constant at cylinder value at SOI)
 Tad --------- adiabatic flame temperature fore flame sheath
 T2 ---------- zone 2 temperature
 T2o --------- stores last zone 2 temperature before zone disappears
 Ttot -------- mass avg temperature for whole cylinder
 trf --------- temperature constant for fuel enthalpy curve fit
 T5 ---------- zone 5 temperature
 T2r --------- temperature at the end of zone 2 for premixed burn duration
 T3p --------- temperature of the products in first step of zone 3 for premixed burn duration
 phi23 ------- equivalence ratio at the line between zone 2 and 3
 AF23 -------- air fuel ratio at the line between zone 2 and 3
 h2r --------- enthalpy at the end of zone 2 for premixed burn duration
 hpm --------- enthalpy in the premixed burn
 Tx2 --------- temperature at a position in zone 2 while stepping through
 T1m --------- mass times temperature for zone 1
 T2m --------- mass times temperature for zone 2
 T3m --------- mass times temperature for zone 3
 Tme --------- mass times temperature for volume of zone 5 where spray would be after EOI
 T2in -------- temperature of air coming into zone 2 from zone 5
 Ta1 --------- first temperature guess for new cylinder temperature using total energy (secant
 method)

Ta2 --------- second temperature guess for new cylinder temperature using total energy (secant
 method)

 Ta3 --------- subsequent temperature guesses for new cylinder temperature using total energy
 (secant method)
 Vi ---------- initial cylinder volume
 Vf ---------- final cylinder volume
 vf ---------- spray volume up to lift-off length for moving back lift-off length
 v ----------- step volume for stepping through zones 2 and 3
 vS ---------- spray volume
 q0 ---------- secant function at first guess updated in subsequent loops
 q1 ---------- secant function at second guess updated in subsequent loops
 dq ---------- change in secant function
 V5 ---------- zone 5 volume using ideal gas
 v1 ---------- zone 1 volume
 v2 ---------- zone 2 volume
 v12 --------- zone 1 and 2 volume
 v2a --------- spray vol through zone 2 used to calculate zone 2 volume
 ve ---------- volume of back end of spray after EOI
 v3 ---------- zone 3 volume
 mp ---------- mass of products in zone 2
 ms5 --------- mass in zone 5
 me ---------- mass in back end of spray after
 m1b --------- air mass beyond lift -off length in zone 1 for moving liquid length back with lift -off
 length
 ma1b -------- unburned air mass beyond lift -off length in zone 1 for moving liquid length back
 with lift-off length

 125

 mp1b -------- burned air mass beyond lift -off length in zone 1 for moving liquid length back with
 lift-off length
 m1 ---------- mass in zone 1
 m2 ---------- mass in zone 2
 m3 ---------- mass in zone 3
 mas --------- mass of air for 1 kg fuel for phi=1 diffusion flame temperature calculation
 m2min ------- minimum mass in zone 2 as it burns back
 ma ---------- mass of air for stepping through zone 2
 ma1a -------- air mass before lift -off length in zone 1 for moving liquid length back with lift-off
 length
 m ----------- mass of air for stepping through zone 3
 m5in -------- mass of air in zone 3 from zone 5 for stepping
 mS ---------- mass of air in the spray
 mo ---------- air mass in last step while stepping through zone 2
 ms3[21] ----- number of moles of each species in zone 3
 ms5a -------- total mass of air in cylinder at SOI
 m3a --------- mass of air in zone 3
 mp1 --------- mass of air in products in zone 1
 ma1 --------- mass of air in zone 1
 m2a --------- mass of air in zone 2
 m2p --------- mass of air in products in zone 2
 m2ain ------- mass of air in zone 3 from zone 2 for stepping
 mdotf ------- mass flow rate of fuel in kg/ms
 mfuel ------- total mass of fuel
 mfS --------- mass of fuel in the spray
 mfuelo ------ fuel mass in last step while stepping through zone 2
 mfdt -------- molar flow rate of fuel kmol/ms
 mfp1 -------- mass of fuel in products in zone 1
 mf1 --------- mass of fuel in zone 1
 mfp --------- mass of fuel in products in zone 2 for stepping through zone
 mf2 --------- mass of fuel in zone 2
 mf3 --------- mass of fuel in zone 3
 mf2u -------- mass of unburned fuel in zone 2
 mf1u -------- mass of unburned fuel in zone 1
 mf2p -------- mass of fuel in products in zone 2
 m1fv -------- mass of vaporized fuel in zone 1
 h4 ---------- enthalpy of zone 4
 dh4 --------- enthalpy change of diffusion flame products from zone 4 temp to zone 1 temp
 dh5 --------- enthalpy change of air at zone 5 temp to zone 1 temp
 dh ---------- enthalpy change of air for liquid length calculation
 h[21] ------- enthalpies of all species
 hf4 --------- enthalpy of zone 4 for moving liquid length with lift-off length
 hf5 --------- enthalpy of zone 5 for moving liquid length with lift -off length
 hr ---------- enthalpy of reactants for adiabatic flame temp in zone 4
 h5[21] ------ enthalpies of species in zone 5
 deltadh ----- change in dh when moving liquid length with lift-off length loop
 dho --------- old enthalpy change for moving liquid length with lift -off length loop
 h5a --------- enthalpy of air in zone 5
 h1a --------- enthalpy of air in zone 1
 h1p --------- enthalpy of products in zone 1
 h2a --------- enthalpy of air in zone 2
 h2p --------- enthalpy of products in zone 2
 h3p --------- enthalpy of products in zone 3
 h1[21] ------ enthalpies of species when enthalpies at 2 temps required for a calculation
 hr1 --------- enthalpy of reactants for adiabatic flame temp in zone 3
 hfuel ------- enthalpy of the fuel

 126

 Cp[21] ------ specific heats of all species
 Cpas -------- specific heat of air at SOI
 Cpp --------- specific heat of products of diffusion flame
 E1 ---------- energy in zone 1 (also used in secant method to get cylinder temperature)
 E2 ---------- energy in zone 2 (also used in secant method to get cylinder temperature)
 E3 ---------- energy in zone 3
 E5 ---------- energy in zone 5
 Ecyl2 ------- cylinder energy calculated using energies of zones added
 Ecyl -------- cylinder energy calculated using E+PdV
 EA ---------- activation energy
 E ----------- zone 5 energy used in secant method to get cylinder temperature
 x4[21] ------ mole fractions of diffusion flame products
 x5[21] ------ mole fractions in zone 5
 x3[21] ------ mole fractions in zone 3
 x3a[21] ----- mole fractions in spray beyond lift-off length before flame length
 x3b[21] ----- mole fractions in spray beyond flame length
 MW4 --------- molecular weight in zone 4
 MW2 --------- molecular weight in zone 2
 MWa --------- molecular weight of air
 MW3 --------- molecular weight in zone 3
 MWP --------- molecular weight of products from lift-off length to flame length for heat release
 calculation

MWR --------- molecular weight of reactants from lift -off length to flame length for heat release
 calculation

 MW[] -------- molecular weights of all species
 hf[] -------- heats of formation of all species
 HP ---------- enthalpy of products from lift-off length to flame length for heat release calculation
 HR ---------- enthalpy of reactants from lift -off length to flame length for heat release calculation
 U1 ---------- old internal energy used in secant method to get cylinder temperature
 U2 ---------- new internal energy used in secant method to get cylinder temperature
 Qn ---------- new heat release
 Qo ---------- old heat release
 Qstep ------- heat release in 1/4 CA step
 Ea ---------- spray energy used in secant method to get cylinder temperature 1st guess
 Ea1 --------- spray energy used in secant method to get cylinder temperature 2nd guess
 Ea2 --------- spray energy used in secant method to get cylinder temperature subsequent guesses
 mstoic ------ mass of air beyond flame length
 mfstoic ----- mass of fuel beyond flame length (in products with mstoic)
 hT ---------- enthalpy at temp at SOI for fuel vaporization effect on heat release
 hTs --------- enthalpy at vaporization temp for fuel vaporization effect on heat release
 Qs ---------- fuel vaporization effect on heat release
 mfn --------- new fuel mass in spray for heat release calculations
 mfo --------- old fuel mass in spray for heat release calculations
 mfst -------- change in fuel mass in spray for heat release calculations
 Qid --------- heat release at ignition delay
 tq ---------- premixed burn time counter (CA)
 tqt --------- total premixed burn time (CA)
 m1c --------- new air in spray in CA step until reaching lift off length for fuel vaporization effect
 on heat release
 ma1p -------- mass of air in products in zone 1
 tlfq -------- time to reach lift -off length for heat release calculation
 mfq --------- mass of fuel from lift -off length to flame length for heat release calculation
 maq --------- mass of air from lift -off length to flame length for heat release calculation
 rlf --------- spray radius at lift-off length
 MWPs -------- molecular weight of products beyond flame length for heat release calculation
 HRs --------- enthalpy of reactants beyond flame length for heat release calculation

 127

 HPs --------- enthalpy of products beyond flame length for heat release calculation
 Vsq --------- actual spray volume
 maqs -------- mass of air beyond flame length for heat release calculation
 mfqs -------- mass of fuel beyond flame length for heat release calculation
 xsum -------- sum of mole fractions
 Cp5 --------- specific heat of zone 5
 Cp3 --------- specific heat of zone 3
 Cpt --------- average specific heat of all zones
 Cpf --------- specific heat of the fuel
 xfuelpma ---- starting mole fraction of fuel in premixed burn model
 xfuelpm ----- mole fraction of fuel in premixed burn model
 xafbpm ------ mole fraction of products in premixed burn model
 xairpm ------ mole fraction of air in premixed burn model
 sl ---------- variable used in area calculation
 Ach --------- surface area in the cylinder
 hc ---------- heat transfer
 w ----------- variable in heat transfer model
 C1 ---------- constant in heat transfer correlation
 C2 ---------- constant in heat transfer correlation
 Tr ---------- reference temperature in heat transfer model
 Pr ---------- reference pressure in heat transfer model
 Vr ---------- reference volume in heat transfer model
 Tm ---------- motored temperature in heat transfer model
 Cpa --------- specific heat of air
 k ----------- specific heat ratio
 vr ---------- volume ratio used to get motored data
 ww ---------- fuel flow rate constant
 Pm ---------- motored pressure in heat transfer model
 i ----------- loop counter
 c ----------- loop counter
 z ----------- flag insures minimum mass in zone 2 only calculated once
 y ----------- flag insures calculations to move lift - off length done once
 sto --------- flag insures calculations for flame length done once
 yy ---------- flag insures calculations for minimum liquid length done once
 flag1 ------- tells equilibrium code weather to make a new initial guess
 flag2 ------- tells adiabatic flame calculation weather to start at hard coded temp guesses or use
 temperature from last aft calculation
 ii ---------- loop counter
 flag6 ------- insures premixed burn duration calculation only done once
 flag7 ------- changes direction of steps through zone 3 to help equilibrium solution
 flag8 ------- insures calculations for heat release for premixed burn done once
 flag9 ------- other calculations for changing direction of steps through zone 3 to help equilibrium
 solution
 flag10 ------ saves temperature for ignition delay model
 flag11 ------ insures ignition delay calculated once */

 // declare variables
 double theta, j=1, S, rhoa, no1[21]={0}, Pinj1, phia=0, durCA;
 double AFs, phi=0, rst[6]={0}, Nsum, x3fuel;
 double ll[10]={0}, ad[2], ad3[2], C, H, O, N;
 double LL, LS, L2=0, rxe, xe=0, Lstoic=0, rL2, rLstoic=0, LL1=0, LLd, rL, rLf=0, r, dLf, Lfa=50,
 dLL, rS, rLfa, an=.66, angle=0;
 double dur, te=0, tstoic=0, tlf=50, time0, tid=10, t, dtCA;
 double A2=1, r0, r1, l0, l1=0, steps, t1, t2, t s;
 double P, cfuel, cO2, sl1, sl2, Tpm, timepm=0, dfuel, cO2a, Tdel=0;
 double T, Tinj=411, Tsm, Tad=0, T2, T2o, Ttot, trf, T5, T2r, T3p, phi23, AF23, h2r, hpm;

 128

 double Tx2, T1m, T2m, T3m, Tme=0, T2in, Ta1, Ta2, Ta3;
 double Vi, Vf=0, vf, v, vS=0, q0, q1, dq;
 double V5=0, v1, v2, v12, v2a=0, ve=0, v3;
 double mp, ms5, me=0, m1b, ma1b, mp1b, m1, m2=0, m3, mas, m2min=-100;
 double ma, ma1a, m, m5in=0, mS, mo, ms3[21]={0}, ms5a, m3a=0;
 double mp1, ma1, m2a=0, m2p=0, m2ain, mdotf;
 double mfuel, mfS=0, mfuelo, mfdt, mfp1=0, mf1, mfp, mf2, mf3, mf2u=0, mf1u, mf2p=0, m1fv;
 double h4=0, dh4, dh5, dh=0, h[21], hf4, hf5, hr=0, h5[21]={0}, deltadh=0, dho=0, h5a;
 double h1a, h1p, h2a, h2p, h3p, h1[21]={0}, hr1, hfuel;
 double Cp[21], Cpas, Cpp=0, E1, E2, E3, E5, Ecyl2, Ecyl, EA, E;
 double x4[21], x5[21]={0}, x3[21], x3a[21], x3b[21]={0}, MW4, MW2=0, MWa=0, MW3,
 MWP,MWR;
 double MW[]={1.00794, 15.9994, 14.00674, 2.0159, 17.0079, 28.0104, 30.006, 31.999, 18.016,
 44.011, 28.013, 39.948, 15.035, 16.043, 26.038, 28.054, 16.023, 17.030, 27.026, 29.019,
 25.030};
 double hf[]={217977, 249197, 472629, 0, 38985, - 110541, 90297, 0, -241845, -393546, 0, 0,
 145687, -74873, 226748, 52283, 167653, -45898, 135143, 12134, 476976};
 double HP, HR, U1, U2, Qn=0, Qo=0, Qstep, Ea, Ea1, Ea2, mstoic=0, mfstoic=0;
 double hT, hTs, Qs, mfn=0, mfo=0, mfst=0, Qid=0, tq=0, tqt=0, m1c=0, ma1p=0, tlfq=0, mfq=0,
 maq=0, rlf=0;
 double MWPs, HRs=0, HPs=0, Vsq=0, maqs=0, mfqs=0, xsum, Cp5, Cp3, Cpt, Cpf=0;
 double xfuelpma, xfuelpm, xafbpm, xairpm;
 double sl, Ach, hc, w, C1=2.28*Sp, C2=.00324, Tr, Pr, Vr, Tm, Cpa, k, vr, ww, Pm;
 int i=0, c, z=0, y=0, sto=0, yy=0, flag1=0, flag2=0, ii=0, flag6=0, flag7=0, flag8=0, flag9=0,
 flag10=0, flag11=0;

 /* function prototypes
 adiabatic function calculates adiabatic flame temperature using the equilibrium code
 enthalpy function retrieves enthalpy values for all species
 airfuel function calculates molar stoichiometric air fuel ratio
 liquidl function calculates the spray model */

 void adiabatic(double ad[], double P, double hr, double x[], double fuelcomp[], double phi,
 int flag1, int flag2, double no1[]);
 void enthalpy(double T, double h[], double Cp[]);
 double airfuel(double fuelcomp[]);
 void liquidl(double ll[] , double fuel[], double fuelcomp[], double Tinj, double T, double rhoa,
 double AFs, double t, double Ufuel, int inj, double MWa, double Cpa, double te,
 double dh, double angle, double l1);

 FILE *check; // check is an output file used to check variables not in the regular output file
 check=fopen("check.txt","w");
 C=fuelcomp[0]; // composition of the fuel
 H=fuelcomp[1];
 O=fuelcomp[2];
 N=fuelcomp[3];
 AFs=airfuel(fuelcomp); // stoichiometric air fuel ratio [mol air/mol fuel]
 T=in1[0]; // inputs from main
 P=in1[1];
 Vi=in1[2];
 S=in1[4];
 Ecyl=in1[6];
 Tr=T; // reference temperature for heat transfer model
 Tm=T; // first motored temperature
 Pr=P; // reference pressure

 129

 Pm=P; // first motored pressure
 Vr=Vi; // reference volume
 U1=Ecyl; // energy in the cylinder
 dtCA=.25/(.006*RPM); // time for 1/4 CA [ms]
 x5[7]=.209126; // zone 5 composition [mole fractions]
 x5[10]=.781589;
 x5[11]=.009285;
 for(i=0;i<21;i++) // zone 5 molecular weight [kg/kmol]
 {
 MWa=MWa+x5[i]*MW[i];
 }
 mfdt=mdotCA*(.006*RPM)/holes; // fuel flow rate per nozzle [kmol/ms]
 dur=(mf/holes)/(mfdt); // injection duration [ms]
 durCA=floor(4*mf/mdotCA)/4; // injection duration in CA
 EA=618840/(fuel[4]+25); // activation energy [J/mol]
 ms5a=mt*MWa; // total air in cylinder [kg]
 ms5=ms5a; // initial air mass in zone 5 [kg]
 rhoa=ms5/Vi; // initial density (constant for spray calculations) [kg/m^3]
 Tsm=T; // initial Temperature (constant for spray calculations) [K]
 h5a=0;
 enthalpy(Tsm,h,Cp);
 for(i=0;i<21;i++)
 {
 h5a=h5a+x5[i]*h[i]; // initial enthalpy in zone 5
 }
 Ecyl=ms5*h5a/MWa-P*Vi; // internal energy in cylinder
 U1=Ecyl;
 enthalpy((T+fuel[1])/2,h,Cp);

 for(Cpas=0,i=0;i<21;i++)
 {
 Cpas=Cpas+x5[i]*Cp[i]; // initial specific heat (constant for spray calculations)
 [kJ/kmol*K]
 }
 do // do loop to move through 1/4 CA steps
 {
 theta=(S+j/4)*PI/180; // CA [radians]
 Vf=Vc*(1+.5*(rc-1)*(Rl+1-cos(theta)-pow(Rl*Rl-(sin(theta)*sin(theta)),.5)));
 // volume at end of step [m 3̂]
 if(Vc==0)
 {
 Vf=Vi; // final volume for constant volume case
 }
 sl=aa*cos(theta)+pow((la*la-aa*aa*sin(theta)*sin(theta)),.5); // area calculation
 variable
 Ach=Ap+PI*B*B/4+PI*B*(la+aa-sl); // Chamber surface area
 if(Vc==0)
 {
 Ach=Ap; // chamber surface area for constant volume case
 }
 enthalpy(Tm,h,Cp);
 Cpa=(Cp[7]+3.7274*Cp[10]+.0444*Cp[11])/(1+3.7274+.0444); // specific heat of
 air for motored calculation
 k=Cpa/(Cpa-Ru); // specific heat ratio for motored calculation
 vr=Vi/Vf; // volume ratio for motored calculation
 Tm=Tm*pow(vr,(k-1)); // new motored Temp and Press

 130

 Pm=Pm*pow(vr,k);
 t=((j-1)/4)/(.006*RPM); // time after SOI [ms]
 if(t<=dur)
 {
 Pinj1=Pinj0+((Pinj-Pinj0)/durCA)*((j- 1)/4); // fuel in jection pressure for this
 CA step
 if(Pinj1>Pinj)
 {
 Pinj1=Pinj; // keeps injection pressure at max value
 }
 ww=2*((Pinj1 -in1[1])*1000/fuel[3]); // fuel flow rate calculations
 Ufuel=(injdata[1]/injdata[2])*sqrt(ww); // fuel injection velocity
 mdotf=injdata[2]*Ainj*fuel[3]*Ufuel/1000; // fuel flow rate [kg/ms]
 mdotCA=holes*mdotf/(.006*RPM*fuel[7]); // fuel flow rate [kmol/CA]
 mfdt=mdotCA*(.006*RPM)/holes; // fuel flow rate [kmol/ms]
 }
 if(t>dur)
 {
 te=t -dur; // time after EOI [ms]
 }
 mfS=mfdt*t*fuel[7]; // fuel mass in spray before EOI [kg]
 if(t>dur)
 {
 mfS=mfdt*dur*fuel[7]; // fuel mass in spray after EOI [kg]
 }
 liquidl(ll,fuel,fuelcomp,Tinj,Tsm,rhoa,AFs,t,Ufuel,inj,MWa,Cpas,te,0,angle,l1);
 // calculate spray model at new CA

 LS=ll[2]; // spray length [mm]
 angle=ll[5]; // spread angle [deg]
 xe=ll[8]; // length of back end of spray EOI [mm]
 if(Lfa==50)
 {
 LL=ll[0]; // liquid length before lift -off length moves back [mm]
 }
 rS=LS*an*angle; // spray radius at tip
 rxe=xe*an*angle; // spray radius at back end after EOI
 vS=(PI/3)*(rS*rS*LS)/1000000000; // spray volume to tip
 ve=(PI/3)*(rxe*rxe*xe)/1000000000; // spray volume to back end after EOI
 mS=rhoa*vS; // spray mass to tip
 me=ve*rhoa; // spray mass to back end after EOI
 MW4=1; // MW4 non zero for upcoming loop
 if(LS<LL)
 {
 m1c=mS-m1c; // new air in spray for this step
 }
 if(ll[3]>=AFs && sto==0) // spray characteristics when phi at tip=1 (flame
 length)
 {
 Lstoic=LS; // length
 rLstoic=Lstoic*an*angle; // radius
 tstoic=t; // time to reach
 mstoic=mS; // air mass
 mfstoic=mfS; // fuel mass
 sto=1; // change flag so values are not recalculated on next step
 }

 131

 if(t>=tid && z==0)
 {
 m2min=m2*.25; // minimum mass of zone 2
 z=1; // change flag so values are not recalculated on next step
 }
 if(m2min/m2>=.70 && y==0) // set up to move lift-off length back from L2
 {
 tlf=t; // time when zone 2 is small enough to move lift -off length
 dLf=(L2-Lf)/3; // lift-off length moves in 3 steps
 Lfa=L2; // lift-off starts from L2
 y=1; // change flag so values are not recalculated on next step
 }
 if(Lfa>=Lf && y==1)
 {
 Lfa=Lfa-dLf; // step back lift -off
 }
 if(Lfa<Lf)
 {
 Lfa=Lf; // minimum lift -off
 }
 if(xe>=Lf)
 {
 Lf=xe; // when back of spray moves out after EOI lift -off
 moves with it
 mfq=mfS;
 Lfa=Lf;
 }
 rLfa=Lfa*an*angle; // radius at lift -off
 Tme=me*T; // back end of spray mass*Temperat ure

 // adiabatic flame temperature calculation for phi=1 sheath
 if(t>=tid)
 { // starts after ignition delay
 enthalpy(T5,h,Cp);
 hr=0;
 for(i=0;i<21;i++)
 {
 hr=hr+x5[i]*h[i];
 }
 mas=(C+.25*H)/x5[7];
 hr=(mas*hr+fuel[5])/(mas+1); // enthalpy of reactants
 if(Tad==0) // flag lets adiabatic set temp guesses the first time through
 {
 flag2=0;
 }else
 {
 flag2=1; // after first loop temperature guesses are based on
 last loop temperature to speed convergence
 ad[0]=Tad;
 }
 flag1=0; // tells equilibrium code to make mole fraction guess
 adiabatic(ad,P,hr,x4,fuelcomp,1,flag1,flag2,no1); // adiabatic flame function
 Tad=ad[0]; // flame temperature
 h4=ad[1]; // product enthalpy
 MW4=0;
 for(i=0;i<21;i++)

 132

 {
 MW4=MW4+x4[i]*MW[i]; // products molecular weight
 }
 enthalpy(Tad,h,Cp);
 Cpp=0;
 for(i=0;i<21;i++)
 {
 Cpp=Cpp+x4[i]*Cp[i]; // products specific heat
 }
 Cpp=Cpp/MW4;
 }
 // moving liquid length with lift-off length
 if(Lfa<LL && yy<1) // calculates minimum liquid length when lift -off length is at
 its minimum using energy balance
 {
 rLf=Lf*an*angle; // new radius at lift -off for loop
 vf=(PI/3)*(rLf*rLf*Lf)/1000000000; // volume to lift-off
 ma1a=rhoa*vf; // air mass to lift-off
 enthalpy(fuel[1],h,Cp); // enthalpies at boiling temperature of the fuel
 hf4=0;
 hf5=0;
 for(c=0;c<21;c++)
 {
 hf4=hf4+x4[c]*h[c]; // enthalpy of zone 4 species at Tboil
 hf5=hf5+x5[c]*h[c]; // enthalpy of zone 5 species at Tboil
 }
 h5a=0;
 enthalpy(Tsm,h,Cp); // enthalpies at spray calculation temperature (T at SOI)
 for(i=0;i<21;i++)
 {
 h5a=h5a+x5[i]*h[i]; // enthalpy of zone 5 species at spray temp
 }
 dh4=(ad[1]-hf4)/MW4; // enthalpy change of zone 4 from flame temp to
 boiling temp
 dh5=(h5a-hf5)/MWa; // enthalpy change of zone 5 from spray calculation
 temp to boiling temp
 dho=0;
 LL1=LL;
 do // loop calculates minimum liquid length
 {
 rL=LL1*an*angle; // spray radius at liquid length
 v1=(PI/3)*(rL*rL*LL1)/1000000000; // spray volume to liquid length
 m1=rhoa*v1; // mass to liquid length
 m1b=m1-ma1a; // mass between lift -off and liquid length
 ma1b=rhoa*PI*rLf*rLf*(LL1-Lf)/1000000000; // mass of air
 between lift-off and liquid length
 mp1b=m1b-ma1b; // mass of products between lift -off and
 liquid length
 dh=((ma1a+ma1b)*dh5+mp1b*dh4)/(m1); // total enthalpy change
 deltadh=dh-dho; // change in dh (used to find solut ion)
 if(fabs(deltadh)>10 && dho>0)
 {
 dh=(dh+dho)/2; // if change in dh is to big use avg of old and
 new values (helps in finding solution)

 133

}
 liquidl(ll,fuel,fuelcomp,Tinj,T,rhoa,AFs,t,Ufuel,inj,MWa,0,te,dh,angle,
 l1); // use spray model to calculate new liquid length

 dLL=(LL1-ll[0]); // change in liquid length in loop
 LL1=ll[0]; // update variables
 dho=dh;
 }while(fabs(dLL)>.5); // when change in liquid length is small stop loop
 yy++; // insures minimum liquid length only calculated once
 LLd=(LL -LL1)/2; // size of step used to move liquid length back
 }
 if(yy>0) // move liquid length back with lift -off
 {
 if(yy>1)
 {
 LL=LL-LLd; // step liquid length back
 }
 if(LL<LL1)
 {
 LL=LL1; // minimum liquid length
 }
 yy++;
 }
 rL=LL*an*angle; // radius at liquid length

 // zone 1 calculations
 if(LS>LL) // volume of zone 1
 {
 v1=(PI/3)*(rL*rL*LL)/1000000000; // zone 1 vol when liquid length set up
 }
 else
 {
 v1=vS; // zone 1 vol before reaching liquid length
 }

liquidl(ll,fuel,fuelcomp,Tinj,Tsm,rhoa,AFs,t,Ufuel,inj,MWa,Cpas,te,0,angle,LL);
 // spray model to get time to reach liquid length

 mf1=mfdt*ll[6]*fuel[7]; // fuel mass in zone 1 using above time
 if(t>dur)
 {
 mf1=mfdt*(ll[6]-te)*fuel[7]; // fuel mass in zone 1 after EOI
 }
 if(mf1>mfS)
 {
 mf1=mfS; // fuel mass in zone 1 before reaching liquid length
 }
 v1=v1-ve; // volume of zone 1
 m1=rhoa*v1; // air mass in zone 1
 if(v1<=0) // if statements to calculate zone 1 masses for stages of spray
 development
 {
 m1=0; // zone 1 total mass after zone disappears
 v1=0;
 }
 if(Lfa>LL)
 {
 ma1=m1; // zone 1 masses before lift -off length moves back
 mp1=0;

 134

 mfp1=0;
 }
 if(Lfa<LL)
 {
 mp1=m1+me-rhoa*(PI/3)*(rLfa*rLfa*Lfa)/1000000000-
 rhoa*PI*rLfa*rLfa*(LL-Lfa)/1000000000; // zone 1 masses after lift-
 off length moves back
 ma1=m1-mp1;
 ma1p=mp1;
 mfp1=mp1/(AFs*MWa/fuel[7]);
 mp1=mp1+mfp1;
 }
 mf1u=mf1-mfp1;
 if(m1<=0)
 {
 mp1=0; // zone 1 masses after zone disappears
 ma1=0;
 ma1p=0;
 mfp1=0;
 mf1=0;
 mf1u=0;
 }
 T1m=fuel[1]*(m1+mf1); // mass*Temperature for zone 1

 // zone 2 calculations
 if(t<tid)
 {
 L2=LS; // before ignition zone 2 length is spray length
 }
 if(t<=tid) // volumes and masses of zone 2 for stages of spray development
 {
 v2=(PI/3)*(rS*rS*L2)/1000000000-v1; // zone 2 volume and mass before
 ignition
 if(v2<0)
 {
 v2=0;
 }
 m2=rhoa*v2;
 }
 if(t>tid && t<=tlf)
 {
 m2=m2-(m2-m2min)*A2*exp((-EA/(Ru*fuel[1]))); // zone 2 volume mass and
 length during exponential burn back
 v2=m2/rhoa;
 v12=v1+v2+ve;
 L2=pow(3*v12/(PI*an*angle*an*angle),.333333)*1000;
 }
 if(t>tlf && t<dur)
 {
 rL2=L2*an*angle; // zone 2 volume and mass after burn back and before
 EOI (L2 now constant)
 v2=(PI/3)*(rL2*rL2*L2)/1000000000-(PI/3)*(rL*rL*LL)/1000000000;
 m2=rhoa*v2;
 }
 if(t>dur)
 {

 135

 rL2=L2*an*angle; // zone 2 mass and volume after EOI (L2 moves with
 back end of spray)
 v2a=(PI/3)*(rL2*rL2*L2)/1000000000;
 v2=v2a-v1-ve;
 m2=rhoa*v2;
 }
 if(m2<0)
 {
 m2=0; // zone 2 mass and volume when zone disappears
 v2=0;
 }
 t1=0; // set up start and end of loop for stepping through zone 2
 t2=0;
 if(t<tid && LS>LL)
 {
 t1=LL; // start and end after zone 2 forms but before ignition
 t2=LS;
 }
 if(t>=tid)
 {
 t1=LL; // start and end after ignition
 t2=L2;
 }
 l1=LL;
 if(xe>=LL && xe<L2)
 {
 t1=xe; // start and end after EOI before zone disappears
 l1=t1;
 }
 if(xe>=L2 && xe>0)
 {
 t1=0; // start and end after zone disappears (0 steps)
 t2=0;
 }
 steps=ceil(4*(t2-t1)); // number of steps through zone 2
 if(steps==0)
 {
 ts=0; // step size after zone disappears (0 size)
 }
 else
 {
 ts=(t2-t1)/steps; // step size
 }
 T2m=0;
 mo=m1+me; // calculation uses energy balance including zone 1 so first mass is mass
 of one 1
 mfuelo=mf1+mfdt*te*fuel[7]; // first fuel mass is fuel in zone 1
 mf2=0;
 T2in=Tsm;
 ma=0;
 mp=0;
 mfp=0;
 for(i=0;i<steps;i++) // loop steps through zone 2
 {
 l1=l1+ts; // length to new step
 r=l1*an*angle; // radius at new step

 136

 v=(PI/3)*(r*r*l1)/1000000000; // volume at new step
 m=rhoa*v; // mass at new step
 ma=m; // composition of zone 2 air and fuel before lift -ff length moves back
 mp=0;
 if(l1>Lfa)
 {
 ma=rhoa*((PI/3)*(rLfa*rLfa*Lfa)+PI*rLfa*rLfa*
 (l1-Lfa))/1000000000; // mass of air in zone 2 after lift -off length
 moves
 mp=m-ma; // mass of products in zone 2 after lift -off length
 moves
 }
 mfp=mp/(AFs*MWa/fuel[7]); // mass of products including burned fuel
 mass in zone 2 after lift-off length moves
 liquidl(ll,fuel,fuelcomp,Tinj,Tsm,rhoa,AFs,t,Ufuel,inj,MWa,Cpas,te,0,angle,l1);
 mfuel=mfdt*ll[6]*fuel[7]; // fuel mass in new step

 Tx2=(mfuel*(-fuel[2]+fuel[0]*fuel[1])+ma*Cpas*T2in/MWa+
 mp*Cpp*Tad/MW4)/((mfuel-mfp)*fuel[0]+ma*Cpas/Mwa+(mp+mfp)*
 Cpp/MW4); // Temperature at position x in zone 2 from energy balance

 T2m=T2m+Tx2*(m-mo+mfuel-mfuelo); // sum of mass*Temperature in
 zone 2
 mf2=mf2+mfuel -mfuelo; // total fuel mass in zone 2
 mfuelo=mfuel; // update masses
 mo=m;
 if(flag10==0)
 {
 Tdel=Tx2; // save first temperature in zone 2 for ignition delay
 model
 flag10=1; // flag insures value only saved once
 }
 }
 if(flag11==0 && Tdel>0) // ignition delay model
 {
 tid=exp(-.0109*Tdel); // ignition delay calculated
 tid=tid*1000+t; // ignition delay added to time for current loop
 flag11=1; // insures delay only calculated once
 }
 T2r=Tx2; // last temperature in zone 2 saved for premixed burn model
 phi23=ll[7]; // equivalence ratio at the end of zone 2 for premixed burn model
 AF23=AFs/phi23; // air fuel ratio at the end of zone 2 for premixed burn model
 if(m2<=0)
 {
 L2=xe; // zone 2 length after EOI
 }
 rL2=L2*an*angle; // radius at end of zone 2
 m2a=0;
 m2p=0;
 mf2p=mfp;
 if(mf2p>mf2) // composition of zone 2
 {
 mf2p=mf2; // maximum burned fuel
 }
 mf2u=mf2-mf2p; // unburned fuel
 if(ma>0 && m2>0)
 {
 m2a=ma-m1-me; // mass of air in zone 2

 137

 m2p=mp+mf2p; // mass of products in zone 2 (air and fuel)
 if(xe>LL) // zone 2 masses as zone disappears
 {
 m2a=ma-rhoa*((PI/3)*(rLfa*rLfa*Lfa)+PI*rLfa*rLfa*
 (xe-Lfa))/1000000000;
 m2p=m2p-(me-rhoa*((PI/3)*(rLfa*rLfa*Lfa)+PI*rLfa*rLfa*
 (xe-Lfa))/1000000000);
 mf2p=m2p/(AFs*MWa/fuel[7]);
 }
 }

 // zone 3 calculations
 v3=vS-v1-v2-ve; // volume and mass of zone 3
 m3=mS-m1-m2-me;
 if(v3<0)
 {
 v3=0; // volume and mass of zone 3 if zone doesn't exist
 m3=0;
 }
 m3a=m3; // mass of air in zone 3
 if(flag7==1)
 {
 time0=ll[6]; // time to reach first step in zone 3 if stepping from zone 2 out
 if(m2<.000000010 && flag7==1)
 {

time0=te; // start time if zone disappearing and stepping from zone 2
 end

 }
 }
 else
 {
 liquidl(ll,fuel,fuelcomp,Tinj,T,rhoa,AFs,t ,Ufuel,inj,MWa,0,te,dh,angle,LS);
 time0=ll[6]; // time to reach first step in zone 3 if stepping from the tip
 back to zone 2
 }
 if(t<tid) // set up to step through zone 3
 {
 t1=0; // start and end before ignition
 t2=0;
 }
 else
 {
 t1=L2; // start and end after ignition stepping from the tip
 t2=LS;
 l1=t2;
 if(flag7==1)
 {
 l1=t1; // start and end after ignition stepping from zone 2
 flag9=1;
 }
 }
 if(xe>=L2)
 {
 t1=xe; // start and end after back end reaches zone 3 stepping from the tip
 l1=t1;
 l1=t2;

 138

 if(flag7==1)
 {
 l1=t1; // start and end after back end reaches zone 3 stepping from
 zone 2
 }
 }
 steps=ceil(4*(t2-t1)); // number of steps
 if(steps==0)
 {
 ts=0; // zero step size if zone doesn't exist
 }
 else
 {
 ts=(t2-t1)/steps; // step size
 }
 T3m=0;

 flag2=0;
 m3=0;
 m2ain=rhoa*PI*rL2*rL2*(ts)/1000000000; // mass of air from zone 2 in each step
 if(flag7==1)
 {
 ts=-ts; // reverse step size for stepping from zone 2 end
 }
 T2o=T2;
 T2=T2m/(m2+mf2); // zone 2 temperature
 if(m2<=0)
 {
 T2=T2o; // save zone 2 temp after zone 2 disappears
 }
 enthalpy(T2,h,Cp);
 enthalpy(T5,h1,Cp);
 h2a=0;
 h5a=0;
 for(i=0;i<21;i++)
 {
 h2a=h2a+x5[i]*h[i]; // enthalpy of zone 2 coming into zone 3
 h5a=h5a+x5[i]*h1[i]; // enthalpy of zone 5 coming into zone 3
 }
 for(ii=0;ii<21;ii++)
 {
 ms3[ii]=0; // initialize variables for loop
 }
 MW3=0;
 h3p=0;
 mf3=0;

 flag1=0; // first loop has equilibrium code make first mole fraction guess
 for(i=0;i<steps;i++) // step through zone 3
 {
 l0=l1; // length at start of step
 r0=l0*an*angle; // radius at start
 l1=l1-ts; // length at end
 r1=l1*an*angle; // radius at end
 v=(PI/3)*(r0*r0*l0-r1*r1*l1)/1000000000; // step volume moving from tip
 if(flag7==1 && flag9==1)

 139

 {
 v=(PI/3)*(r1*r1*l1-r0*r0*l0)/1000000000; // step volume moving
 from zone 2
 }
 m=rhoa*v; // air mass in step
 m5in=m-m2ain; // mass from zone 5 in step
 hr1=(m2ain/MWa*h2a+m5in/MWa*h5a)/(m2ain/MWa+m5in/MWa);
 // enthalpy of reactants in step
 liquidl(ll,fuel,fuelcomp,Tinj,Tsm,rhoa,AFs,t,Ufuel,inj,MWa,Cpas,te,0,angle,l1);
 mfuel=fuel[7]*mfdt*(time0-ll[6]); // fuel mass in step moving from tip
 if(ll[6]>time0)
 {
 mfuel=fuel[7]*mfdt*(ll[6]-time0); // fuel mass in step moving from
 zone 2
 }
 if(ll[7]<1.3)
 {
 flag7=1; // change direction of steps when phi at tip reaches 1.3

 }
 if(flag1==0)
 {
 ad3[0]=1900; // flag sets initial temperature guess for loop
 calculation
 flag2=1;
 }
 adiabatic(ad3,P,hr1,x3a,fuelcomp,ll[7],flag1,flag2,no1); // determine
 temperature at position x using adiabatic flame
 flag1=1; // after first loop uses result from last loop as temperature and
 mole fraction guess for next loop
 flag2=1;
 T3m=T3m+ad3[0]*(m+mfuel); // sum mass*temperature for zone 3
 m3=m3+m; // total air mass in zone 3
 mf3=mf3+mfuel; // total fuel mass in zone 3
 time0=ll[6];
 for(ii=0;ii<21;ii++)
 {
 ms3[ii]=ms3[ii]+x3a[ii]*(m+mfuel); // total mass of individual
 products in zone 3
 x3a[ii]=0;
 }

 }
 T3p=ad3[0]; // temperature and enthalpy of step next to zone 2 for premixed burn
 model
 h3p=ad3[1];
 ms5=ms5a-(m1+m2+m3)*holes; // mass in zone 5
 MW3=0;
 for(i=0;i<21;i++)
 {
 x3[i]=ms3[i]/(m3+mf3); // mole fractions of products in zone 3
 MW3=MW3+x3[i]*MW[i]; // molecular weight of products in zone 3
 }
 x3fuel=0;

 // premixed burn duration model

 140

 if(m3>0)
 {
 if(flag6==0)
 {
 Tpm=T2r; // temperature at the start of the model (temperature
 at the end of zone 2)

 cfuel=1-(1/(1+1/AF23)); // fuel mole fraction
 xfuelpma=cfuel; // save initial fuel mole fraction
 cO2=x5[7]*(1-cfuel); // oxygen mole fraction
 h2r=0;
 enthalpy(T2r,h,Cp);
 for(i=0;i<21;i++)
 {
 h2r=h2r+x5[i]*(1-cfuel)*h[i]; // enthalpy of air for last
 zone 2 temp
 }
 trf=T2r/1000; // reduced temperature for fuel enthalpy curve fit
 hfuel=4184*(-9.1063*trf+246.97*trf*trf/2 -143.74*trf*trf*trf/3+
 32.329*trf*trf*trf*trf/4-.0518/trf-50.128);
 // fuel enthalpy curve fit (for diesel fuel)
 h2r=h2r+cfuel*hfuel; // enthalpy from zone 2 including fuel
 cfuel=cfuel*P/(Ru*Tpm)/1000; // fuel concentration
 cO2=cO2*P/(Ru*Tpm)/1000; // oxygen concentration
 cO2a=cO2; // save initial oxygen concentration

 // slopes below allow calculation of oxygen concentration temperature
 and enthalpy assuming the changes are linear between the end of zone
 2 and the beginning of zone 3
 sl1=cO2/cfuel; // change of oxygen concentration with changing fuel
 concentration
 sl2=(T3p-T2r)/cO2; // change of temperature with changing
 oxygen concentration
 timepm=0;
 do
 {

dfuel=-380000000000*exp((-15098)/Tpm)*pow(cfuel,.25)
 pow(cO2,1.5).25/(.006*RPM)/1000;
 // change in fuel concentration

 cfuel=cfuel+dfuel; // new fuel concentration
 if(cfuel<=0)
 {
 cfuel=0; // insures concentration can't go negative
 }
 cO2=sl1*cfuel; // oxygen concentration using above slope
 Tpm=T2r+sl2*(cO2a-cO2); // temperature using above slope
 xfuelpm=cfuel*Ru*T2r*1000/P; // mole fraction of fuel
 xairpm=xfuelpm*AF23; // mole fraction of unburned air
 xafbpm=1-(xairpm+xfuelpm); // mole fraction of
 products

hpm=h2r*(xfuelpm+xairpm)/MWa+h3p*xafbpm/MW3;
 // energy in premixed burn

 hpm=holes*((m2+mf2)+(m3+mf3))*hpm;

 if(hpm-holes*((m2+mf2)+(m3+mf3))*h2r/Mwa
 >=holes*(mf1)*fuel[2])

 141

 {
 timepm=timepm+.25/(.006*RPM); // if the change in
 energy for the premixed burn is greater than the
 energy required to vaporize the fuel then add time to
 the premixed burn duration
 }
 }while(cfuel>0.000001); // when the fuel concentration is
 small end loop
 flag6=1; // insures premixed burn duration only calculated once
 }
 // Heat Release model
 liquidl(ll,fuel,fuelcomp,Tinj,Tsm,rhoa,AFs,t,Ufuel,inj,MWa,Cpas,te,0,angle,Lf);
 tlfq=ll[6]; // time to reach lift-off length for the heat release model
 mfq=mfS-(tlfq-te)*mfdt*fuel[7]; // fuel burned in heat release
 rlf=Lf*an*angle;
 maq=m1+m2+m3+me-rhoa*(PI/3)*(rlf*rlf*Lf)/1000000000; // air in heat
 release
 if(t>tstoic && tstoic!=0) // equivalence ratio and products for spray beyond
 phi=1
 {
 maqs=m1+m2+m3+me-mstoic; // mass of air beyond flame length
 mfqs=mfdt*(t-tstoic)*fuel[7]; // mass of fuel beyond flame length
 phi=(AFs*MWa/fuel[7])/(maqs/mfqs); // equivalence ratio
 beyond flame length
 phia=phi; // save phi
 rst[0]=(C+0.25*H-0.5*O)/phi; //r0 // simplifying constants
 for stoichiometry
 rst[1]=0.5*O+rst[0]; //r
 rst[2]=0.5*N+3.7274*rst[0]; //r'
 rst[3]=0.0444*rst[0]; //r"
 Nsum=H/4+rst[2]+rst[3]+rst[0]+O/2;
 // total number of moles
 x3b[7]=(rst[0]+O/2-C-H/4)/Nsum; // O2 // products beyond flame
 length assuming ideal combustion
 x3b[8]=(H/2)/Nsum; // H2O
 x3b[9]=C/Nsum; // CO2
 x3b[10]=rst[2]/Nsum; // N2
 x3b[11]=rst[3]/Nsum; // Ar
 x3fuel=0;
 enthalpy(298,h,Cp);

 MWPs=0;
 HRs=0;
 HPs=0;
 xsum=0;
 for(i=0;i<21;i++) // energy beyond phi=1 at 298 K
 {
 HRs=HRs+x5[i]*h[i]; // enthalpy of reactants
 HPs=HPs+x3b[i]*h[i]; // enthalpy of products
 MWPs=MWPs+x3b[i]*MW[i]; // molecular weight of
 products
 xsum=xsum+x3b[i]; // add up mole fractions
 x3b[i]=0;
 }
 }

 142

 if(t>tstoic && tstoic!=0) // equivalence ratio and products for spray before
 phi=1
 {
 maq=maq-maqs; // air before flame length
 mfq=mfq-mfqs; // fuel before flame length
 }
 phi=(AFs*MWa/fuel[7])/((maq)/(mfq)); // equivalence ratio before flame
 length
 rst[0]=(C+0.25*H-0.5*O)/phi; // simplifying constants for stoichiometry
 rst[1]=1-1/phi;
 rst[2]=C-rst[1]*C;
 rst[3]=H/2 -rst[1]*H/2;
 rst[4]=N/2 -rst[1]*N/2+rst[0]*3.7274;
 rst[5]=rst[0]*.0444;
 Nsum=rst[1]+rst[2]+rst[3]+rst[4]+rst[5]; // total number of moles
 x3b[8]=rst[3]/Nsum; // H2O // products before flame length
 assuming ideal combustion
 x3b[9]=rst[2]/Nsum; // CO2
 x3b[10]=rst[4]/Nsum; // N2
 x3b[11]=rst[5]/Nsum; // Ar
 x3fuel=rst[1]/Nsum; // unburned fuel
 enthalpy(298,h,Cp);
 MWP=0;
 HR=0;
 HP=0;
 xsum=0;
 for(i=0;i<21;i++) // energy before phi=1 at 298 K
 {
 HR=HR+x5[i]*h[i]; // enthalpy of reactants
 HP=HP+x3b[i]*h[i]; // enthalpy of products
 MWP=MWP+x3b[i]*MW[i]; // molecular weight of products
 xsum=xsum+x3b[i]; // add up mole fractions
 }
 xsum=xsum+x3fuel; // add mole fractions including fuel
 hfuel=4184*(-9.1063*.298+246.97*.298*.298/2 -143.74*.298*.298*.298/3+
 32.329*.298*.298*.298*.298/4-.0518/.298-50.128);
 // enthalpy of fuel at 298 K
 HP=HP+x3fuel*fuel[5]; // enthalpy of products including unburned fuel
 MWP=MWP+x3fuel*fuel[7]; // molecular weight of products including
 unburned fuel

MWR=((maq+maqs)*MWa+(mfq+mfqs)*fuel[7])/(maq+mfq+maqs+mfqs);
 // molecular weight of the reactants unto flame length and beyond
 flame length

HR=((maq+maqs)*(HR/MWa)+(mfq+mfqs)*(hfuel)/fuel[7])/
 (maq+mfq+maqs+mfqs); // enthalpy of the reactants up to
 flame length and beyond flame length

 Qn=-((HP/MWP)*(maq+mfq)/(maq+mfq+maqs+mfqs)+
 (HPs/MWPs)*(maqs+mfqs)/(maq+mfq+maqs+mfqs)-
 HR)*((maq+mfq+maqs+mfqs)); // heat released by fuel burning
 }
 trf=T/1000;
 hfuel=4184*(-9.1063*trf+246.97*trf*trf/2 -143.74*trf*trf*trf/3+32.329*trf*trf*trf*trf/4-
 .0518/trf-50.128)-fuel[5]; // fuel enthalpy at cylinder temperature

mfn=mf1+mf2+mf3; // total fuel mass in this CA step
 mfst=mfn-mfo; // added fuel mass in CA step

 143

 mfo=mfn; // save old fuel mass for next loop
 enthalpy(Tsm,h,Cp);
 enthalpy(fuel[1],h1,Cp);
 for(hT=0,hTs=0,i=0;i<21;i++)
 {
 hT=hT+x5[i]*h[i]; // enthalpy of air at spray model temperature
 hTs=hTs+x5[i]*h1[i]; // enthalpy of air at fuel boiling temperature
 }
 if(t<=tid)
 {
 Qs=m1c*(hT-hTs)/MWa; // energy to vaporize fuel
 }
 if(m3>0)
 {
 Qs=0; // after ignition turn off vaporization
 }
 if(t>=tid && flag8==0) // slow premixed burn spike
 {
 Qid=Qn-Qo; // heat released in first step (at ignition delay)
 tq=.25/(.006*RPM); // time for a CA
 tqt=(timepm*.006*RPM*tq*4); // total time for premixed burn
 flag8=1; // insures only calculate this once
 }
 if(t>=tid && tq<=tqt)
 {
 Qn=Qn-Qid+Qid*(1-(.5*cos(PI*tq/tqt)+.5)); // function spreads heat
 release from first step over time given by premixed burn model using a
 cosine function
 tq=tq+.25/(.006*RPM); // adds tq to know when premixed burn is over
 }
 w=C1+C2*Vd*Tr/(Pr*Vr)*(P-Pm); // heat transfer model variable

 hc=(3.26*pow(B, -.2)*pow(P,.8)*pow(T,-.55)*pow(w,.8)/1000)*Ach*(T -600)*
 (.25/(.006*RPM))/1000; // heat transfer
 //hc=0; // zeros heat transfer correlation - can be uncommented to neglect heat transfer
 Qstep=Qn-Qo-Qs-.25*hc/holes; // heat release for 1/4 CA step
 if(m3<=0)
 {
 Qstep=-Qs; // heat release is vaporization only before ignition
 MWP=1;
 }
 Qo=Qn; // update variables
 Qn=0;
 U2=U1-P*(Vf-Vi)+Qstep*holes+mfst*hfuel*holes/fuel[7]; // internal energy

 // secant method using enthalpy to get avg Temperature
 Ta1=T; // temperature guesses for secant method
 Ta2=T+50;
 trf=Ta1/1000;
 enthalpy(Ta1,h,Cp);
 for(E=0,Ea=0,i=0;i<21;i++)
 {
 E=E+x5[i]*(h[i]-hf[i]);
 // air enthalpy at first temperature guess
 Ea=Ea+x3b[i]*(h[i]-hf[i]);
 // products enthalpy at first temperature guess

 144

 }
 hfuel=4184*(-9.1063*trf+246.97*trf*trf/2 -143.74*trf*trf*trf/3+32.329*trf*trf*trf*trf/4-
 .0518/trf-50.128)-fuel[5]; // fuel enthalpy at first temperature guess
 Ea=Ea+x3fuel*hfuel;
 E=E*(ms5a-(maq+maqs)*holes)/MWa+Ea*holes*(maq+mfq+maqs+mfqs)/MWP+
 hfuel*holes*(mfS-mfq-mfqs)/fuel[7]-P*(Vf); // total enthalpy at first
 temperature guess
 q0=U2-E; // secant method function at first temperature guess
 trf=Ta2/1000;
 enthalpy(Ta2,h,Cp);
 for(E1=0,Ea1=0,i=0;i<21;i++)
 {
 E1=E1+x5[i]*(h[i] -hf[i]); // air enthalpy at second temperature guess
 Ea1=Ea1+x3b[i]*(h[i] -hf[i]); // products enthalpy at second temperature
 guess
 }
 hfuel=4184*(-9.1063*trf+246.97*trf*trf/2 -143.74*trf*trf*trf/3+32.329*trf*trf*trf*trf/4-
 .0518/trf-50.128)-fuel[5]; // fuel enthalpy at second temperature guess
 Ea1=Ea1+x3fuel*hfuel;
 E1=E1*(ms5a-(maq+maqs)*holes)/MWa+Ea1*holes*(maq+mfq+maqs+mfqs)/MWP+
 hfuel*holes*(mfS-mfq-mfqs)/fuel[7]-P*(Vf); // total enthalpy at second
 temperature guess

q1=U2-E1; // secant method function at second temperature guess
 do
 {

 dq=(q1-q0); // change in function
 Ta3=Ta2-q1*((Ta2-Ta1)/dq); // new temperature guess
 Ta1=Ta2; // update variables
 q0=q1;
 Ta2=Ta3;
 trf=Ta3/1000;
 enthalpy(Ta3,h,Cp);
 for(E2=0,Ea2=0,i=0;i<21;i++)
 {
 E2=E2+x5[i]*(h[i] -hf[i]); // air enthalpy at subsequent temperature
 guess
 Ea2=Ea2+x3b[i]*(h[i] -hf[i]); // products enthalpy at subsequent
 temperature guess
 }
 hfuel=4184*(-9.1063*trf+246.97*trf*trf/2 -143.74*trf*trf*trf/3+
 32.329*trf*trf*trf*trf/4-.0518/trf-50.128)-fuel[5]; // fuel enthalpy at
 subsequent temperature guess
 Ea2=Ea2+x3fuel*hfuel;
 E2=E2*(ms5a-(maq+maqs)*holes)/MWa+
 Ea2*holes*(maq+mfq+maqs+mfqs)/MWP+
 hfuel*holes*(mfS-mfq-mfqs)/fuel[7]-P*(Vf); // total enthalpy
 at subsequent temperature guess
 q1=U2-E2; // secant method function at subsequent temperature guess
 }while(fabs(q1)>.00001); // end when function small
 enthalpy(Ta3,h,Cp);
 for(Cp5=0,Cp3=0,i=0;i<21;i++)
 {
 Cp5=Cp5+x5[i]*Cp[i]; // specific heat of air
 Cp3=Cp3+x3b[i]*Cp[i] ; // specific heat of products
 }
 trf=Ta3/1000;

 145

 Cpf=4.184*(-9.1063+246.97*trf-143.74*trf*trf+32.329*trf*trf*trf+.0518/(trf*trf));
 // specific heat of fuel
 Cp3=Cp3+x3fuel*Cpf;
 Cpt=(Cp5*(ms5a-(maq+maqs)*holes)+Cp3*holes*(maq+mfq+maqs+mfqs)+
 fuel[0]*holes*(mfS-mfq-mfqs))/(ms5a+mfS); // avg specific heat
 T=Ta3; // new cylinder Temperature
 P=((ms5a-(maq+maqs)*holes)/MWa+holes*(maq+mfq+maqs+mfqs)/MWP+
 holes*(mfS-mfq-mfqs)/fuel[7])*Ru*T/(Vf); // new cylinder pressure
 U1=U2; // update energy
 enthalpy(T1m/(m1+mf1),h,Cp); // enthalpies at zone 1 temperature
 h1a=0;
 h1p=0;
 for(i=0;i<21;i++)
 {
 h1a=h1a+x5[i]*(h[i]-hf[i]); // air enthalpy in zone 1
 h1p=h1p+x4[i]*(h[i] -hf[i]); // product enthalpy in zone 1
 }
 m1fv=(ma1*(h5a-h1a)/MWa)/(fuel[2]); // fuel enthalpy in zone 1
 E1=(ma1*h1a/MWa+(mp1+mfp1)*h1p/MW4+m1fv*fuel[2]);
 // energy in zone 1
 enthalpy(T2m/(m2+mf2),h,Cp); // enthalpies at zone 2 temperature
 h2a=0;
 h2p=0;
 for(i=0;i<21;i++)
 {
 h2a=h2a+x5[i]*(h[i]-hf[i]); // air enthalpy in zone 2
 h2p=h2p+x4[i]*(h[i] -hf[i]); // product enthalpy in zone 2
 }
 E2=(m2a*h2a/MWa+m2p*h2p/MW4+mf2u*fuel[0]*(T2m/(m2+mf2)-fuel[1]));
 // energy in zone 2
 enthalpy(T3m/(m3+mf3),h,Cp); // enthalpies at zone 3 temperature
 h3p=0;
 for(i=0;i<21;i++)
 {
 h3p=h3p+x3[i]*(h[i] -hf[i]); // product enthalpy in zone 3
 }
 E3=((m3+mf3)*h3p/MW3); // energy in zone 3
 if(m1<=0) // set energies of zones to zero if zone doesn't exist
 {
 E1=0;
 }
 if(m2<=0)
 {
 E2=0;
 }
 if(m3<=0)
 {
 E3=0;
 }
 E5=U2-(E1+E2+E3)*holes+P*Vf; // energy in zone 5

 // secant method using energy in zone 5 to get Temperature of zone 5
 Ta1=1000; // temperature guesses
 Ta2=T+50;
 trf=Ta1/1000;
 enthalpy(Ta1,h,Cp);

 146

 for(E=0,i=0;i<21;i++)
 {
 E=E+x5[i]*(h[i]-hf[i]); // zone 5 energy at first guess
 }

 q0=E5*MWa/(ms5)-E; // secant method function at first guess
 enthalpy(Ta2,h,Cp);
 for(Ea1=0,i=0;i<21;i++)
 {
 Ea1=Ea1+x5[i]*(h[i]-hf[i]); // zone 5 energy at second guess
 }
 q1=E5*MWa/(ms5)-Ea1; // secant method function at second guess
 do
 {
 dq=(q1-q0);
 Ta3=Ta2-q1*((Ta2-Ta1)/dq);
 Ta1=Ta2;
 q0=q1;
 Ta2=Ta3;
 enthalpy(Ta3,h,Cp);
 for(Ea2=0,i=0;i<21;i++)
 {
 Ea2=Ea2+x5[i]*(h[i]-hf[i]); // zone 5 energy at subsequent
 guess
 }
 q1=E5*MWa/(ms5)-Ea2; // secant method function at subsequent
 guess
 }while(fabs(q1)>.00001);
 T5=Ta3; // zone 5 Temperature
 V5=((ms5/holes)/MWa*Ru*T5)/P; // zone 5 volume
 Vsq=Vf/holes- V5; // actual spray volume
 Ecyl2=holes*(E1+E2+E3)+E5-P*Vf; // cylinder energy using zone energies
 Ttot=(holes*(T1m+T2m+T3m)+T5*ms5)/(holes*(m1+mf1+m2+mf2+m3)+ms5);
 // mass averaged temperature for all zones
 Ecyl=Ecyl-P*(Vf-Vi); // cylinder energy using PdV
 fprintf(output,"%.2lf %lf %lf %lf %lf %lf %.10lf %.10lf

 %.10lf %.10lf\n",(S+j/4),T,P,Vf*1000,t,U2,Ecyl2,LL,LS,hc); // print
 output file

 Vi=Vf; // update volume
 printf("CA=%.2lf \n",S+j/4); // print crank angle to the screen to watch progress
 fprintf(check,"%.10lf %.10lf %.10lf %.10lf %.10lf %.10lf %.10lf %.10lf

 %.10lf %.10lf %.10lf\n",S+j/4,S+tid*.006*RPM,S+dur*.006*RPM,
 S+tstoic*.006*RPM,timepm*.006*RPM,LS,E1,E2,m3,tstoic,Tad); // print
 check file

 j++; // add for next theta calculation
 }while(phi>=1.1 || phi==0 || Qstep>0); // end when all fuel is burned and all heat is released
 in1[0]=T; // send variables to main
 in1[1]=P;
 in1[2]=Vf;
 in1[3]=(S+j/4);
 in1[6]=Ecyl2;
 in1[7]=Pm;
 in1[8]=Tm;
 fclose(check);
 return; // return to main program
}

 147

/*--*/
/* product enthalpy and Cp curve fits from Turns */
/* units */
/* h=kJ/kmol */
/* Cp=kJ/kmol*K */

void enthalpy(double T, double h[], double Cp[])
{
 int i; // h fit=h0/Ru*T Cp fit=Cp/Ru
 if (T < 1000) // curve fits below 1000 K
 {
 h[0]= (2.50000000)+ (2.547162e+4)/T; // H
 h[1]= 2.94642800 - (1.63816650e-3/2)*T + (2.42103100e-6/3)*T*T -
 (1.60284310e-9/4)*T*T*T + (3.89069600e-13/5)*T*T*T*T +
 2.91476400e+4/T; // O
 h[2]= 2.50307100 - (2.18001800e-5/2)*T + (5.42052900e-8/3)*T*T -
 (5.6475600e-11/4)*T*T*T + (2.09990400e-14/5)*T*T*T*T +
 5.60989000e+4/T; // N
 h[3]= 3.29812400 + (8.24944100e-4/2)*T - (8.14301500e-7/3)*T*T -
 (9.4754340e-11/4)*T*T*T + (4.13487200e-13/5)*T*T*T*T -
 1.01252090e+3/T; // H2
 h[4]= 3.63726600 + (1.85091000e-4/2)*T - (1.67616460e-6/3)*T*T +
 (2.38720200e-9/4)*T*T*T - (8.43144200e-13/5)*T*T*T*T +
 3.60678100e+3/T; // OH
 h[5]= 3.26245100 + (1.51194090e-3/2)*T - (3.88175500e-6/3)*T*T +
 (5.58194400e-9/4)*T*T*T - (2.47495100e-12/5)*T*T*T*T -
 1.43105390e+4/T; // CO
 h[6]= 3.37654100 + (1.25306340e-3/2)*T - (3.30275000e-6/3)*T*T +
 (5.21781000e-9/4)*T*T*T - (2.44626200e-12/5)*T*T*T*T +
 9.81796100e+3/T; // NO
 h[7]= 3.21293600 + (1.12748640e-3/2)*T - (5.75615000e-7/3)*T*T +
 (1.31387730e-9/4)*T*T*T - (8.76855400e-13/5)*T*T*T*T -
 1.00524900e+3/T; // O2
 h[8]= 3.38684200 + (3.47498200e-3/2)*T - (06.3546960e-6/3)*T*T +
 (6.96858100e-9/4)*T*T*T - (2.50658800e-12/5)*T*T*T*T -
 3.02081100e+4/T; // H2O
 h[9]= 2.27572400 + (9.92207200e-3/2)*T - (1.04091130e-5/3)*T*T +
 (6.86668600e-9/4)*T*T*T - (2.11728000e-12/5)*T*T*T*T -
 4.83731400e+4/T; // CO2
 h[10]= 3.29867700 + (1.40824040e-3/2)*T - (3.96322200e-6/3)*T*T +
 (5.64151500e-9/4)*T*T*T - (2.44485400e-12/5)*T*T*T*T -
 1.02089990e+3/T; // N2

h[11]=20.786*(T-298); // Ar
 h[12]= 3.68923622 + (2.21810144e-3/2)*T + (5.23238676e-6/3)*T*T -
 (6.63176827e-9/4)*T*T*T + (2.60202183e-12/5)*T*T*T*T +
 1.62901205e+4/T; // CH3
 h[13]= 4.41637060 - (8.70015194e-3/2)*T + (3.76291670e-5/3)*T*T -
 (3.77618177e-8/4)*T*T*T + (1.30862920e-11/5)*T*T*T*T -
 1.01996733e+4/T; // CH4
 h[14]=-.511756038 + (3.30314770e-2/2)*T - (6.05469976e-5/3)*T*T +
 (5.56486251e-8/4)*T*T*T - (1.94703892e-11/5)*T*T*T*T +
 2.63899141e+4/T; // C2H2
 h[15]= 1.32064875 + (1.15017616e-2/2)*T + (9.19263758e-6/3)*T*T -
 (1.90607146e-8/4)*T*T*T + (8.37926993e-12/5)*T*T*T*T +
 5.35820211e+3/T; // C2H4

 148

 h[16]= 1.28342106 + (2.13645232e-2/2)*T - (6.21251824e-5/3)*T*T +
 (8.20045112e-8/4)*T*T*T - (3.87470151e-11/5)*T*T*T*T +
 1.92381451e+4/T; // NH2
 h[17]= 3.80198217 - (1.28349450e-3/2)*T + (1.35478900e-5/3)*T*T -
 (1.46019990e-8/4)*T*T*T + (5.34854690e-12/5)*T*T*T*T -
 6.69042791e+3/T; // NH3
 h[18]= 1.53227086 + (1.55889172e-2/2)*T - (2.82817979e-5/3)*T*T +
 (2.70534804e-8/4)*T*T*T - (9.89830250e-12/5)*T*T*T*T +
 1.53063256e+4/T; // HCN
 h[19]= 4.82297645 - (7.66026577e-3/2)*T + (2.57241316e-5/3)*T*T -
 (2.76736722e-8/4)*T*T*T + (1.04823181e-11/5)*T*T*T*T +
 1.84213318e+2/T; // HCO
 h[20]= 2.46718716 + (1.02134320e-2/2)*T - (1.50930296e-5/3)*T*T +
 (1.30319012e-8/4)*T*T*T - (4.51091001e-12/5)*T*T*T*T +
 5.62901687e+4/T; // C2H

 Cp[0]= 2.5; // H
 Cp[1]= 2.94642800 - (1.63816650e-3)*T + (2.42103100e-6)*T*T -
 (1.60284310e-9)*T*T*T + (3.89069600e-13)*T*T*T*T; // O
 Cp[2]= 2.50307100 - (2.18001800e-5)*T + (5.42052900e-8)*T*T -
 (5.6475600e-11)*T*T*T + (2.09990400e-14)*T*T*T*T; // N
 Cp[3]= 3.29812400 + (8.24944100e-4)*T - (8.14301500e-7)*T*T -
 (9.4754340e-11)*T*T*T + (4.13487200e-13)*T*T*T*T; // H2
 Cp[4]= 3.63726600 + (1.85091000e-4)*T - (1.67616460e-6)*T*T +
 (2.38720200e-9)*T*T*T - (8.43144200e- 13)*T*T*T*T; // OH
 Cp[5]= 3.26245100 + (1.51194090e-3)*T - (3.88175500e-6)*T*T +
 (5.58194400e-9)*T*T*T - (2.47495100e- 12)*T*T*T*T; // CO
 Cp[6]= 3.37654100 + (1.25306340e-3)*T - (3.30275000e-6)*T*T +
 (5.21781000e-9)*T*T*T - (2.44626200e- 12)*T*T*T*T; // NO
 Cp[7]= 3.21293600 + (1.12748640e-3)*T - (5.75615000e-7)*T*T +
 (1.31387730e-9)*T*T*T - (8.76855400e- 13)*T*T*T*T; // O2
 Cp[8]= 3.38684200 + (3.47498200e-3)*T - (06.3546960e-6)*T*T +
 (6.96858100e-9)*T*T*T - (2.50658800e- 12)*T*T*T*T; // H2O
 Cp[9]= 2.27572400 + (9.92207200e-3)*T - (1.04091130e-5)*T*T +
 (6.86668600e-9)*T*T*T - (2.11728000e- 12)*T*T*T*T; // CO2
 Cp[10]= 3.29867700 + (1.40824040e-3)*T - (3.96322200e-6)*T*T +
 (5.64151500e-9)*T*T*T - (2.44485400e- 12)*T*T*T*T; // N2
 Cp[11]=20.786; // Ar
 Cp[12]= 3.68923622 + (2.21810144e-3)*T + (5.23238676e-6)*T*T -
 (6.63176827e-9)*T*T*T + (2.60202183e-12)*T*T*T*T; // CH3
 Cp[13]= 4.41637060 - (8.70015194e-3)*T + (3.76291670e-5)*T*T -
 (3.77618177e-8)*T*T*T + (1.30862920e-11)*T*T*T*T; // CH4
 Cp[14]=-.511756038 + (3.30314770e-2)*T - (6.05469976e-5)*T*T +
 (5.56486251e-8)*T*T*T - (1.94703892e- 11)*T*T*T*T; // C2H2
 Cp[15]= 1.32064875 + (1.15017616e-2)*T + (9.19263758e-6)*T*T -
 (1.90607146e-8)*T*T*T + (8.37926993e-12)*T*T*T*T; // C2H4
 Cp[16]= 1.28342106 + (2.13645232e-2)*T - (6.21251824e-5)*T*T +
 (8.20045112e-8)*T*T*T - (3.87470151e- 11)*T*T*T*T; // NH2
 Cp[17]= 3.80198217 - (1.28349450e-3)*T + (1.35478900e-5)*T*T -
 (1.46019990e-8)*T*T*T + (5.34854690e-12)*T*T*T*T; // NH3
 Cp[18]= 1.53227086 + (1.55889172e-2)*T - (2.82817979e-5)*T*T +
 (2.70534804e-8)*T*T*T - (9.89830250e- 12)*T*T*T*T; // HCN
 Cp[19]= 4.82297645 - (7.66026577e-3)*T + (2.57241316e-5)*T*T -
 (2.76736722e-8)*T*T*T + (1.04823181e-11)*T*T*T*T; // HCO
 Cp[20]= 2.46718716 + (1.02134320e-2)*T - (1.50930296e-5)*T*T +
 (1.30319012e-8)*T*T*T - (4.51091001e- 12)*T*T*T*T; // C2H

 149

 }
 else // curve fits above 1000 K
 {
 h[0]= (2.5) + (2.547162e+4)/T; // H
 h[1]= 2.54205900 - (2.75506100e-5/2)*T - (3.10280300e-9/3)*T*T +
 (4.55106700e-12/4)*T*T*T - (4.36805100e-16/5)*T*T*T*T +
 2.92308000e+4/T; // O
 h[2]= 2.45026800 + (1.06614580e-4/2)*T - (7.46533700e-8/3)*T*T +
 (1.87965200e-11/4)*T*T*T - (1.02598390e-15/5)*T*T*T*T +
 5.61160400e+4/T; // N
 h[3]= 2.99142300 + (7.00064400e-4/2)*T - (5.63382800e-8/3)*T*T -
 (9.23157800e-12/4)*T*T*T + (1.58275190e-15/5)*T*T*T*T -
 8.35034000e+2/T; // H2
 h[4]= 2.88273000 + (1.01397430e-3/2)*T - (2.27687700e-7/3)*T*T +
 (2.17468300e-11/4)*T*T*T - (5.12630500e-16/5)*T*T*T*T +
 3.88688800e+3/T; // OH
 h[5]= 3.02507800 + (1.44268850e-3/2)*T - (5.63082700e-7/3)*T*T +
 (1.01858130e-10/4)*T*T*T - (6.91095100e-15/5)*T*T*T*T -
 1.42683500e+4/T; // CO
 h[6]= 3.24543500 + (1.26913830e-3/2)*T - (5.01589000e-7/3)*T*T +
 (9.16928300e-11/4)*T*T*T - (6.27541900e-15/5)*T*T*T*T +
 9.80084000e+3/T; // NO
 h[7]= 3.69757800 + (6.13519700e-4/2)*T - (1.25884200e-7/3)*T*T +
 (1.77528100e-11/4)*T*T*T - (1.13643540e-15/5)*T*T*T*T -
 1.23393010e+3/T; // O2
 h[8]= 2.67214500 + (3.05629300e-3/2)*T - (8.73026000e-7/3)*T*T +
 (1.20099640e-10/4)*T*T*T - (6.39161800e-15/5)*T*T*T*T -
 2.98992100e+4/T; // H2O
 h[9]= 4.45362300 + (3.14016800e-3/2)*T - (1.27841050e-6/3)*T*T +
 (2.39399600e-10/4)*T*T*T - (1.66903330e-14/5)*T*T*T*T -
 4.89669600e+4/T; // CO2
 h[10]= 2.92664000 + (1.48797680e-3/2)*T - (5.68476000e-7/3)*T*T +
 (1.00970380e-10/4)*T*T*T - (6.75335100e-15/5)*T*T*T*T -
 9.22797700e+2/T; // N2
 h[11]=20.786*(T-298); // Ar
 h[12]= 2.22212302 + (7.39133106e-3/2)*T - (3.11253645e-6/3)*T*T +
 (6.38016845e-10/4)*T*T*T - (5.17254389e-14/5)*T*T*T*T +
 1.66655631e+4/T; // CH3
 h[13]= .392678561 + (1.28941183e-2/2)*T - (5.77810964e-6/3)*T*T +
 (1.24667029e-9/4)*T*T*T - (1.05358046e-13/5)*T*T*T*T -
 9.61781722e+3/T; // CH4
 h[14]=90.13224340 - (1.73064598e-1/2)*T + (1.29168005e-4/3)*T*T -
 (3.99831826e-8/4)*T*T*T + (4.36915115e-12/5)*T*T*T*T -
 5.24468020e+3/T; // C2H2
 h[15]= 2.23392408 + (1.42680731e-2/2)*T - (6.47812640e-6/3)*T*T +
 (1.41470155e-9/4)*T*T*T - (1.20851028e-13/5)*T*T*T*T +
 4.86652922e+3/T; // C2H4
 h[16]= 2.31926713 + (4.10124638e-3/2)*T - (1.57101097e-6/3)*T*T +
 (2.89579692e-10/4)*T*T*T - (2.09174615e-14/5)*T*T*T*T +
 1.94327270e+4/T; // NH2
 h[17]= 2.04193887 + (6.84131719e-3/2)*T - (2.51635499e-6/3)*T*T +
 (4.54017540e-10/4)*T*T*T - (3.31789419e-14/5)*T*T*T*T -
 6.32570110e+3/T; // NH3
 h[18]= 3.42707507 + (3.95250318e-3/2)*T - (1.64192919e-6/3)*T*T +
 (3.34262947e-10/4)*T*T*T - (2.68528684e-14/5)*T*T*T*T +
 1.50552866e+4/T; // HCN

 150

 h[19]= 2.87342861 + (4.43037238e-3/2)*T - (2.08366110e-6/3)*T*T +
 (4.71108668e-10/4)*T*T*T - (4.16096466e-14/5)*T*T*T*T +
 4.26296671e+2/T; // HCO
 h[20]= 3.88308949 + (3.48532441e-3/2)*T - (1.60351781e-6/3)*T*T +
 (4.19655298e-10/4)*T*T*T - (4.34906660e-14/5)*T*T*T*T +
 5.60013939e+4/T; // C2H

 Cp[0]= 2.5; // H
 Cp[1]= 2.54205900 - (2.75506100e-5)*T - (3.10280300e-9)*T*T +
 (4.55106700e-12)*T*T*T - (4.36805100e-16)*T*T*T*T; // O
 Cp[2]= 2.45026800 + (1.06614580e-4)*T - (7.46533700e-8)*T*T +
 (1.87965200e-11)*T*T*T - (1.02598390e-15)*T*T*T*T; // N
 Cp[3]= 2.99142300 + (7.00064400e-4)*T - (5.63382800e-8)*T*T -
 (9.23157800e-12)*T*T*T + (1.58275190e-15)*T*T*T*T; // H2
 Cp[4]= 2.88273000 + (1.01397430e-3)*T - (2.27687700e-7)*T*T +
 (2.17468300e-11)*T*T*T - (5.12630500e-16)*T*T*T*T; // OH
 Cp[5]= 3.02507800 + (1.44268850e-3)*T - (5.63082700e-7)*T*T +
 (1.01858130e-10)*T*T*T - (6.91095100e-15)*T*T*T*T; // CO
 Cp[6]= 3.24543500 + (1.26913830e-3)*T - (5.01589000e-7)*T*T +
 (9.16928300e-11)*T*T*T - (6.27541900e-15)*T*T*T*T; // NO
 Cp[7]= 3.69757800 + (6.13519700e-4)*T - (1.25884200e-7)*T*T +
 (1.77528100e-11)*T*T*T - (1.13643540e-15)*T*T*T*T; // O2
 Cp[8]= 2.67214500 + (3.05629300e-3)*T - (8.73026000e-7)*T*T +
 (1.20099640e-10)*T*T*T - (6.39161800e-15)*T*T*T*T; // H2O
 Cp[9]= 4.45362300 + (3.14016800e-3)*T - (1.27841050e-6)*T*T +
 (2.39399600e-10)*T*T*T - (1.66903330e-14)*T*T*T*T; // CO2
 Cp[10]= 2.92664000 + (1.48797680e-3)*T - (5.68476000e-7)*T*T +
 (1.00970380e-10)*T*T*T - (6.75335100e-15)*T*T*T*T; // N2
 Cp[11]=20.786; // Ar
 Cp[12]= 2.22212302 + (7.39133106e-3)*T - (3.11253645e-6)*T*T +
 (6.38016845e-10)*T*T*T - (5.17254389e-14)*T*T*T*T; // CH3
 Cp[13]= .392678561 + (1.28941183e-2)*T - (5.77810964e-6)*T*T +
 (1.24667029e-9)*T*T*T - (1.05358046e-13)*T*T*T*T; // CH4
 Cp[14]=90.13224340 - (1.73064598e-1)*T + (1.29168005e-4)*T*T -
 (3.99831826e-8)*T*T*T + (4.36915115e-12)*T*T*T*T; // C2H2
 Cp[15]= 2.23392408 + (1.42680731e-2)*T - (6.47812640e-6)*T*T +
 (1.41470155e-9)*T*T*T - (1.20851028e-13)*T*T*T*T; // C2H4
 Cp[16]= 2.31926713 + (4.10124638e-3)*T - (1.57101097e-6)*T*T +
 (2.89579692e-10)*T*T*T - (2.09174615e-14)*T*T*T*T; // NH2
 Cp[17]= 2.04193887 + (6.84131719e-3)*T - (2.51635499e-6)*T*T +
 (4.54017540e-10)*T*T*T - (3.31789419e-14)*T*T*T*T; // NH3
 Cp[18]= 3.42707507 + (3.95250318e-3)*T - (1.64192919e-6)*T*T +
 (3.34262947e-10)*T*T*T - (2.68528684e-14)*T*T*T*T; // HCN
 Cp[19]= 2.87342861 + (4.43037238e-3)*T - (2.08366110e-6)*T*T +
 (4.71108668e-10)*T*T*T - (4.16096466e-14)*T*T*T*T; // HCO
 Cp[20]= 3.88308949 + (3.48532441e-3)*T - (1.60351781e-6)*T*T +
 (4.19655298e-10)*T*T*T - (4.34906660e-14)*T*T*T*T; // C2H
 }
 for(i=0;i<21;i++) // h0=h fit*Ru*T Cp=Cpfit*Ru
 {
 if(i!=11)
 {
 h[i]=h[i]*(Ru*T);
 Cp[i]=Cp[i]*Ru;
 }
 }

 151

 return;
}
/*---*/
/* adiabatic flame temperature calculation */

void adiabatic(double ad[], double P, double hr, double x[], double fuelcomp[], double phi, int flag1, int
flag2, double no1[])

{
 // declare variables
 double T1, T, q0, q1, T2, dq;

 // function prototypes
 double equil(double T, double P, double fuelcomp[], double phi, double x[], int flag1,
 double no1[]);
 if(ad[0]>3500 || ad[0]<1000)
 flag2=0;
 if(flag2==0)
 {
 T=2500; // default temperature guesses
 T1=2700;
 }
 if(flag2==1)
 {
 T=ad[0]; // temperature guesses if previous guess calculated in injection function
 T1=T+10;
 }
 q0=equil(T,P,fuelcomp,phi,x,flag1,no1)-hr; // secant method function using enthalpy from
 equilibrium function at first temperature guess
 q1=equil(T1,P,fuelcomp,phi,x,flag1,no1)-hr; // secant method function using enthalpy
 from equilibrium function at second temperature guess
 do
 {
 dq=(q1-q0); // change in secant method function
 T2=T1-q1*((T1-T)/dq); // new temperature guess
 T=T1;
 q0=q1;
 T1=T2;
 q1=equil(T2,P,fuelcomp,phi,x,flag1,no1)-hr; // secant method function using
 enthalpy from equilibrium function at subsequent temperature guess
 }while(fabs(q1)>100);
 ad[0]=T2; // outputs to be used in other functions
 ad[1]=hr;
 return;
}
/**/
/* Program name: Equilib.cpp */
/* Programmer: Kenth Svensson */
/* Project: Rich's diesel code */
/* Date: 1 March 2002 */
/* Description: This program calculates the equilibrium composition of products */
/* from diesel combustion. The equation system is solved by LU decomposition. */
/* [mat][x]=[vec]=-[F] */
/* */
/* dynamic memory allocation, handles neg. numbers, pivoting, */
/* globally convergent */

 152

/**/

#define TINY 1.0e-20 // convergence criteria for equilibrium model
#define MAXITS 400 // maximum iterations
#define TOLF 1.0e-4 // convergence on function values
#define TOLMIN 1.0e-6
#define TOLX 1.0e-7 // convergence on delta x
#define STPMX 100.0
#define ALPHA 1.0e-4
#define FREERETURN { free(xold);free(p);free(indx);free(g);\
 for(i=0; i<n; i++)\
 free(fjac[i]);\
 free(fjac);return;} // free allocated
 memory in equilibrium model

double equil(double T, double P, double fuelcomp[], double phi, double x[], int flag1, double no1[])
{
 /* variable definitions
 i ----------- loop counter
 row --------- num ber of rows in the matrix
 check ------- flag used in equation solver (newt function)
 flag -------- controls direction of equivalence ratio steps
 flag3 ------- when desired equivalence ratio is reached shuts off loop
 flag4 ------- also used to shut off loop
 flag5 ------- controls diminishing the step size
 tol --------- tolerance for phi step
 sum --------- sum of mole fractions
 molsum ------ total number of moles
 end --------- ending equivalence ratio
 step -------- phi step size
 n ----------- # C atoms in fuel
 m ----------- # H atoms in fuel
 l ----------- # O atoms in fuel
 k ----------- # N atoms in fuel
 step1 ------- phi step size used when diminishing step size
 phi1 -------- equivalence ratio used when diminishing step size
 *vec -------- solution vector
 *no --------- mole fraction guesses
 *K ---------- equilibrium constants
 *molfrac ---- mole fractions of individual species
 r[4] -------- constants to simplify stoichiometry
 h[21] ------- enthalpies of individual species [kJ/kmol]
 hx[21] ------ enthalpies of individual species [kJ/kmol*mole fraction]
 hp ---------- enthalpy of the products
 Cp[21] ------ specific heats of individual species
 phis -------- starting equivalence ratio
 species[21][5] - */

 // declare variables
 int i, row=21, check, flag=0, flag3=0, flag4=0, flag5=0;
 double tol=1e-12, sum, molsum, end, step=0.1, n, m, l, k, step1, phi1;
 double *vec, *no, *K, *molfrac, r[4], h[21], hx[21], hp, Cp[21], phis=1.5;
 char species[21][5]={"H","O","N","H2","OH","CO","NO","O2","H2O","CO2","N2","Ar","CH3",
 "CH4","C2H2","C2H4","NH2","NH3","HCN","HCO","C2H"};

 /* function prototypes

 153

 vector function calculates the solution vector
 newt function is the newton raphson method for non linear systems
 Kp function retrieves the equilibrium constants at a specified temperature
 enthalpy function retrieves individual species enthalpies
 guess function makes an initial guess of all mole fractions */
 void vector(double vec[], double no[], double r[], double K[], int row, double *molsum,
 double fuelcomp[], double P);
 void newt(double x[],int n,int *check,double fvec[],double K[],double P,double *molsum,
 double r[], double fuelcomp[]);
 void Kp(double K[], double T);
 void enthalpy(double T, double h[], double Cp[]);
 void guess(double no[], double K[], double fuelcomp[], double P);

 //Dynamic memory allocation
 vec=(double*)malloc(row*sizeof(double)); // allocate memory for solution guess mol efraction
 and equilibrium constant vectors
 no=(double*)malloc(row*sizeof(double));
 molfrac=(double*)malloc(row*sizeof(double));
 K=(double*)malloc((row-5)*sizeof(double));

 end=phi; // end equivalence ratio is set to input value
 n=fuelcomp[0]; // assign fuel composition
 m=fuelcomp[1];
 l=fuelcomp[2];
 k=fuelcomp[3];
 P=P/101.325; // convert pressure into atmospheres for Kp values
 Kp(K,T); // get equilibrium constants
 if(no1[11]==0)
 {
 flag1=0; // this insures a non-zero initial guess will be made
 }
 //Initialize guess vector
 if(flag1==0)
 {
 guess(no,K,fuelcomp,P); // calls initial guess function if no guess exists
 }else
 {
 for(i=0;i<21;i++)
 {
 no[i]=no1[i]; // updates initial guess to previous solution (used when
 stepping through zone 3)
 }
 }
 if(flag1==1)
 {
 phis=phi; // starting and ending phi are the same if good guess available (used
 when stepping through zone 3)
 }
 if(end>phis)
 {
 step=-0.05; // changes step direction if end phi is greater than start phi
 flag=1;
 }
 flag3=0;
 do //Range of phi
 { //Calculate stoichiometry simplifying constants

 154

 r[0]=(n+0.25*m-0.5*l)/phis; //r0
 r[1]=0.5*l+r[0]; //r
 r[2]=0.5*k+3.7274*r[0]; //r'
 r[3]=0.0444*r[0]; //r"
 for(i=0;i<21;i++)
 {
 if(no[i]<0)
 {
 flag5=1;
 no[i]=0.000000001; // if any guess value is negative make it a
 small positive
 }
 }
 if(flag5==0)
 {
 for(i=0;i<21;i++)
 {
 no1[i]=no[i]; // update guess vector
 }
 }
 vector(vec,no,r, K,row,&molsum,fuelcomp,P); // Calculate F[]
 newt(no,row,&check,vec,K,P,&molsum,r,fuelcomp); // Solve system
 for(i=0; i<row; i++)
 {
 molfrac[i]=no[i]/molsum; // Calculate mole fraction
 }

 for(sum=0, i=0; i<row; i++)
 {
 sum=sum+molfrac[i]; // add mole fractions to check that the sum to 1
 }
 flag5=0;
 for(i=0;i<21;i++)
 {
 if(no[i]<0)
 {
 flag5=1; // if any mole fractions are negative set flag to
 decrease step
 }
 }
 if(flag5==0)
 {
 step1=step; // save step size and phi for normal step size
 phi1=phis;
 }
 if(flag5==1 && step==step1) // change step size if new step is the same as the old step
 {
 step1=.5*step1; // change step size
 for(i=0;i<21;i++)
 {
 no[i]=no1[i]; // update guess
 }
 }
 if(flag5==1 && step1<step) // change step size if new step is smaller than the old step
 {
 step1=.5*step1; // change step size

 155

 for(i=0;i<21;i++)
 {
 no[i]=no1[i]; // update guess
 }
 }
 if(flag5==0)
 {
 phis=phis-step1; // new equivalence ratio using normal step size
 }
 else
 {
 phis=phis-(phis-phi1)/2; // new equivalence ratio for diminishing step size
 }
 if(flag==0)
 {

 if(phis>end || flag4==0) // controls end of phi loop for decreasing phi
 {
 flag3=0;
 }else
 {
 flag3=1;
 }
 if(phis<end+tol) // insures last loop is at target phi
 {
 phis=end;
 flag4=1;
 }
 }
 if(flag==1)
 {
 if(phis<end || flag4==0) // controls end of phi loop for increasing phi
 {
 flag3=0;
 }else
 {
 flag3=1;
 }
 if(phis>end) // insures last loop is at target phi
 {
 phis=end;
 flag4=1;
 }
 }
 if(flag1==1)
 {
 flag3=1;
 }
 }while(flag3==0); // ends phi loop

 for(i=0;i<21;i++)
 {
 no1[i]=no[i]; // update guess
 }
 enthalpy (T, h, Cp); // calculate enthalpy of the products
 hp=0;

 156

 for (i=0;i<21;i++)
 {
 hx[i]=molfrac[i]*h[i];
 x[i]=molfrac[i];
 hp=hp+hx[i];
 }
 free(vec), (no), (molfrac), (K); // Free up allocated memory

 return hp; // return to calling program
}
/*---*/
/* equilibrium constant curve fits (Kp) */

void Kp(double K[], double T)

{
 // declare variables
 double Tr, logK[16];
 int i;

 Tr=.001*T;
 // reactions
 logK[0]=2*(.432168 *log(Tr) - 11.2464 /Tr + 2.67269 - .0745744 *Tr + .00242484*Tr*Tr);
 // R1, H2 <-> 2H
 logK[1]=2*(.310805 *log(Tr) - 12.9540 /Tr + 3.21779 - .0738336 *Tr + .00344645*Tr*Tr);
 // R2, O2 <-> 2O
 logK[2]=2*(.389716 *log(Tr) - 24.5828 /Tr + 3.14505 - .0963730 *Tr + .00585643*Tr*Tr);
 // R3, N2 <-> 2N
 logK[3]=2*(- .141784 *log(Tr) - 2.13308 /Tr + .853461 + .0355015 *Tr - .00310227*Tr*Tr);
 // R4, O2 + H2 <-> 2OH
 logK[4]=2*(.0150879 *log(Tr) - 4.70959 /Tr + .646096 + .00272805*Tr - .00154444*Tr*Tr);
 // R5, N2 + O2 <-> 2NO
 logK[5]=2*(- .752364 *log(Tr) + 12.4210 /Tr - 2.60286 + .259556 *Tr - .0162687 *Tr*Tr);
 // R6, 2H2 + O2 <-> 2H2O
 logK[6]=2*(- .00415302*log(Tr) + 14.8627 /Tr - 4.75746 + .124699 *Tr - .00900227*Tr*Tr);
 // R7, 2CO + O2 <-> 2CO2
 logK[7]= -1.284553 *log(Tr) - 15.76395 /Tr - 4.918345 + .6842445 *Tr - .05194576*Tr*Tr;
 // R8, CO + 2H2 <-> CH3 + OH
 logK[8]= - .9494526 *log(Tr) + 22.87447 /Tr - 7.256777 + .3787896 *Tr - .02448167*Tr*Tr;
 // R9, CH3 + H <-> CH4
 logK[9]= - .2233993 *log(Tr) - 23.31895 /Tr - 6.766712 + .3293027 *Tr - .01764268*Tr*Tr;
 // R10, 2CO + H2 <- > C2H2 + O2
 logK[10]= 2.066455 *log(Tr) + 10.77027 /Tr - 6.962663 -1.308306 *Tr + .1346954 *Tr*Tr;
 // R11, C2H2 + H2 <-> C2H4
 logK[11]= - .8377514 *log(Tr) + 15.78394 /Tr - 5.150921 + .2656375 *Tr - .01666026*Tr*Tr;
 // R12, N + H2 <- > NH2
 logK[12]= -1.005302 *log(Tr) + 22.32473 /Tr - 6.636705 + .3923653 *Tr - .02239234*Tr*Tr;
 // R13, NH2 + H <-> NH3
 logK[13]= .9494541 *log(Tr) + 25.60553 /Tr - .5112236 - .5607905 *Tr + .04848174*Tr*Tr;
 // R14, CH3 + N <-> HCN + H2
 logK[14]= -1.284553 *log(Tr) + 5.776046/Tr - 4.917345 + .5192443 *Tr - .03794574*Tr*Tr;
 // R15, CO + H <-> HCO
 logK[15]= -1.005301 *log(Tr) - 25.49527 /Tr - 5.314705 + .4793645 *Tr - .02839226*Tr*Tr;
 // R16, 2CO + H <-> C2H + O2

 for (i=0;i<16;i++)

 157

 {
 K[i]=pow(10,logK[i]);
 }
 return;
}
/*--*/
void guess(double no[], double K[], double fuelcomp[], double P)
{
 /* variable definitions
 r[4] ------- constants to simplify stoichiometry
 Nsum ------- total number of moles guess
 nf --------- number of moles of fuel
 f1 --------- reaction equat ion
 f2 --------- reaction equation
 phig ------- equivalence ratio for the guess
 ox --------- updated oxygen guess
 oxrt ------- square root of oxygen guess
 fox -------- oxygen function
 dox -------- derivative of fox
 rat -------- ratio of fox to dox
 z ---------- calculation variable
 n ---------- # C atoms in fuel
 m ---------- # H atoms in fuel
 l ---------- # O atoms in fuel
 k ---------- # Natoms in fuel
 ind -------- keeps track of number of loops */
 double r[4], Nsum, nf=1, f1, f2, phig=1;
 double ox, oxrt, fox, dox, rat, z, n, m, l, k;
 int ind;

 n=fuelcomp[0]; // assign fuel composition
 m=fuelcomp[1];
 l=fuelcomp[2];
 k=fuelcomp[3];
 r[0]=(n+0.25*m-0.5*l)/phig; //r0 // calculate stoichiometry constants
 r[1]=0.5*l+r[0]; //r
 r[2]=0.5*k+3.7274*r[0]; //r'
 r[3]=0.0444*r[0]; //r"
 if (phig > 1)
 {
 Nsum=nf*(r[2]+r[3]+n+.5*m); // guess of total number of moles for equivalence
 ratios above 1
 }
 else
 {
 Nsum=nf*(r[1]+r[2]+r[3]+.25*m); // guess of total number of moles for equivalence
 ratios below 1
 }
 ox=1; // first guess of moles of oxygen
 oxrt=sqrt(ox);
 f1=sqrt(K[5]*P/Nsum); // reaction rates
 f2=sqrt(K[6]*P/Nsum);
 fox=.5*m*f1*oxrt/(1+f1*oxrt)+(n+2*n*f2*oxrt)/(1+f2*oxrt)+2*ox/nf-r[1];
 // oxygen function
 ind=1;
 while (fabs(fox)>.000001)

 158

 {
 if (fox > 0)
 {
 ox=.1*ox; // new oxygen value if oxygen function greater than zero
 oxrt=sqrt(ox);
 }
 if (fox < 0)
 {
 dox=.25*m*f1/(oxrt*(1+f1*oxrt)*(1+f1*oxrt))+
 (n*f2-1)/(oxrt*(1+f2*oxrt)*(1+f2*oxrt))+2/nf; // derivative of
 oxygen function
 rat=fox/dox;
 ox=ox-rat; // new oxygen value if oxygen function less than zero
 oxrt=sqrt(ox);
 z=rat/ox;
 }
 fox=.5*m*f1*oxrt/(1+f1*oxrt)+(n+2*n*f2*oxrt)/(1+f2*oxrt)+2*ox/nf-r[1];
 // recalculate oxygen function
 ind++;
 }
 no[3]=.5*nf*m/(1+f1*oxrt); // calculate all mole fraction guesses
 no[5]=nf*n/(1+f2*oxrt);
 no[7]=ox;
 no[10]=nf*r[2];
 no[11]=nf*r[3];
 no[8]=sqrt(K[5]*no[3]*no[3]*no[7]*P/Nsum);
 no[9]=sqrt(K[6]*no[5]*no[5]*no[7]*P/Nsum);
 no[0]=sqrt(K[0]*no[3]*P/Nsum);
 no[1]=sqrt(K[1]*no[7]*P/Nsum);
 no[2]=sqrt(K[2]*no[10]*P/Nsum);
 no[4]=sqrt(K[3]*no[3]*no[7]);
 no[6]=sqrt(K[4]*no[7]*no[10]);
 no[12]=K[7]*no[3]*no[3]*no[5]/no[4]*P/Nsum;
 no[13]=K[8]*no[0]*no[12]*P/Nsum;
 no[14]=K[9]*no[3]*no[5]*no[5]/no[7]*P/Nsum;
 no[15]=K[10]*no[3]*no[14]*P/Nsum;
 no[16]=K[11]*no[2]*no[3]*P/Nsum;
 no[17]=K[12]*no[0]*no[16]*P/Nsum;
 no[18]=K[13]*no[2]*no[12]/no[3];
 no[19]=K[14]*no[0]*no[5]*P/Nsum;
 no[20]=K[15]*no[0]*no[5]*no[5]/no[7]*P/Nsum;

 return; // return to equilibrium function
}
/***
Calculates solution vector G[]-F[]=-F[]
***/
void vector(double vec[], double no[], double r[], double K[], int row, double *molsum, double fuelcomp[],
double P)
{
 int i;
 double nf=1, n, m, l, k;

 n=fuelcomp[0];
 m=fuelcomp[1];
 l=fuelcomp[2];

 159

 k=fuelcomp[3];

 //Calculate mole sum
 for(*molsum=0, i=0; i<row; i++)
 *molsum+=no[i];

 vec[0] =-1*(no[0]*no[0]*(P/(*molsum))-K[0]*no[3]); //R1, H2 <=> 2H
 vec[1] =-1*(no[1]*no[1]*(P/(*molsum))-K[1]*no[7]); //R2, O2 <=> 2O
 vec[2] =-1*(no[2]*no[2]*(P/(*molsum))-K[2]*no[10]); //R3, N2 <=> 2N
 vec[3] =-1*(no[8]*no[8]-K[5]*no[3]*no[3]*no[7]*(P/(*molsum))); //R6, 2 H2 + O2 <=> 2 H2O
 vec[4] =-1*(no[4]*no[4]-K[3]*no[3]*no[7]); //R4, H2 + O2 <=> 2 OH
 vec[5] =-1*(no[9]*no[9]-K[6]*no[5]*no[5]*no[7]*(P/(*molsum))); //R7, 2 CO + O2 <=> 2 CO2
 vec[6] =-1*(no[6]*no[6]-K[4]*no[7]*no[10]); //R5, O2 + N2 <=> 2 NO
 vec[7] =-1*(no[7]*no[20]*(*molsum/P)-K[15]*no[0]*no[5]*no[5]); //R16, 2 CO + H <=> C2H
 + O2
 vec[8] =-1*(no[0]+2*no[3]+no[4]+2*no[8]+3*no[12]+4*no[13]+2*no[14]+
 4*no[15]+2*no[16]+3*no[17]+no[18]+no[19]+no[20]-m*nf); //Hydrogen balance

vec[9] =-1*(no[1]+no[4]+no[5]+no[6]+2*no[7]+no[8]+2*no[9]+no[19]-2*r[1]*nf-l);
 //Oxygen balance

 vec[10]=-1*(no[2]+no[6]+2*no[10]+no[16]+no[17]+no[18]-2*r[2]*nf-k);
 //Nitrogen balance
 vec[11]=-1*(no[11] -r[3]*nf); //Argon balance
 vec[12]=-1*(no[4]*no[12]*(*molsum/P)-K[7]*no[3]*no[3]*no[5]); //R8, CO + 2 H2 <=> CH3
 + OH
 vec[13]=-1*(no[13]*(*molsum/P)-K[8]*no[0]*no[12]); //R9, CH3 + H <=> CH4
 vec[14]=-1*(no[7]*no[14]*(*molsum/P)-K[9]*no[3]*no[5]*no[5]); //R10, 2 CO + H2 <=>
 C2H2 + O2
 vec[15]=-1*(no[15]*(*molsum/P)-K[10]*no[3]*no[14]); //R11, C2H2 + H2 <=> C2H4
 vec[16]=-1*(no[16]*(*molsum/P)-K[11]*no[2]*no[3]); //R12, N + H2 <=> NH2
 vec[17]=-1*(no[17]*(*molsum/P)-K[12]*no[0]*no[16]); //R13, NH2 + H <=> NH3
 vec[18]=-1*(no[3]*no[18]-K[13]*no[2]*no[12]); //R14, CH3 + N <=> HCN + H2
 vec[19]=-1*(no[19]*(*molsum/P)-K[14]*no[0]*no[5]); //R15, CO + H <=> HCO
 vec[20]=-1*(no[5]+no[9]+no[12]+no[13]+2*no[14]+2*no[15]+no[18]+no[19]+ 2*no[20]-n*nf);
 //Carbon balance
}
/***
From numerical Recipes in C
***/
void newt(double x[],int n,int *check,double fvec[],double K[],double P,double *molsum,double r[],
double fuelcomp[])
{
 int i,its,j,*indx;
 double d,den,f,fold,stpmax,sum,temp,test,**fjac,*g,*p,*xold;

 void vector(double vec[], double no[], double r[], double K[], int row, double *molsum,
 double fuelcomp[], double P);
 double fmin(int n,double fvec[]);
 void lnsrch(int n,double xold[],double fold,double g[],double p[],double x[],
 double *f,double stpmax,int *check,double fvec[],double r[],double K[],
 double *molsum, double fuelcomp[], double P);
 void ludcmp(double *a[],int n,int *indx,double *d);
 void lubksb(double *a[],int n,int *indx,double b[]);
 void Kp(double K[], double T);
 void enthalpy(double T, double h[], double Cp[]);

 //Dynamic memory allocation

 160

 indx=(int*)malloc(n*sizeof(int));
 fjac=(double**)malloc(n*sizeof(double*)); //Set up the rows of fjac
 for(i=0; i<n; i++) //fjac is the Jacobian matrix
 fjac[i]=(double*)malloc(n*sizeof(double)); //Set up the columns of fjac
 g=(double*)malloc(n*sizeof(double));
 p=(double*)malloc(n*sizeof(double));
 xold=(double*)malloc(n*sizeof(double));

 vector(fvec,x,r,K,n,molsum,fuelcomp,P);
 //Calculate fvec based on latest estimate
 f=fmin(n,fvec); //Find fmin=0.5*F*F

 test=0.0; //Test for initial guess being a root. Use more stringent
 for(i=0; i<n; i++) //test than simply TOLF.
 if(fabs(fvec[i]) > test)
 test=fabs(fvec[i]);
 if(test<0.01*TOLF)
 FREERETURN

 for(sum=0.0, i=0; i<n; i++)
 sum = sum + x[i]*x[i]; //Calculate stpmax for line searches, sum = sum + SQR(x[i]);
 stpmax=STPMX*__max(sqrt(sum),(double)n); //Compared variables must be of same type.
 for(its=1; its<=MAXITS; its++)
 {
 for(i=0; i<n; i++)
 for(j=0; j<n; j++)
 fjac[i][j]=0.0; //Initialize Jacobian to zero
 //Fill in Jacobian matrix
 fjac[0][0]=2*x[0]*(P/(*molsum)); //R1
 fjac[0][3]=- K[0];
 fjac[1][1]=2*x[1]*(P/(*molsum)); //R2
 fjac[1][7]=- K[1];
 fjac[2][2]=2*x[2]*(P/(*molsum)); //R3
 fjac[2][10]=-K[2];
 fjac[3][3]=- K[5]*2*x[3]*x[7]*(P/(*molsum)); //R6
 fjac[3][7]=- K[5]*x[3]*x[3]*(P/(*molsum));
 fjac[3][8]=2*x[8];
 fjac[4][3]=- K[3]*x[7]; //R4
 fjac[4][4]=2*x[4];
 fjac[4][7]=- K[3]*x[3];
 fjac[5][5]=- K[6]*2*x[5]*x[7]*(P/(*molsum)); //R7
 fjac[5][7]=- K[6]*x[5]*x[5]*(P/(*molsum));
 fjac[5][9]=2*x[9];
 fjac[6][6]=2*x[6]; //R5
 fjac[6][7]=- K[4]*x[10];
 fjac[6][10]=-K[4]*x[7];
 fjac[7][0]=- K[15]*x[5]*x[5]; //R16
 fjac[7][5]=2*K[15]*x[0]*x[5];
 fjac[7][7]=x[20]*(*molsum/P);
 fjac[7][20]=x[7]*(*molsum/P);
 fjac[8][0]=1; //Hydrogen balance
 fjac[8][3]=2;
 fjac[8][4]=1;
 fjac[8][8]=2;
 fjac[8][12]=3;
 fjac[8][13]=4;

 161

 fjac[8][14]=2;
 fjac[8][15]=4;
 fjac[8][16]=2;
 fjac[8][17]=3;
 fjac[8][18]=1;
 fjac[8][19]=1;
 fjac[8][20]=1;
 fjac[9][1]=1; //Oxygen balance
 fjac[9][4]=1;
 fjac[9][5]=1;
 fjac[9][6]=1;
 fjac[9][7]=2;
 fjac[9][8]=1;
 fjac[9][9]=2;
 fjac[9][19]=1;
 fjac[10][2]=1; //Nitrogen balance
 fjac[10][6]=1;
 fjac[10][10]=2;
 fjac[10][16]=1;
 fjac[10][17]=1;
 fjac[10][18]=1;
 fjac[11][11]=1; //Argon balance
 fjac[12][3]=-K[7]*2*x[3]*x[5]; //R8
 fjac[12][4]=x[12]*(*molsum/P);
 fjac[12][5]=-K[7]*x[3]*x[3];
 fjac[12][12]=x[4]*(*molsum/P);
 fjac[13][0]=-K[8]*x[12]; //R9
 fjac[13][12]=-K[8]*x[0];
 fjac[13][13]=(*molsum/P);
 fjac[14][3]=-K[9]*x[5]*x[5]; //R10
 fjac[14][5]=-K[9]*2*x[5]*x[3];
 fjac[14][7]=x[14]*(*molsum/P);
 fjac[14][14]=x[7]*(*molsum/P);
 fjac[15][3]=-K[10]*x[14]; //R11
 fjac[15][14]=-K[10]*x[3];
 fjac[15][15]=(*molsum/P);
 fjac[16][2]=-K[11]*x[3]; //R12
 fjac[16][3]=-K[11]*x[2];
 fjac[16][16]=(*molsum/P);
 fjac[17][0]=-K[12]*x[16]; //R13
 fjac[17][16]=-K[12]*x[0];
 fjac[17][17]=(*molsum/P);
 fjac[18][2]=-K[13]*x[12]; //R14
 fjac[18][3]=x[18];
 fjac[18][12]=-K[13]*x[2];
 fjac[18][18]=x[3];
 fjac[19][0]=-K[14]*x[5]; //R15
 fjac[19][5]=-K[14]*x[0];
 fjac[19][19]=(*molsum/P);
 fjac[20][5]=1; //Carbon balance
 fjac[20][9]=1;
 fjac[20][12]=1;
 fjac[20][13]=1;
 fjac[20][14]=2;
 fjac[20][15]=2;
 fjac[20][18]=1;

 162

 fjac[20][19]=1;
 fjac[20][20]=2;

 for(i=0; i<n; i++) //Compute f-gradient for line search.
 {
 for(sum=0.0, j=0; j<n; j++)
 sum = sum + fjac[j][i]*fvec[j];
 g[i]=sum;
 }
 for(i=0; i<n; i++)
 xold[i]=x[i]; //Store x[] in xold[]
 fold=f;
 //Store f=fmin in fold
 for(i=0; i<n; i++) //RHS for linear equations.
 p[i] = fvec[i];
 ludcmp(fjac,n,indx,&d); //Solve using LUD
 lubksb(fjac,n,indx,p); //Back substitution
 lnsrch(n,xold,fold,g,p,x,&f,stpmax,check,fvec,r,K,molsum,fuelcomp,P); //lnsrch returns
 new x[] and f. Calculate fvec at new x[].
 test=0.0; //Test for convergence on function values.
 for(i=0; i<n; i++)
 if(fabs(fvec[i]) > test)
 test=fabs(fvec[i]);
 if(test < TOLF)
 {
 check=0; //check is false (0) on a normal exit
 FREERETURN
 }
 if(*check) //check is true (1) when x is too close to xold
 { //Check for gradient of f zero, spurious convergence.
 test=0.0;
 den=__max(f,0.5*n);
 for(i=0; i<n; i++)
 {
 temp=fabs(g[i])*__max(fabs(x[i]),1.0)/den;
 if(temp > test)
 test=temp;
 }
 *check=(test < TOLMIN ? 1 : 0);
 FREERETURN
 }
 test=0.0; //Test for convergence on delta x
 for(i=1; i<=n; i++)
 {
 temp=(fabs(x[i-1]-xold[i-1]))/__max(fabs(x[i-1]),1.0);
 if(temp > test)
 test=temp;
 }
 if(test < TOLX)
 FREERETURN
 }
 //printf("\n MAXITS exceeded in newt");
}
/***
fmin calculates (1/2)*FdotF
***/

 163

double fmin(int n, double fvec[])
{
 int i;
 double sum;

 for(sum=0.0, i=0; i<n; i++)
 sum = sum + fvec[i]*fvec[i];
 return 0.5*sum;
}
/***
From Numerical recipes in C
***/
void lnsrch(int n,double xold[],double fold,double g[],double p[],double x[],double *f,
 double stpmax,int *check,double fvec[],double r[],double K[],double *molsum,
 double fuelcomp[], double P)
{
 int i;
 double a,alam,alam2,alamin,b,disc,f2,fold2,rhs1,rhs2;
 double slope,sum,temp,test,tmplam;

 void vector(double vec[], double no[], double r[], double K[], int row, double *molsum,
 double fuelcomp[], double P);

 *check=0; //Normal exit
 for(sum=0.0, i=0; i<n; i++)
 sum += p[i]*p[i];
 sum=sqrt(sum);

 if(sum > stpmax)
 {
 for(i=0; i<n; i++)
 p[i] *= stpmax/sum;
 }
 //Scale if attempted step is too big.
 for(slope=0.0, i=0; i<n; i++)
 slope += g[i]*p[i];
 test=0.0; //Compute lambda_min
 for(i=0; i<n; i++)
 {
 temp=fabs(p[i]) / __max(fabs(xold[i]),1.0); //temp=fabs(p[i])/FMAX(fabs(xold[i]),1.0);
 if(temp > test)
 test=temp;
 }
 alamin=TOLX/test; //alamin is lambda_min
 alam=1.0; //Try full step first, alam is lambda
 for(;;)
 {
 for(i=0; i<n; i++)
 x[i]=xold[i]+alam*p[i]; //This loop updates x[]
 vector(fvec,x,r,K,n,molsum,fuelcomp,P);
 *f=fmin(n,fvec);
 if(alam < alamin)
 { //Convergence on delta_x
 for(i=0; i<n; i++)
 x[i]=xold[i];
 *check=1;

 164

 return;
 }
 else if(*f <= fold+ALPHA*alam*slope) //Eqn. 9.7.7
 {
 return; //Sufficient function decrease
 }
 else
 { //Backtrack
 if(alam == 1.0)
 tmplam = -slope/(2.0*(*f-fold-slope)); //First time
 else
 { //Subsequent backtracks
 rhs1=*f-fold-alam*slope;
 rhs2=f2-fold2- alam2*slope;
 a=(rhs1/(alam*alam)-rhs2/(alam2*alam2))/(alam-alam2);
 b=(-alam2*rhs1/(alam*alam)+alam*rhs2/(alam2*alam2))/
 (alam-alam2);
 if(a == 0.0)
 tmplam = -slope/(2.0*b);
 else
 {
 disc=b*b-3.0*a*slope;
 if(disc<0.0)
 {
 //printf("\nRoundoff problem in lnsrch.");
 }
 else
 tmplam=(-b+sqrt(disc))/(3.0*a);
 }
 if(tmplam>0.5*alam)
 tmplam=0.5*alam;
 }
 }
 alam2=alam;
 f2 = *f;
 fold2=fold;
 alam=__max(tmplam,0.1*alam);
 }
}
/***
From Numerical recipes in C
***/
void ludcmp(double *a[], int n, int *indx, double *d)
{
 int i, imax, j, k;
 double big, dum, sum, temp;
 double *vv;
 //vv stores the implicit scaling of each row

 vv=(double*)malloc(n*sizeof(double));
 *d=1.0;
 //No row interchanges yet
 for(i=1; i<=n; i++) //Loops over the rows to get the implicit scaling information
 {
 big=0.0;
 for(j=1; j<=n; j++)

 165

 {
 if((temp=fabs(a[i-1][j-1])) > big)
 big=temp;
 }
 if(big == 0.0)
 {
 printf("\nSingular matrix");
 } //No no-zero largest element
 vv[i-1]=1.0/big; //Save scaling
 }
 for(j=1; j<=n; j++) //This is the loop over columns of Crout's method
 {
 for(i=1; i<j; i++) //Eqn. 2.3.12 except for i=j
 {
 sum=a[i-1][j-1];
 for(k=1; k<i; k++)
 sum-=a[i-1][k- 1]*a[k-1][j-1];
 a[i-1][j-1]=sum;
 }
 big=0.0; //Initialize for the search for largest pivot element
 for(i=j; i<=n; i++) //This is i=j of eqn. 2.3.12 and i=j+1...N of eqn. 2.3.13
 {
 sum=a[i-1][j-1];
 for(k=1; k<j; k++)
 sum-=a[i-1][k- 1]*a[k-1][j-1];
 a[i-1][j-1]=sum;
 if((dum=vv[i-1]*fabs(sum)) >= big) //Is the figure of merit for
 the pivot better than the best so far?
 {
 big=dum;
 imax=i;
 }
 }
 if(j != imax) //Do we need to interchange rows?
 {
 for(k=1; k<=n; k++) //Yes, do so...
 {
 dum=a[imax-1][k-1];
 a[imax-1][k-1]=a[j-1][k-1];
 a[j-1][k-1]=dum;
 }
 *d=-(*d); //...and change the parity of d
 vv[imax-1]=vv[j-1]; //Also interchange the scale factor
 }
 indx[j-1]=imax;
 if(a[j- 1][j-1] == 0.0) //If the pivot element is zero the matrix is singular
 (at least to the precision of
 a[j-1][j-1]=TINY; //the algorithm). For some applications on
 singular matrices, it is desirable
 //to substitute TINY for zero.
 if(j != n) //Now, finally, divide by the pivot element
 {
 dum=1.0/(a[j-1][j-1]);
 for(i=j+1; i<=n; i++)
 a[i-1][j-1] *= dum;
 }

 166

 } //Go back for the next column in the reduction.
 free(vv);
}
/************************************
From Numerical recipes in C
**************************************/
void lubksb(double *a[], int n, int *indx, double b[])
{
 int i, ii=0, ip, j;
 double sum;

 for(i=1; i<=n; i++) //When ii is set to a positive value, it will
 {
 //become the index of the first non-vanishing
 ip=indx[i-1];
 //element of b. We now do the forward substitution,
 sum=b[ip-1]; //eqn. 2.3.6. The only new wrinkle is to unscramble
 b[ip-1]=b[i-1]; //the permutation as we go.
 if(ii)
 for(j=ii; j<=i-1; j++)
 sum -= a[i-1][j-1]*b[j-1];
 else if(sum) //A non-zero element was encountered, so from now
 ii=i; //on we will have to do the sums in the loop above.
 b[i-1]=sum;
 }
 for(i=n; i>=1; i--) //Now we do the back substitution, eqn. 2.3.7.
 {
 sum=b[i-1];
 for(j=i+1; j<=n; j++)
 sum -= a[i-1][j-1]*b[j-1];
 b[i-1]=sum/a[i-1][i-1]; //Store a component of the solution vector X.
 }
 //All done!
}

/*--*/
/* this function returns fuel properties given a fuel name */

void properties(int name, double fuel[], double fuelcomp[])
{
 // retrieve data

 /* fuel[0]=Cpfuel kJ/kg*K */
 /* fuel[1]=Tboil K */
 /* fuel[2]=hfg kJ/kg */
 /* fuel[3]=rhofuel kg/m^3 */
 /* fuel[4]=cetane # */
 /* fuel[5]=heat of formation kJ/kmol */
 /* fuel[6]=heating value kJ/kg */
 /* fuel[7]=molecular weight kg/kmol */
 /* fuelcomp[0]=# carbon */
 /* fuelcomp[1]=# hydrogen */
 /* fuelcomp[2]=# oxygen */
 /* fuelcomp[3]=# nitrogen */

 switch (name)

 167

 {
 case 1:// n-heptane
 fuel[0]=2.242;
 fuel[1]=361;
 fuel[2]=364.9;
 fuel[3]=683.76;
 fuel[4]=50;
 fuel[5]=-224050;
 fuel[6]=44556;
 fuel[7]=94;
 fuelcomp[0]=7;
 fuelcomp[1]=16;
 fuelcomp[2]=0;
 fuelcomp[3]=0;
 break;
 case 2:// n-hexadecane
 fuel[0]=3.158;
 fuel[1]=560;
 fuel[2]=227;
 fuel[3]=770;
 fuel[4]=100;
 fuel[5]=-456140;
 fuel[6]=43946;
 fuel[7]=226.44;
 fuelcomp[0]=16;
 fuelcomp[1]=34;
 fuelcomp[2]=0;
 fuelcomp[3]=0;
 break;
 case 3:// heptamethylnonane
 fuel[0]=3.424;
 fuel[1]=520;
 fuel[2]=194;
 fuel[3]=811;
 fuel[4]=15;
 fuel[5]=-413200;
 fuel[6]=43852;
 fuel[7]=226.44;
 fuelcomp[0]=16;
 fuelcomp[1]=34;
 fuelcomp[2]=0;
 fuelcomp[3]=0;
 break;
 case 4:// methanol
 fuel[0]=2.824;
 fuel[1]=338;
 fuel[2]=1100;
 fuel[3]=790;
 fuel[4]=5;
 fuel[5]=-239100;
 fuel[6]=19917;
 fuel[7]=32.04;
 fuelcomp[0]=1;
 fuelcomp[1]=4;
 fuelcomp[2]=1;
 fuelcomp[3]=0;

 168

 break;
 case 5:// diethyl ether
 fuel[0]=2.369;
 fuel[1]=307.6;
 fuel[2]=365.6;
 fuel[3]=713.8;
 fuel[4]=115;
 fuel[5]=-279400;
 fuel[6]=33775;
 fuel[7]=72;
 fuelcomp[0]=4;
 fuelcomp[1]=10;
 fuelcomp[2]=1;
 fuelcomp[3]=0;
 break;
 case 6:// HCG
 fuel[0]=2.235;
 fuel[1]=421;
 fuel[2]=335;
 fuel[3]=737;
 fuel[4]=50;
 fuel[5]=-350000;
 fuel[6]=44000;
 fuel[7]=110;
 fuelcomp[0]=100;
 fuelcomp[1]=187;
 fuelcomp[2]=0;
 fuelcomp[3]=0;
 break;
 case 7:// FTD
 fuel[0]=3.197;
 fuel[1]=611;
 fuel[2]=224;
 fuel[3]=782;
 fuel[4]=50;
 fuel[5]=-456140; // # for cetane
 fuel[6]=43200;
 fuel[7]=170;
 fuelcomp[0]=10;
 fuelcomp[1]=18;
 fuelcomp[2]=0;
 fuelcomp[3]=0;
 break;
 case 8:// DF2
 fuel[0]=3.197;
 fuel[1]=576;
 fuel[2]=224;
 fuel[3]=712;//845;
 fuel[4]=50;
 fuel[5]=-180974; // # calculated
 fuel[6]=43200;
 fuel[7]=151;
 fuelcomp[0]=11;
 fuelcomp[1]=19;
 fuelcomp[2]=0;
 fuelcomp[3]=0;

 169

 break;
 default:
 break;
 }
}
/*--*/
/* this function calculates the stoichiometric air fuel ratio of the selected */
/* fuel based on fuel and air compositions */

double airfuel(double fuelcomp[])
{
 // declare vari ables
 double AFs; // calculate molar stoichiometric air fuel ratio
 AFs=(fuelcomp[0]+fuelcomp[1]*.25-fuelcomp[2]*.5)*(1+3.7274+.0444);
 return AFs; // return air fuel ratio
}
/*---*/
/* liquid length model */

void liquidl(double ll[], double fuel[], double fuelcomp[], double Tinj, double T, double rhoa, double AFs,
double t, double Ufuel, int inj, double MWa, double Cpa, double te, double dh, double angle, double l1)
{
 /* variable definitions
 B ---------- liquid length energy ratio
 c ---------- constant used to find spread angle
 tplus ------ non dimensionalizing time constant
 ttilda ----- non dimensional time for spray model at a given time
 xtilda ----- non dimensional penetration length for spray model at a given time
 x ---------- spray penetration length at a given time
 tL --------- time to reach liquid length
 tx1 -------- time to reach given length
 tetilda ---- non dimensional time for spray model at a given time for back end of spray
 xe --------- length to back end of spray
 xetilda ---- non dimensional penetration length for spray model at a given time for back end of
 spray
 rhotilda --- non dimensionalized density (fuel to air density ratio)
 spreadangle spray spread angle
 xplus ------ non dimensionalizing length constant
 Ca --------- nozzle area contraction coefficient
 dorifice --- nozzle orifice diameter
 phix ------- equivalence ratio at the spray length
 a ---------- spread angle multiplier
 L ---------- liquid length
 k ---------- liquid length correlation constant
 alpha ------ liquid length correlation constant
 beta ------- liquid length correlation constant
 Ltilda ----- non dimensional liquid length
 z ---------- spray model variable used to find equivalence ratios
 phiL ------- equivalence ratio at the liquid length
 ttildaL ---- non dimensional time for liquid length
 ttildax1 --- non dimensional time for given spray length
 injdata[3] - injector parameters retrieved from the injector function
 phix1 ------ equivalence ratio at a given length
 x1tilda ---- non dimensional penetration length for given spray lengt h
 xtilda0 ---- first guess of non dimensional penetration length for solving spray correlation using
 the secant method

 170

 xtilda1 ---- second guess of non dimensional penetration length for solving spray correlation
 using the secant method
 xtilda2 ---- subsequent guesses of non dimensional penetration length for solving spray
 correlation using the secant method
 q0 --------- secant method function
 q1 --------- secant method function
 dq --------- change in secant method function */

 // declare variables
 double B, c=.31, tplus, ttilda, xtilda, x, tL, tx1, tetilda, xe, xetilda;
 double rhotilda, spreadangle, xplus, Ca, dorifice, phix;
 double a=.66, L, k=10.5, alpha=.58, beta=.59, Ltilda, z, phiL, ttildaL, t tildax1;
 double injdata[3], phix1, x1tilda, xtilda0=50, xtilda1=0, xtilda2, q0, q1, dq;

 /* function prototypes
 injector function holds data on different injector nozzles
 airfuel function retrieves the molar stoichiometric air fuel ratio */
 void injector(int inj, double injdata[]);
 double airfuel(double fuelcomp[]);

 injector(inj,injdata); // retrieve injector data
 dorifice=injdata[0]/1000; // change units to mm
 Ca=injdata[2];
 AFs=airfuel(fuelcomp); // get molar stoichiometric air fuel ratio
 AFs=AFs*MWa/fuel[7]; // change air fuel ratio to mass basis

 // liquid length calculations
 if(dh==0)
 {
 Cpa=Cpa/MWa; // calculate specific heat of air
 dh=Cpa*(T-fuel[1]); // change in enthalpy for liquid length model
 }
 B=(fuel[0]*(fuel[1]-Tinj)+fuel[2])/dh; // liquid length energy ratio
 rhotilda=fuel[3]/rhoa; // density ratio
 if(angle==0)
 {
 spreadangle=c*(pow(1/rhotilda,.19)-.0043*sqrt(rhotilda)); // spray spread angle if
 angle not previously calculated
 }
 else
 {
 spreadangle=angle; // spray spread angle if previously calculated (insures angle
 doesnt change)
 }
 xplus=sqrt(rhotilda)*((sqrt(Ca)*dorifice)/(a*spreadangle));
 // calculate non dimensionalizing length constant
 L=dorifice*k*(pow(rhotilda,alpha))*(pow(B,beta));
 // liquid length calculation
 Ltilda=L/xplus; // non dimensional liquid length
 z=1+16*(Ltilda*Ltilda); // equivalence ratio constant
 phiL=(sqrt(z)-1)/2; // equivalence ratio at liquid length
 tplus=xplus/(Ufuel); // calculate non dimensionalizing time constant
 ttilda=t/tplus; // non dimensionalized time
 ttildaL=Ltilda/2+(Ltilda/4)*sqrt(1+16*Ltilda*Ltilda)+(1/16)*log(4*Ltilda+
 sqrt(1+16*Ltilda*Ltilda)); // non dimensional time to reach liquid length
 tL=ttildaL*tplus; // time to reach liquid length

 171

 // calculate spray penetration length and phi at that length given the time included in the
 function prototype
 q0=xtilda0/2+(xtilda0/4)*sqrt(1+16*xtilda0*xtilda0)+(1/16)*log(4*xtilda0+
 sqrt(1+16*xtilda0*xtilda0))-ttilda; // secant function at first penetration length guess for
 a given time
 q1=xtilda1/2+(xtilda1/4)*sqrt(1+16*xtilda1*xtilda1)+(1/16)*log(4*xtilda1+
 sqrt(1+16*xtilda1*xtilda1))-ttilda; // secant function at second penetration length guess
 for a given time
 do
 {
 dq=(q1-q0); // change in secant function
 xtilda2=xtilda1-q1*((xtilda1-xtilda0)/dq); // new non dimensional length guess
 xtilda0=xtilda1;
 q0=q1;

 xtilda1=xtilda2;
 q1=xtilda2/2+(xtilda2/4)*sqrt(1+16*xtilda2*xtilda2)+(1/16)*log(4*xtilda2+
 sqrt(1+16*xtilda2*xtilda2))-ttilda; // secant function at subsequent penetration
 length guess for a given time

 }while(fabs(q1)>.0001);
 xtilda=xtilda2; // non dimensional length at a given time
 x=xtilda*xplus; // length at a given time
 z=1+16*(xtilda*xtilda); // equivalence ratio constant
 phix=(sqrt(z)-1)/2; // equivalence ratio at tip at given time

 // calculate time to reach length given in function prototype and equivalence ratio at that length
 x1tilda=l1/xplus;
 z=1+1 6*(x1tilda*x1tilda); // equivalence ratio constant
 phix1=2*AFs/(sqrt(z)-1); // equivalence ratio at given length
 ttildax1=x1tilda/2+(x1tilda/4)*sqrt(1+16*x1tilda*x1tilda)+(1/16)*log(4*x1tilda+
 sqrt(1+16*x1tilda*x1tilda)); // non dimensional time to reach given length
 tx1=ttildax1*tplus; // time to reach given length
 tetilda=te/tplus; // non dimensional time for back end of spray

 // calculate spray penetration length to the back end of the spray given the time after EOI included
 in the function prototype
 xtilda0=50;
 xtilda1=0;
 q0=xtilda0/2+(xtilda0/4)*sqrt(1+16*xtilda0*xtilda0)+(1/16)*log(4*xtilda0+
 sqrt(1+16*xtilda0*xtilda0))-tetilda; // secant function at first penetration length guess for
 back end of spray
 q1=xtilda1/2+(xtilda1/4)*sqrt(1+16*xtilda1*xtilda1)+(1/16)*log(4*xtilda1+
 sqrt(1+16*xtilda1*xtilda1))-tetilda; // secant function at second penetration length guess
 for back end of spray
 do
 {
 dq=(q1-q0); // change in secant function
 xtilda2=xtilda1-q1*((xtilda1-xtilda0)/dq); // new non dimensional length guess for
 back end of spray
 xtilda0=xtilda1;
 q0=q1;

 xtilda1=xtilda2;
 q1=xtilda2/2+(xtilda2/4)*sqrt(1+16*xtilda2*xtilda2)+(1/16)*log(4*xtilda2+
 sqrt(1+16*xtilda2*xtilda2))-tetilda; // secant function at subsequent penetration
 length guess for back end of spray

 }while(fabs(q1)>.0001);

 172

 xetilda=xtilda2; // non dimensional length to back end of spray
xe=xetilda*xplus; // length to back end of spray

 ll[0]=L; // variables returned to other functions
 ll[1]=phiL*fuel[7]/MWa;
 ll[2]=x;
 ll[3]=phix*fuel[7]/MWa;
 ll[4]=tL;
 ll[5]=spreadangle;
 ll[6]=tx1;
 ll[7]=phix1;
 ll[8]=xe;

 return; // return to injection function
}
/*--*/
/* injector parameters */

void injector(int inj, double injdata[])
{
 /*injdata[0]=orifice diameter(um) */
 /*injdata[1]=Cd */
 /*injdata[2]=Ca */

 switch (inj)
 {
 case 1:
 injdata[0]=100;
 injdata[1]=.80;
 injdata[2]=.86;
 break;
 case 2:
 injdata[0]=194;
 injdata[1]=.77;
 injdata[2]=.82;
 break;
 case 3:
 injdata[0]=251;
 injdata[1]=.79;
 injdata[2]=.79;
 break;
 case 4:
 injdata[0]=246;
 injdata[1]=.78;
 injdata[2]=.81;
 break;
 case 5:
 injdata[0]=267;
 injdata[1]=.77;
 injdata[2]=.82;
 break;
 case 6:
 injdata[0]=363;
 injdata[1]=.81;
 injdata[2]=.85;
 break;
 case 7:

 173

 injdata[0]=498;
 injdata[1]=.84;
 injdata[2]=.88;
 break;
 case 8:
 injdata[0]=71;
 injdata[1]=.86;
 injdata[2]=.86;
 break;
 case 9:
 injdata[0]=180;
 injdata[1]=.77;
 injdata[2]=.82;
 break;
 default:
 break;
 }
}

 174

 175

APPENDIX B. PREMIXED BURN MODEL

This appendix describes how the heat release takes place from ignition until the

lift-off length is reached. This has been termed the premixed burn duration.

The heat release rate from the initial premixed burn was calculated by spreading

the total heat release from the available fuel at the time of ignition over a premixed burn

time. To do this a premixed burn time must be determined as well as the shape of the

heat release rate. A global reaction rate published by Turns [33] was used to determine

the premixed burn time. The glo bal reaction seen in Equation B.1 gives the change in

concentration of diesel fuel, modeled as C10H22.

 [] [] dtOHC
T

15098
exp103.8]Hd[C 1.5

2
.25

2210
11

2210

⋅= (B.1)

The fuel available for the reaction is all the fuel beyond the liquid length just prior to

ignition or all the fuel in zone 2. The initial fuel and air concentrations were calculated

using the equivalence ratio given in the spray model. A time step is taken and a change

in fuel concentration is calculated. Equation B.1 is numerically integrated taking finite

time steps ∆T, to determine successive fuel concentrations. The fuel concentration at the

next time step is given by determining ∆[C10H22] from Equation B.2 and then the new

 176

concentration of fuel from Equation B.3. Time steps are taken until the fuel

concentration is zero as seen in Figure B.1.

[] [] t∆

⋅=∆ 1.5

2
.25

2210
11

2210 OHC
T

15098
exp103.8]H[C (B.2)

 [] [] []2210O2210N2210 HCdHCHC −= (B.3)

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

t (ms)

%
 F

u
el

Figure B.1. Fuel Burn vs. Time Using Equation B.1.

 177

Figure B.2. Premixed Burn Concentrations and Temperature Variations

At each new time step the values of [O2] and temperature are changing. These are

updated by recognizing that 1) the oxygen concentration reduces proportionally as the

fuel concentration is reduced and 2) the temperature increases from the initial

temperature to the adiabatic flame temperature as the fuel is burned. The temperature

was assumed to increase linearly with decreasing fuel and O2 concentration from the

initial temperature in zone 2 to the adiabatic flame temperature. A schematic

demonstrating the change in temperature and O2 concentration as fuel concentration is

changed is shown in Figure B.2 with the Equations B.4 and B.5 showing how the

calculation in the program proceeded.

 [] [] [] []
[] []

−
−

=
3221022210

3222
N2210N2 HCHC

OO
HCO (B.4)

 [] []() [] []

−
−

−+=
3222

23
N2222N OO

TT
OOTT (B.5)

The total time to consume the fuel for this reaction is much longer than a typical

diesel premixed burn. The reaction rate starts and remains low for 19 - 20 ms before

Tfinal

Initial State Final State

[O2]i

T initial

[C10H22]i

 178

increasing rapidly at the end as seen in Figure B.3. One reason for the longer reaction

time is that the model being used assumes the products to be perfectly mixed after each

time step. In reality, numerous hot spots would likely develop in the premixed mixture

producing the higher temperature needed to increase the reaction rate locally. In order to

scale the model to a realistic time, the “heat up” time was removed from the total reaction

time. The heat up time was defined as the time required to produce a heat release greater

than the enthalpy of vaporization of the fuel. The justification for selecting the heat of

vaporization is that the ignition delay in an engine is typically defined as the time

between injection and a positive value of apparent heat release. The apparent heat release

can only be positive if the heat release from the fuel exceeds the heat absorbed by the

evaporating fuel. When the energy from the reaction rate is greater than the energy

required to vaporize the fuel, time accumulates until all of the fuel is consumed. The

time between the end of the heat up period and the end of fuel concentration is the

premixed burn duration tPM as shown in Figure B.3.

Knowing the time for the premixed burn we must now determine the shape of the

heat release during this time. The heat release from the initial premixed burn volume

IDQ is spread out over the premixed burn duration. In order to smooth the shape of this

heat release the cosine function in Equation B.6 was used. In this equation tAI is the time

after ignition of the fuel and tPM is the time for the premixed burn. This function

multiplies IDQ by a number between 0 and 1 calculated using the cosine function to

determine how

 179

much of the premixed heat release to add in a particular time step. This amount is used to

calculate the heat release rate for those crank angles.

+

−= 5.

t
t

pcos5.1QQ
PM

AI
IDPM (B.6)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

15 16 17 18 19 20 21

t (ms)

H
 (

kJ
)

HR
Hfg

tPM

Figure B.3 Time for the Premixed Burn.

 Knowing the time for the premixed burn we must now determine the shape of the

heat release during this time. The heat release from the initial premixed burn volume

IDQ is spread out over the premixed burn duration. In order to smooth the shape of this

heat release the cosine function in Equation B.6 was used. In this equation tAI is the time

 180

after ignition of the fuel and tPM is the time for the premixed burn. This function

multiplies IDQ by a number between 0 and 1 calculated using the cosine function to

determine how much of the premixed heat release to add in a particular time step. This

amount is used to calculate the heat release rate for those crank angles.

+

−= 5.

t
t

pcos5.1QQ
P M

AI
IDP M (B.6)

 The new total heat release in region A described in Chapter 4 at any crank angle

includin g the premixed burn QA,N is shown in Equation B.7. To account for the premixed

burn the total heat release available to the premixed burn QID is subtracted from the total

available at the current crank angle QA,O and a portion for the premixed burn calculated in

Equation B.6 QPM is added back in as shown in Figure B.4.

PMIDOA,NA, QQQQ +−= (B.7)

Figure B.4. Premixed Burn Heat Release

QA,O
QID

QPM

QA,N

 181

The heat release rate then becomes Equation B.8 This equation takes into account

the vaporization of the fuel and the premixed burn duration. It also takes into account the

ignition delay by setting QTot,t+?t and QTot,t to zero until the start of combustion.

tTot,Nt,tTot,HR QQQ −= ∆+
& (B.8)

 182

 183

APPENDIX C. DATA SETS

Sandia National Laboratories Constant Volume Combustion Vessel Results

Pressure Rise
246 µm nozzle

Heat Release Rate

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

-1 0 1 2 3 4 5 6 7 8 9 10

t (ms)

P
-P

0
 (

M
P

a)

Bomb
Model

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

-1 0 1 2 3 4 5 6 7 8 9 10

t (ms)

d
P

/d
t

(M
P

a/
m

s)

Bomb
Model

No heat transfer

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-1 0 1 2 3 4 5 6 7 8 9 10

t (ms)

P
-P

0
 (

M
P

a)

Bomb
Model

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

-1 0 1 2 3 4 5 6 7 8 9 10

t (ms)

d
P

/d
t

(M
P

a/
m

s)

Bomb
Model

Heat transfer

 184

100 µm nozzle

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

-1 0 1 2 3 4 5 6 7 8 9 10

t (ms)

P
-P

0
 (

M
P

a)

Bomb
Model

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

-1 0 1 2 3 4 5 6 7 8 9 10

t (ms)

d
P

/d
t

(M
P

a/
m

s)

Bomb
Model

No heat transfer

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

-1 0 1 2 3 4 5 6 7 8 9 10

t (ms)

P
-P

0 (
M

P
a)

Bomb
Model

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

-1 0 1 2 3 4 5 6 7 8 9 10

t (ms)

d
P

/d
t

(M
P

a/
m

s)

Bomb
Model

Heat transfer

180 µm nozzle

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

- 1 0 1 2 3 4 5 6 7 8 9 10

t (ms)

P
-P

0 (
M

P
a)

Bomb
Model

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

-1 0 1 2 3 4 5 6 7 8 9 10

t (ms)

d
P

/d
t

(M
P

a/
m

s)

Bomb
Model

No heat transfer

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-1 0 1 2 3 4 5 6 7 8 9 10

t (ms)

P
-P

0
 (

M
P

a)

Bomb
Model -0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

-1 0 1 2 3 4 5 6 7 8 9 10

t (ms)
d

P
/d

t
(M

P
a/

m
s)

Bomb
Model

Heat transfer

 185

71 µm nozzle

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

-1 0 1 2 3 4 5 6 7 8 9 10

t (ms)

P
-P

0
 (

M
P

a)

Bomb
Model

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-1 0 1 2 3 4 5 6 7 8 9 10

t (ms)

d
P

/d
t

(M
P

a/
m

s)

Bomb
Model

No heat transfer

Sandia National Laboratories Research Engine Heat Release Rate Results

1200 RPM Low Fuel Load

Constant Injection Pressure

Normal Injection Timing

Ramping Injection Pressure

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

345 350 355 360 365 370 375 380 385 390

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

345 350 355 360 365 370 375 380 385 390

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

Normal Heat Transfer

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

345 350 355 360 365 370 375 380 385 390

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

345 350 355 360 365 370 375 380 385 390
CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

Extra Heat Transfer

 186

1200 RPM Low Fuel Load

Constant Injection Pressure

Retarded Injection Timing

Ramping Injection Pressure

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

355 360 365 370 375 380 385 390 395 400
CA (deg)

A
H

R
R

 (k
J/

C
A

)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Q
to

t
(k

J)

AHRR
AHRR m
Qtot
Qtot m

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

355 360 365 370 375 380 385 390 395 400
CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

Normal Heat Transfer

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

355 365 375 385 395
CA (deg)

A
H

R
R

 (k
J/

C
A

)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Q
to

t
(k

J)

AHRR
AHRR m
Qtot
Qtot m

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

355 365 375 385 395
CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

Extra Heat Transfer

1200 RPM High Fuel Load

Constant Injection Pressure

Normal Injection Timing

Ramping Injection Pressure

-0.15

-0.05

0.05

0.15

0.25

0.35

0.45

345 355 365 375 385 395

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

-0.15

-0.05

0.05

0.15

0.25

0.35

0.45

345 355 365 375 385 395

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Q
to

t
(k

J)

AHRR
AHRR m
Qtot
Qtot m

Normal Heat Transfer

 187

-0.15

-0.05

0.05

0.15

0.25

0.35

0.45

345 355 365 375 385 395

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

-0.15

-0.05

0.05

0.15

0.25

0.35

0.45

345 355 365 375 385 395

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

Extra Heat Transfer

1200 RPM High Fuel Load

Constant In jection Pressure

Retarded Injection Timing

Ramping Injection Pressure

-0.1
-0.05

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

355 365 375 385 395 405

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.5

0.5

1.5

2.5

3.5

4.5

5.5
Q

to
t (

kJ
)

AHRR
AHRR m
Qtot
Qtot m

-0.1
-0.05

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

355 365 375 385 395 405

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

Normal Heat Transfer

-0.1
-0.05

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

355 365 375 385 395 405

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

-0.1
-0.05

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

355 365 375 385 395 405

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

Extra Heat Transfer

 188

1680 RPM High Fuel Load

Constant Injection Pressure

Normal Injection Timing

Ramping Injection Pressure

-0.15

-0.05

0.05

0.15

0.25

0.35

0.45

345 355 365 375 385 395 405

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

-0.15

-0.05

0.05

0.15

0.25

0.35

0.45

345 355 365 375 385 395 405

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

Normal Heat Transfer

-0.15

-0.05

0.05

0.15

0.25

0.35

0.45

345 355 365 375 385 395 405

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

-0.15

-0.05

0.05

0.15

0.25

0.35

0.45

345 355 365 375 385 395 405

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

Extra Heat Transfer

1680 RPM High Fuel Load

Constant Injection Pressure

Retarded Injection Timing

Ramping Injection Pressure

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

355 365 375 385 395 405 415

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

355 365 375 385 395 405 415

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

Normal Heat Transfer

 189

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

355 365 375 385 395 405 415

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

355 365 375 385 395 405 415

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

Extra Heat Transfer

BYU Research Engine Heat Release Rate Results

1500 RPM φ = .3

Constant Injection Pressure

Ramping Injection Pressure

-0.1

0

0.1

0.2

0.3

0.4

0.5

355 365 375 385 395

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

-0.1

0

0.1

0.2

0.3

0.4

0.5

355 365 375 385 395

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

Normal Heat Transfer

-0.1

0

0.1

0.2

0.3

0.4

0.5

355 365 375 385 395

CA (deg)

A
H

R
R

 (k
J/

C
A

)

-0.2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

Q
to

t
(k

J)

AHRR
AHRR m
Qtot
Qtot m

-0.1

0

0.1

0.2

0.3

0.4

0.5

355 365 375 385 395

CA (deg)

A
H

R
R

 (k
J/

C
A

)

-0.2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

Q
to

t
(k

J)

AHRR
AHRR m
Qtot
Qtot m

Extra Heat Transfer

 190

1500 RPM φ = .5

Constant Injection Pressure

Ramping Injection Pressure

-0.1

0

0.1

0.2

0.3

0.4

0.5

355 365 375 385 395

CA (deg)

A
H

R
R

 (k
J/

C
A

)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Q
to

t
(k

J)

AHRR
AHRR m
Qtot
Qtot m

-0.1

0

0.1

0.2

0.3

0.4

0.5

355 365 375 385 395

CA (deg)

A
H

R
R

 (k
J/

C
A

)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Q
to

t
(k

J)

AHRR
AHRR m
Qtot
Qtot m

Normal Heat Transfer

-0.1

0

0.1

0.2

0.3

0.4

0.5

355 365 375 385 395

CA (deg)

A
H

R
R

 (k
J/

C
A

)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Q
to

t
(k

J)

AHRR
AHRR m
Qtot
Qtot m

-0.1

0

0.1

0.2

0.3

0.4

0.5

355 365 375 385 395

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

Extra Heat Transfer

2000 RPM φ = .3

Constant Injection Pressure

Ramping Injection Pressure

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

355 365 375 385 395

CA (deg)

A
H

R
R

 (k
J/

C
A

)

-0.2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

Q
to

t
(k

J)

AHRR
AHRR m
Qtot
Qtot m

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

355 365 375 385 395

CA (deg)

A
H

R
R

 (k
J/

C
A

)

-0.2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

Q
to

t
(k

J)
AHRR
AHRR m
Qtot
Qtot m

Normal Heat Transfer

 191

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

355 365 375 385 395

CA (deg)

A
H

R
R

 (k
J/

C
A

)

-0.2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

Q
to

t
(k

J)

AHRR
AHRR m
Qtot
Qtot m

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

355 365 375 385 395

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

AHRR
AHRR m
Qtot
Qtot m

Extra Heat Transfer

2000 RPM φ = .5

Constant Injection Pressure

Ramping Injection Pressure

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

355 365 375 385 395

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.2

0.2

0.6

1

1.4

1.8

2.2

2.6

3
Q

to
t

(k
J)

AHRR
AHRR m
Qtot
Qtot m

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

355 365 375 385 395

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.2

0.2

0.6

1

1.4

1.8

2.2

2.6

3

Q
to

t
(k

J)

AHRR
AHRR m
Qtot
Qtot m

Normal Heat Transfer

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

355 365 375 385 395

CA (deg)

A
H

R
R

 (
kJ

/C
A

)

-0.2

0.2

0.6

1

1.4

1.8

2.2

2.6

3

Q
to

t (
kJ

)

AHRR
AHRR m
Qtot
Qtot m

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

355 365 375 385 395

CA (deg)

A
H

R
R

 (k
J/

C
A

)

-0.2

0.2

0.6

1

1.4

1.8

2.2

2.6

3

Q
to

t
(k

J)

AHRR
AHRR m
Qtot
Qtot m

Extra Heat Transfer

	A Five-Zone Model for Direct Injection Diesel Combustion
	BYU ScholarsArchive Citation

	TITLE PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1. INTRODUCTION
	2. BACKGROUND
	2.1. THE DIESEL COMBUSTION PROCESS
	2.2. THE OLD CONCEPTUAL MODEL OF DIESEL COMBUSTION
	2.3. NEW CONCEPTUAL MODEL
	2.3.1. TEMPORAL MODEL
	2.3.2. QUASI-STEADY MODEL

	2.4. DIESEL COMBUSTION MODELS
	2.4.1. THREE-DIMENSIOINAL MODELS
	2.4.2. ONE-ZONE MODELS
	2.4.3. TWO-ZONE MODELS
	2.4.4. THREE-ZONE MODELS
	2.4.5. MULTI-ZONE MODELS

	2.5. SUMMARY AND NEED FOR A NEW MODEL
	2.6. OBJECTIVES
	2.7. CONTRIBUTION

	3. SPRAY CORRELATION AND EQUILIBRIUM MODEL
	3.1. SPRAY MODEL
	3.1.1. SPRAY PENETRATION MODEL
	3.1.2. LIQUID LENGTH MODEL

	3.2. EQUILIBRIUM MODEL
	3.2.1. SPECIES
	3.2.2. EQUILIBRIUM CONSTANTS
	3.2.3. NEWTON-RAPHSON FOR NONLINEAR SYSTEMS
	3.2.4. CONVERGENCE METHODS

	4. CYCLE SIMULATION DESCRIPTION
	4.1. INTRODUCTION
	4.2. OVERVIEW
	4.3. DETAILED DESCRIPTION
	4.3.1. CYLINDER GEOMETRY
	4.3.2. COMPRESSION AND EXPANSION STROKE
	4.3.3. HEAT RELEASE MODEL
	4.3.4. FIVE-ZONE MODEL

	5. EXPERIMENTAL SETUP
	5.1. SANDIA BOMB
	5.2. SANDIA ENGINE
	5.3. BYU DIESEL ENGINE TEST CELL
	5.3.1. ENGINE AND DYNAMOMETER
	5.3.2. INSTRUMENTATION AND DATA ACQUISITION
	5.3.3. BYU ENGINE EXPERIMENTAL CONDITIONS

	5.4. DATA PROCESSING
	5.5. MODEL RESULTS
	5.5.1. SANDIA BOMB
	5.5.2. SANDIA ENGINE
	5.5.3. BYU ENGINE

	6. RESULTS
	6.1. SPRAY MODEL RESULTS
	6.2. EQUILIBRIUM MODEL RESULTS
	6.4. SANDIA BOMB COMPARISON
	6.5. SANDIA ENGINE COMPARISON
	6.6. BYU ENGINE COMPARISON
	6.7. ZONAL TEMPERATURES

	7. SUMMARY AND CONCLUSIONS
	7.1. SUMMARY
	7.2. CONCLUSIONS
	7.3. RECOMMENDATIONS

	REFERENCES
	APPENDIX
	APPENDIX A. CODE LISTING
	APPENDIX B. PREMIXED BURN MODEL
	APPENDIX C. DATA SETS

