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ABSTRACT 

 
 

A STUDY OF RADIOFREQUENCY CARDIAC ABLATION USING ANALYTICAL 

AND NUMERICAL TECHNIQUES 

 
 

Ryan Todd Roper 

Department of Mechanical Engineering 

Master of Science 

 

Studies on radiofrequency (RF) ablation are often aimed at accurately predicting 

tissue temperature distributions by numerical solution of the bioheat equation.  This 

thesis describes the development of an analytical solution to serve as a benchmark for 

subsequent numerical solutions.  The solution, which was obtained using integral 

transforms, has the form of a surface integral nested within another surface integral.  An 

integration routine capable of evaluating such integrals was developed and a C program 

was written to implement this routine.  The surface integration routine was validated 

using a surface integral with a known analytical solution.  The routine was, then, used to 

generate temperature profiles at various times and for different convection coefficients.  

To further validate the numerical methods used to obtain temperature profiles, a 

numerical model was developed with the same approximations used in obtaining the 

analytical solution.  Results of the analytical and numerical solutions match very closely. 



  

In addition, three numerical models were developed to assess the validity of some 

of the assumptions used in obtaining the analytical solution.  For each numerical model, 

one or two of the assumptions used in the analytical model were relaxed to better assess 

the degree to which they influence results.  The results indicate that (1) conduction of 

heat into the electrode significantly affects lesion size, (2) temperature distributions can 

be assumed to be axisymmetric, and (3) lesion size and maximum temperature are 

strongly influenced by the temperature-dependence of electrical conductivity.  These 

conclusions are consistent with results from previous studies on radiofrequency cardiac 

ablation. 
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CHAPTER 1 – INTRODUCTION 
 

1.1 Background 

Radiofrequency (RF) ablation is a minimally-invasive surgical procedure that has 

been very successful in treating certain types of cardiac arrhythmia.  This procedure 

consists of inserting an electrode catheter through a blood vessel into the heart of a 

patient where radiofrequency current is applied to the site responsible for initiation of the 

arrhythmic contractions.  A small lesion is produced as a result of resistive heating, thus 

eliminating the source of the arrhythmia.  This process is illustrated in Fig. 1.1. 

 

 
Figure 1.1 An illustration showing the process by which an electrode catheter is 

inserted through a blood vessel into the heart to resistively heat and 
destroy the affected cardiac tissue [1]. 

 

While this procedure has been highly effective in treating some types of 

arrhythmia, many studies are aimed at gaining a better understanding of the factors 
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involved in lesion formation.  The ultimate objective of this research is to further improve 

success rates and to make the procedure applicable to a wider range of arrhythmias.  Two 

problems in particular may occur when using this method of treatment.  First, there is the 

potential of damaging non-target tissue that is critical for normal function of the heart.  

On the other hand, it is thought that target tissue on the border of the lesion that is not 

successfully ablated can become permanently dysfunctional [2].  Either of these 

outcomes may necessitate the use of a cardiac assist device to help the patient’s heart to 

work properly.  Research on RF ablation is motivated by the idea that such complications 

may be avoided by developing accurate models that predict lesion geometry based on 

such factors as applied power, ablation time, and location of the ablation site within the 

heart. 

The overriding need in predicting lesion geometry is a better understanding of the 

heat transfer processes that occur during RF ablation.  Detailed modeling of conductive 

heat transfer within the tissue and convective heat transfer from the surface to the blood 

pool has already been performed [3-7].  One study shows that, while accurate prediction 

of both lesion size and blood temperature require detailed thermal and fluid models, the 

lesion geometry alone can be accurately predicted using a simple thermal model based on 

a convective boundary condition at the tissue surface, where the convection coefficient 

has been experimentally determined [4].  This eliminates the need to solve the 

momentum transport equations for blood flow over the tissue surface and the problem is 

greatly simplified. 

However, the accuracy of such a model depends largely on the accuracy with 

which the convection coefficient can be determined.  According to Bhavaraju [8], the 



 3 

value of this coefficient varies significantly (from less than 100 W/m2K to almost 4000 

W/m2K) depending on the location within the heart.  This is a result of large variations in 

blood flow characteristics throughout the heart.  Therefore, even if convection 

coefficients can be accurately determined through experimentation, the significant 

variation in conditions throughout the heart makes it difficult to formulate a standard 

ablation protocol that can be used in treating patients.  In other words, it is difficult to 

determine such parameters as the power level and the length of time required to produce 

a desired lesion shape and size because these depend strongly on flow characteristics 

immediately around the ablation site. 

A potential solution to this problem involves the use of inverse heat transfer 

techniques to discover if a relationship exists between a set of easily measured tissue 

temperatures and the convective heat transfer coefficient.  If tissue properties are known, 

the convection coefficient is the only remaining parameter necessary for predicting lesion 

shape and size, as long as an appropriate mathematical model can be developed.  If a 

relationship can, in fact, be found between a set of easily measured tissue temperatures 

and the convection coefficient, then the need to experimentally determine the value of the 

convection coefficient would be eliminated.  Measurement of a few temperatures near the 

electrode would be sufficient for a computer to construct the entire temperature profile 

within the tissue at any given time during the ablation procedure.  Through a feedback 

loop, in which the profile is continually updated based on the measured temperatures, the 

power could be automatically turned off when the lesion reaches the desired size.  

Assuming sufficiently efficient algorithms could be designed to interpret the temperatures 
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measured near the electrode, this approach would provide a very simple and effective 

way of producing lesions of a desired size and shape. 

The first step required for the solution of any inverse problem is the solution of 

the forward problem.  In heat transfer problems involving human tissue, this requires 

solving the bioheat equation.  Such a solution allows tissue temperature distributions to 

be obtained for different specified conditions.  This has been done previously in several 

studies using finite element modeling techniques [3-7].  None of these studies, however, 

present a method for solving the bioheat equation analytically. 

 
1.2 Objectives 

The following is a summary of the objectives of this research: 

(1) To develop an analytical solution to the bioheat equation that will serve as 

a benchmark for numerical studies of RF ablation.  It was also anticipated 

that such a solution would provide insight needed to effectively solve the 

inverse heat transfer problem. 

(2) To develop a means of efficiently and accurately evaluating the solution.  

This is essential if the solution is going to be used in solving the inverse 

heat transfer problem, since it must be evaluated for several times and 

convection coefficients. 

(3) To assess the validity of approximations made in obtaining the analytical 

solution by conducting numerical studies.  This is important since the 

quality of results obtained from an inverse heat transfer study depends on 

the degree to which the model used to solve the forward problem 
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represents the actual physical processes.  The objective of these numerical 

studies was also to gain additional insights into RF ablation. 

It is important to note that, while this work forms the foundation for a study to be 

conducted using inverse heat transfer techniques, no attempt has been made to solve the 

inverse problem in this thesis. 
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CHAPTER 2 – ANALYTICAL SOLUTION OF THE BIOHEAT EQUATION 
 

2.1 Formulation of the Ablation Model 

In heat transfer problems involving human tissue, the bioheat equation, which is 

shown as Eq. (2.1), may be solved to obtain tissue temperature distributions.  In this 

equation, Qm and Qp represent the metabolic heat generation and the heat loss due to 

blood perfusion, respectively. 

 m p t
Tk T q Q Q c
t

ρ ∂
∇⋅ ∇ + + − =

∂
&  (2.1) 

To develop an analytical solution to the bioheat equation, a flat-tipped electrode and a 

convective boundary condition at the tissue surface are assumed.  While a round-tipped 

electrode is used in actual ablation procedures, it was necessary to assume a flat-tipped 

electrode to make the problem tractable.  In addition, it was necessary to assume a 

uniform convective boundary condition instead of a mixed boundary condition at the 

surface to make the problem tractable.  Therefore, this model does not account for 

conduction into the ablation electrode.  To emphasize this point, the schematic shown in 

Fig. 2.1 does not include the electrode.  The conductive heat loss that would occur at the 

tissue-electrode interface is assumed to be similar to that predicted using a convective 

boundary condition that is uniform over the entire tissue surface. 

To account for resistive heating in the tissue produced by the electrode, an energy 

generation function is developed in Section 2.3.  The electrical conductivity is assumed to 

be independent of temperature so that the energy generation is a function of location only 
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(The validity of this assumption will be discussed in Chapter 5).  It is represented in Fig. 

2.1 by the notation, ( , )q r z& .  The spatial variables, r and z, represent the radial and axial 

positions, respectively, in cylindrical coordinates.  In developing this function, the 

electrode tip is modeled as a flat electrified disk. 

 

Figure 2.1 Schematic depicting details of the ablation model.  Included are the 
thermal boundary conditions. 

 

Typically, metabolic heat generation is neglected since it is small compared to the 

energy generated by resistive heating [5-7].  Likewise, heat loss due to blood perfusion is 

neglected since it is small relative to the heat lost at the tissue surface.  With these 

approximations, the bioheat equation is identical to the heat equation: 

 t
Tk T q c
t

ρ ∂
∇ ⋅ ∇ + =

∂
&  (2.2) 

In addition, if it is assumed that thermal conductivity is uniform and independent of 

temperature [7] and that the tissue temperature distribution is axisymmetric [4], the 

governing equation has the form shown in Eq. (2.3).  Tungjitkusolmun et al. [7] show, by 

finite element analysis, that accounting for the temperature dependence of thermal 
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conductivity results in only a 1.5% change in lesion volume when the energy is applied in 

a power-controlled manner.  If it is applied in a temperature-controlled manner, lesion 

volume only changes by 3.5%.  The assumption of an axisymmetric temperature 

distribution has been studied by Jain and Wolf [4] by considering the effects of blood 

heating on lesion geometry.  They show that, while some distortion of the lesion occurs, 

it is not significant.  This will be further investigated in Chapter 5. 

 
2

2

1 1T T q Tr
r r r z k tα
∂ ∂ ∂ ∂  + + = ∂ ∂ ∂ ∂ 

&
 (2.3) 

 
The initial condition and boundary conditions used to solve Eq. (2.3) are shown as Eqs. 

(2.4) –  (2.6), below. 

 
 ( ) 0, ,0T r z T=  (2.4) 

 
( )

0

0

0

, ,
r

r

T
r

T r z t T
=

→∞

∂
=

∂

=
 (2.5) 

 
( )

( )

0
0

0

,0,

, ,
z

z

T h T r t T
z k

T r z t T
=

→∞

∂
 = − ∂

=
 (2.6) 

 
Using dimensionless parameters as defined in the nomenclature, the governing equation, 

initial condition, and boundary conditions become: 

 

 
2

2

1 Qθ θ θρ
ρ ρ ρ ζ τ

 ∂ ∂ ∂ ∂
+ + = ∂ ∂ ∂ ∂ 

 (2.7) 

 ( , ,0) 0θ ρ ζ =  (2.8) 
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 0

0

( , , ) 0
ρ

ρ

θ
ρ

θ ρ ζ τ
=

→∞

∂
=

∂

=

 (2.9) 

 0

( ,0, )

( , , ) 0

Bi
ζ

ζ

θ θ ρ τ
ζ

θ ρ ζ τ
=

→∞

∂
=

∂

=

 (2.10) 

 
Solution of Eq. (2.7) requires that an expression for the heat generation be 

developed.  The heat generation is defined by the following equation [6]: 

 ( , ) ( )q r z v vσ= ∇ ⋅∇&  (2.11) 

Assuming an axisymmetric potential distribution, Eq. (2.11) may be rewritten as Eq. 

(2.12). 

 
2 2

( , ) v vq r z
r z

σ
 ∂ ∂   = +    ∂ ∂     

&  (2.12) 

Since the applied voltage oscillates at a high frequency (500 kHz to 1 MHz [4]), the 

voltage field can be modeled as steady and equal to the root mean squared (rms) voltage 

field [6].  An expression for the rms voltage field is found by solving the Laplace 

equation.  This equation and its boundary conditions for the case of an electrified disk are 

shown in Eqs. (2.13) – (2.15) [9].  Figure 2.2 is a schematic showing the boundary 

conditions from Eqs. (2.14) and (2.15). 

 

 
2

2

1 0v vr
r r r z
∂ ∂ ∂  + = ∂ ∂ ∂ 

 (2.13) 
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 0

0

( , ) 0
r

r

v
r

v r z
=

→∞

∂
=

∂
=

 (2.14) 

 

0

0

( ,0) 0

0

( , ) 0
z

z

v r v r R
v r R
z

v r z
=

→∞

= ≤ ≤

∂
= >

∂
=

 (2.15) 

 

Figure 2.2 Schematic showing the boundary conditions used in solving for the 
electric potential distribution. 

 

As was done with Eqs. (2.3) – (2.6), these equations may be written in 

dimensionless form using the dimensionless parameters defined in the nomenclature.  

These equations are shown as Eqs. (2.16) – (2.18). 

 
2

2

1 0V Vρ
ρ ρ ρ ζ

 ∂ ∂ ∂
+ = ∂ ∂ ∂ 

 (2.16) 

 0

0

( , ) 0

V

V
ρ

ρ

ρ

ρ ζ
=

→∞

∂
=

∂

=

 (2.17) 
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0

( ,0) 1 0 1

0 1

( , ) 0

V

V

V
ζ

ζ

ρ ρ

ρ
ζ

ρ ζ
=

→∞

= ≤ ≤

∂
= >

∂

=

 (2.18) 

Finally, Eq. (2.12) may be non-dimensionalized to obtain an expression for the 

dimensionless heat generation, shown as Eq. (2.19). 

 
2 222

0

0 0

vR q V VQ
kT kT

σ
ρ ζ

    ∂ ∂
= = +    ∂ ∂     

&
 (2.19) 

The following sections describe, in detail, methods for solving Eqs. (2.7) and 

(2.16) to obtain an expression for the dimensionless temperature as a function of location 

and time. 

 
2.2 Integral Transforms Method 

The integral transforms method of solving partial differential equations (PDE) 

consists of reducing a PDE to an ordinary differential equation (ODE) by removing the 

dependence on all but one of the independent variables.  The ODE may, then, be solved 

using any appropriate solution method.  Such a procedure may be used in solving Eqs. 

(2.7) and (2.16) to obtain expressions for the dimensionless temperature field and the 

dimensionless voltage field, respectively.  In each case, a zero-order Hankel transform 

may be used to eliminate dependence on the dimensionless radial position.  The zero-

order Hankel transform and its inverse are defined in Eq. (2.20), where f is any arbitrary 

function of ρ and γ is the transform variable [9-10]. 

 
00

1
0 00

( ) { ( )} ( ) ( )

( ) { ( )} ( ) ( )

f f f J d

f f f J d

γ ρ ρ ρ γρ ρ

ρ γ γ γ γρ γ

∞

∞−

≡ ≡

= ≡

∫
∫

0H

H
 (2.20) 
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In the case of Eq. (2.16), a second-order, linear, homogeneous ODE is obtained that may 

be solved using any appropriate method.  However, application of the Hankel transform 

to Eq. (2.7) results in another partial differential equation with independent variables ζ 

and τ.  An ODE may be obtained by applying a Fourier transform to remove the 

dependence on ζ.  The Fourier transform and its inverse are defined in Eq. (2.21), where 

g is any arbitrary function of ζ and β is the transform variable [9-10].  The 

function, ( , )K β ζ , is the kernel for the Fourier transform and its form is dependent upon 

the characteristics of the problem.  For the case of a semi-infinite medium with a 

convective boundary condition at the surface, the kernel has the form shown in Eq. (2.22) 

[10] (see Appendix A for a derivation of this kernel). 

 0

1

0

( ) { ( )} ( , ) ( )

( ) { ( )} ( , ) ( )

g g K g d

g g K g d

β ζ β ζ ζ ζ

ζ β β ζ β β

∞

∞−

≡ ≡

= ≡

∫
∫

F

F
 (2.21) 

 
2 2

2 cos sin( , ) BiK
Bi

β βζ βζβ ζ
π β

 +
=  

 + 
 (2.22) 

Application of both the Hankel and Fourier Transforms to Eq. (2.7) results in a first-

order, linear, non-homogeneous ODE that is readily solved.  The final solution is 

obtained by application of the inverse Hankel and Fourier transforms. 

 Sections 2.3 and 2.4 show, in detail, the steps followed in obtaining analytical 

solutions to Eqs. (2.16) and (2.7), respectively, with the use of integral transforms.  In 

addition, Section 2.3 shows the development of a dimensionless heat generation function 

from the solution to Eq. (2.16). 
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2.3 Analytical Solution for the Voltage Field 

Applying the Hankel transform to every term in Eq. (2.16) results in the following 

equation: 

 ( ) ( )
2

0 02
0 0

0V VJ d J dρ γρ ρ ρ γρ ρ
ρ ρ ζ

∞ ∞ ∂ ∂ ∂
+ = ∂ ∂ ∂ 

∫ ∫  (2.23) 

The second term is easily evaluated by reversing the order of operations and using the 

definition of the Hankel transform to obtain the result in Eq. (2.24). 

 ( )
2 2

02 2
0

VVJ dρ γρ ρ
ζ ζ

∞∂ ∂
=

∂ ∂∫  (2.24) 

The first term in Eq. (2.23) may be evaluated using integration by parts to obtain Eq. 

(2.25).  Then, using the boundary conditions and the properties of Bessel functions shown 

in Eq. (2.26) as well as the definition of the Hankel transform in Eq. (2.20), the final 

result of integration by parts is Eq. (2.27). 

 
( )

( ) ( ) ( )

0
0

2
0 1 00

00

V J d

V J VJ VJ d

ρ γρ ρ
ρ ρ

ρ γρ γ ρ γρ γ ρ γρ ρ
ρ

∞

∞ ∞
∞

 ∂ ∂
= ∂ ∂ 

 ∂
 + −   ∂ 

∫

∫
 (2.25) 

 ( ) ( ) ( ) ( )0 1 1
0

, 0 0V V V J J J
ρ ρ ρ

ρ ρ

ρ ζ γρ γρ
ρ ρ →∞ →∞ →∞

= →∞

∂ ∂
= = = = = =

∂ ∂
 (2.26) 

 ( ) 2
0

0

V J d Vρ γρ ρ γ
ρ ρ

∞  ∂ ∂
= − ∂ ∂ 

∫  (2.27) 

The ODE obtained by application of the Hankel transform is, therefore: 

 
2

2
2 0V Vγ

ζ
∂

− =
∂

 (2.28) 
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The solution to Eq. (2.28) has the form shown in Eq. (2.29).  Recognizing that V must be 

bounded as ζ approaches infinity and that ( )B γ  must, therefore, be zero, Eq. (2.30) is 

obtained by application of the inverse Hankel transform. 

 ( ) ( )V A e B eγζ γζγ γ−= +  (2.29) 

 ( ) ( ) ( )0
0

,V A e J dγζρ ζ γ γ γρ γ
∞

− =  ∫  (2.30) 

To obtain the final solution to Eq. (2.16), the coefficient, ( )A γ , must be determined.  

Since the boundary conditions in ρ were used in evaluating the Hankel transform and the 

boundary condition at ζ →∞  was used in determining ( )B γ , the remaining boundary 

condition at 0ζ = , shown in Eq. (2.18), is used in determining ( )A γ .  Because two 

separate conditions must be satisfied at 0ζ = , the following two equations are obtained: 

 ( ) ( ) ( )0
0

1 0 1A J dγ γ γρ γ ρ
∞

= ≤ ≤∫  (2.31) 

 ( ) ( ) ( )2
0

0

0 1A J dγ γ γρ γ ρ
∞

= >∫  (2.32) 

From a table of Hankel transforms [9], it is known that the Hankel transform of 

(sin ) /ρ ρ  for 1γ >  is zero and that the Hankel transform of 2(sin ) /ρ ρ  for 1γ ≤  is 

equal to / 2π .  Recognizing that the form of the inverse Hankel transform is identical to 

the forward transform, it can be assumed that the inverse Hankel transform of (sin ) /γ γ  

for 1ρ >  is zero and that the inverse Hankel transform of 2(sin ) /γ γ  for 1ρ ≤  is / 2π .  

Therefore, Eqs. (2.31) and (2.32) are satisfied if the following is true of ( )A γ : 

 2

2 sin( )A γγ
π γ
 

=  
 

 (2.33) 
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This may be seen in Eqs. (2.34) and (2.35). 

 ( ) ( )02
0

2 sin 2 1 1
2

J dγ πγ γρ γ ρ
π γ π

∞    = = ≤     
∫  (2.34) 

 
( )

( ) ( ) ( )

2
02

0

0
0

2 sin

2 sin 2 0 0 1

J d

J d

γγ γρ γ
π γ

γγ γρ γ ρ
π γ π

∞

∞

 
= 

 

 
= = > 

 

∫

∫
 (2.35) 

Thus, the final solution to Eq. (2.16) is [9,11]: 

 ( ) ( )0
0

2 sin,V e J dγζγρ ζ γρ γ
π γ

∞
−= ∫  (2.36) 

The integral in Eq. (2.36) has a known analytical solution.  Equation (2.37) shows this 

integral and its analytical solution in a general form [12]. 

 
( ) ( )

( ) ( )
1

0 2 22 2
0

sin 2sinpxax ae J x dx
x p a p a

λ
λ λ

∞
− −

 
 =
  + + + + − 

∫  (2.37) 

By inspection of Eqs. (2.36) and (2.37), it can be seen that 1a = , p ζ= , x γ= , and 

λ ρ= .  Therefore, Eq. (2.38) shows an expression for the dimensionless electric 

potential distribution that is equivalent to Eq. (2.36) and is much more readily evaluated. 

 ( )
( ) ( )

1

2 22 2

2 2, sin
1 1

V ρ ζ
π ζ ρ ζ ρ

−
 
 =
  + + + + − 

 (2.38) 

With the above expression for the dimensionless rms electric potential distribution in the 

cardiac tissue, an expression for the dimensionless heat generation function may be 

developed using Eq. (2.19).  Expressions for the derivatives of the dimensionless 

potential field with respect to ρ and ζ are shown as Eqs. (2.39) and (2.40), respectively.  

The dimensionless heat generation function may be obtained using Eqs. (2.19), (2.39), 
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and (2.40).  This equation is shown as Eq. (2.41).  There is some difficulty in evaluating 

Eq. (2.41) at 0ζ =  and 0 1ρ≤ <  since both the numerator and denominator approach 

zero as ζ approaches zero.  Therefore, an expression for the heat generation at 0ζ =  and 

0 1ρ≤ <  was developed using l’Hôpital’s rule and is shown as Eq. (2.42). 

 
( )

( )

1 2

2
1 2 2

1 2

1 1
4

41

V VV

V V
V V

ρ ρ

ρ π

 + − −
∂  

= −  ∂  + −
 + 

 (2.39) 

 
( )

( )

1 2

2
1 2 2

1 2

4
41

V VV

V V
V V

ζ ζ

ζ π

 
 +

∂  = −  ∂  + −
 + 

 (2.40) 

 

( )
( )

( )

( ) ( )

2 2

2
1 2 1 20

2
0 4

1 2 2
1 2

2 22 2
1 2

1 1
16,

41

:

1 1

V V V VvQ
kT

V V
V V

where

V and V

ρ ρ ζ ζ
σρ ζ

π

ζ ρ ζ ρ

    + − − + +       =  
  
 + −  +   

= + + = + −

 (2.41) 

 ( ) ( )
2
0

2
0

2 1 1 0 0 1
1 1

vQ valid for and
kT
σρ ζ ρ

π ρ ρ
 

= + = ≤ < + − 
 (2.42) 

Figure 2.3 shows a contour plot of the dimensionless heat generation.  The heat 

generation is highest near the perimeter of the electrode where a discontinuity in the slope 

of the electric potential distribution exists.  The result is that, at 1ρ =  and 0ζ = , the 

partial derivative with respect to ρ, which is required to evaluate Eq. (2.19), is undefined.  

From Eqs. (2.41) and (2.42) it can be seen that this discontinuity results in a heat 
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generation function that approaches infinity at the edge of the electrode.  This singularity 

is a consequence of assuming the radius of curvature along the perimeter of the electrode 

tip is zero.  This assumption is inherent in modeling the tip of the electrode as an ideal 

flat disk. 

 

 
Figure 2.3 Contour plot showing the dimensionless heat generation near the electrode 

surface. 
 

As will be discussed in Chapter 3, this singularity creates some difficulty in 

evaluating the solution to the bioheat equation (discussed in Section 2.4, below).  Section 

3.3 describes the steps taken in handling this singularity to obtain accurate temperature 

profiles. 

 
2.4 Analytical Solution to the Bioheat Equation 

With an expression for the dimensionless heat generation, it is possible to obtain a 

solution to the bioheat equation.  This consists of reducing Eq. (2.7) to an ODE, as 

described previously, by applying the Hankel and Fourier transforms to remove 

dependence of θ on ρ and ζ, respectively.  Application of the zero-order Hankel transform 

to Eq. (2.7) results in the following: 
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( ) ( ) ( ) ( )

( )

2

0 0 020 0 0

00

,J d J d Q J d

J d

θ θρ γρ ρ ρ γρ ρ ρ ρ ζ γρ ρ
ρ ρ ζ

θρ γρ ρ
τ

∞ ∞ ∞

∞

 ∂ ∂ ∂
+ + ∂ ∂ ∂ 

∂
=

∂

∫ ∫ ∫

∫
 (2.43) 

The second term on the left-hand side and the term on the right-hand side of Eq. (2.43) 

can both be evaluated by reversing the order of operations and using the definition of the 

Hankel transform to obtain the following results: 

 ( ) ( )
2 2 2

0 02 2 2
0 0

J d J dθ θρ γρ ρ ρθ γρ ρ
ζ ζ ζ

∞ ∞∂ ∂ ∂
= =

∂ ∂ ∂∫ ∫  (2.44) 

 ( ) ( )0 0
0 0

J d J dθ θρ γρ ρ ρθ γρ ρ
τ τ τ

∞ ∞∂ ∂ ∂
= =

∂ ∂ ∂∫ ∫  (2.45) 

Also, the third term on the left-hand side of Eq. (2.43) is simply the definition of the 

Hankel transform of the dimensionless heat generation function, which can be 

represented as Q .  The first term on the left-hand side of the equation is, therefore, the 

only one that remains to be evaluated.  This term can be evaluated using integration by 

parts and the boundary conditions in ρ.  Integration by parts results in Eq. (2.46).  Using 

the boundary conditions and the properties of Bessel functions shown in Eq. (2.47), as 

well as the definition of the Hankel transform, the final result of integration by parts is 

Eq. (2.48). 

 
( )

( ) ( ) ( )

0
0

2
0 1 0

0 00

J d

J J J dp

θρ γρ ρ
ρ ρ

θρ γρ γ ρθ γρ γ ρθ γρ
ρ

∞

∞ ∞ ∞

 ∂ ∂
= ∂ ∂ 

 ∂  + −   ∂   

∫

∫
 (2.46) 

 ( ) ( ) ( ) ( )0 1 1
0

, , 0 0J J J
ρ ρ ρ

ρ ρ

θ θ θ ρ ζ τ γρ γρ
ρ ρ →∞ →∞ →∞

= →∞

∂ ∂
= = = = = =

∂ ∂
 (2.47) 



 20

 ( ) 2
0

0

J dθρ γρ ρ γ θ
ρ ρ

∞  ∂ ∂
= − ∂ ∂ 

∫  (2.48) 

Thus, from Eqs. (2.44), (2.45), and (2.48) the result of applying the Hankel transform to 

the bioheat equation is the following: 

 
2

2
2 Qθ θγ θ

ζ τ
∂ ∂

− + + =
∂ ∂

 (2.49) 

To reduce Eq. (2.49) to an ODE, the Fourier transform may now be applied to remove 

dependence on ζ.  Doing this, the following equation is obtained: 

 
( ) ( ) ( )

( )

2
2

20 0 0

0

, , ,

,

K d K d K Qd

K d

θγ β ζ θ ζ β ζ ζ β ζ ζ
ζ

θβ ζ ζ
τ

∞ ∞ ∞

∞

∂
− + +

∂

∂
=

∂

∫ ∫ ∫

∫
 (2.50) 

The first and last terms on the left-hand side may be evaluated using the definition of the 

Fourier transform to obtain Eqs. (2.51) and (2.52), respectively.  The term on the right-

hand side of Eq. (2.50) may be evaluated by changing the order of operations and, then, 

using the definition of the Fourier transform to obtain Eq. (2.53). 

 ( )2 2

0
,K dγ β ζ θ ζ γ θ

∞
− = −∫  (2.51) 

 ( )
0

,K Qd Qβ ζ ζ
∞

=∫  (2.52) 

 ( ) ( )
0 0

, ,K d K dθ θβ ζ ζ β ζ θ ζ
τ τ τ

∞ ∞∂ ∂ ∂
= =

∂ ∂ ∂∫ ∫  (2.53) 

The second term on the left-hand side of Eq. (2.50) can be integrated by parts.  The 

following expression is, thus, obtained: 

 ( ) ( ) ( )
0

00

, , ,K K K dθβ ζ β ζ θ β ζ θ ζ
ζ

∞ ∞
∞ ∂  ′ ′′− +   ∂   
∫  (2.54) 
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The first and second derivatives of the kernel for the Fourier transform are shown below: 

 ( )
2 2

2 sin cos, BiK
Bi

β βζ βζβ ζ β
π β

 − +′ =  
 + 

 (2.55) 

 ( ) 2

2 2

2 cos sin, BiK
Bi

β βζ βζβ ζ β
π β

 +′′ = −  
 + 

 (2.56) 

Noting from Eqs. (2.22) and (2.56) that ( ) ( )2, ,K Kβ ζ β β ζ′′ = −  and using, once again, 

the definition of the Fourier transform, the third term in Eq. (2.54) may be evaluated to 

obtain the result shown in Eq. (2.57). 

 ( ) ( )2 2

0 0
, ,K d K dβ ζ θ ζ β β ζ θ ζ β θ

∞ ∞
′′ = − = −∫ ∫  (2.57) 

To evaluate the first two terms in Eq. (2.54), the Hankel transform of the ζ boundary 

conditions shown in Eq. (2.10) must be evaluated.  Applying the Hankel transform, the 

following expressions are obtained: 

 ( ) ( ) ( )0 00 0
0

,0,J d Bi J d
ζ

θρ γρ ρ ρθ ρ τ γρ ρ
ζ

∞ ∞

=

∂
=

∂∫ ∫  (2.58) 

 ( ) ( )00
, , 0J d

ζ
ρθ ρ ζ τ γρ ρ

∞

→∞
=∫  (2.59) 

Again, using the definition of the Hankel transform and a change in the order of 

operations for the term on the left-hand side of Eq. (2.58), the following equations are 

obtained: 

 ( )
0

,0,Bi
ζ

θ θ γ τ
ζ =

∂
=

∂
 (2.60) 

 ( ), , 0
ζ

θ γ ζ τ
→∞

=  (2.61) 
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Using the results shown in Eqs. (2.57), (2.60) and (2.61), and recognizing that K  and K ′  

are always finite and that θ ζ∂ ∂  must approach zero as ζ approaches infinity, the 

following is obtained from Eq. (2.54): 

 ( ) ( ) 2
0 0

, ,K Bi K
ζ ζ

β ζ θ β ζ θ β θ
= =

′   − + −     (2.62) 

The final result of integration by parts is obtained by evaluating the necessary terms in 

Eq. (2.62) at 0ζ =  to obtain the following: 

( ) ( ) ( )

( ) ( )

2
2

0 020

2
0 02 2 2 2

2

, ,0 ,0

2 2

K d K Bi K

Bi Bi
Bi Bi

ζ ζ

ζ ζ

θβ ζ ζ β θ β θ β θ
ζ

β θ β θ β θ
π β π β

β θ

∞

= =

= =

∂ ′= − + −
∂

= − + −
+ +

= −

∫

 (2.63) 

From Eqs. (2.51) - (2.53) and Eq. (2.63), the following is obtained as a result of applying 

both the Hankel and Fourier transforms to the bioheat equation: 

 ( )2 2d Q
d
θ γ β θ
τ
+ + =  (2.64) 

This equation is a first-order, linear, non-homogeneous ODE that may be solved using an 

appropriate integrating factor.  Using this method, the following results are obtained: 

 
2 2 2 2 2 2 2 2( ) 2 2 ( ) ( ) ( )( )d de e e Qe

d d
γ β τ γ β τ γ β τ γ β τθ γ β θ θ

τ τ
+ + + + + + = =   (2.65) 

Integration with respect to τ and division by 
2 2( )e γ β τ+  results in Eq. (2.66) where C is a 

constant of integration. 

 ( )2 2

2 2

Q Ce γ β τθ
γ β

− +
= +

+
 (2.66) 
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Equation (2.67) is obtained by taking the Hankel and Fourier transforms of the initial 

condition in Eq. (2.8).  This transformed initial condition may be used to evaluate the 

constant of integration in Eq. (2.66).  The final solution to Eq. (2.64) is shown in Eq. 

(2.68). 

 (0) 0θ =  (2.67) 

 

( )2 2

2 2

1Q e γ β τ

θ
γ β

− + −  =
+

 (2.68) 

The final solution to the bioheat equation is, then, obtained by applying the inverse 

Hankel and Fourier transforms to Eq. (2.68).  The complete solution is shown in Eqs. 

(2.69) and (2.70) below: 

 ( ) ( )
( )

( )

2 2

02 20 0

1
, , ,

Q e
K J d d

γ β τ

θ ρ ζ τ γ β ζ γρ β γ
γ β

− +

∞ ∞

 −  =
+∫ ∫  (2.69) 

 ( ) ( ) ( )00 0
, ,Q J K Q d dρ γρ β ζ ρ ζ ρ ζ

∞ ∞
= ∫ ∫  (2.70) 
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CHAPTER 3 – EVALUATION OF THE ANALYTICAL SOLUTION 
 

3.1 Early Attempts 

As seen in Eqs. (2.69) and (2.70), the solution to the bioheat equation obtained 

using integral transforms has the form of a surface integral (resulting from the forward 

transforms of the dimensionless heat generation function) nested within another surface 

integral (resulting from application of the inverse transforms).  Because of the complexity 

of the solution, evaluation using analytical integration techniques was not possible.  

Instead, numerical methods of evaluation were used.  Early attempts at evaluating Eqs. 

(2.69) and (2.70) were made using two commercial software packages, Maple® and 

Mathcad®.  Because of difficulties encountered in evaluating the analytical solution to the 

bioheat equation and limitations of these software packages, it was necessary to write a C 

program to evaluate the solution.  This allowed much more flexibility in the evaluation 

methods than was possible using commercial software packages.  Sections 3.1.1 – 3.1.3 

describe the various attempts made in evaluating Eqs. (2.69) and (2.70) and what was 

learned from these early attempts.  The motivation for doing so is to offer a justification 

for choosing the method described in Sections 3.2 – 3.5 and to show why this method is 

believed to be superior to those used in earlier attempts. 

 
3.1.1 Commercial Software Packages 

Before discovering an analytical solution to the integral in Eq. (2.36), simply 

evaluating and generating a plot of the heat generation function was very difficult.  Using 
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Eq. (2.19) to develop a function from Eq. (2.36) for the heat generation results in an 

expression with two integrals similar to that in Eq. (2.36).  These integrals have highly 

oscillatory integrands making it particularly challenging for Maple to evaluate them [13].  

Only Mathcad was successful in generating plots of the heat generation function, which it 

did in only a few seconds.  However, because numerical evaluation of Eqs. (2.69) and 

(2.70) would require a very large number of function evaluations of the heat generation, 

the computation time required by Mathcad to generate a heat generation plot was 

considered to be too long if temperature profiles were to be generated within a reasonable 

amount of time.  Therefore, discovering an analytical solution to the integral in Eq. (2.36) 

was an important step in evaluating the solution to the bioheat equation.  Two reasons for 

this are, first, it reduced the error associated with numerical evaluation and, second, it 

reduced computation time.  Not only was the level of error reduced to machine error as 

opposed to the relatively large error associated with numerical integration, but the 

cumbersome and time consuming calculations required by this method were eliminated. 

 Numerical accuracy and computation time were both very important 

considerations, especially at the early stages of evaluation.  The level of numerical error 

associated with evaluating the heat generation was a concern since error at the early 

stages was expected to propagate and increase through the later stages of evaluation.  

Obtaining accurate temperature fields, therefore, required minimizing error, particularly 

in the early stages.  Likewise, reduction of computation time was especially important at 

the early stages since the time required to evaluate subsequent integrals was expected to 

increase exponentially. 
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 To investigate the feasibility of using a commercial software package to evaluate 

the forward and inverse integral transforms, the Fourier and Hankel transforms of the 

heat generation were evaluated individually.  Before an analytical solution to Eq. (2.36) 

was found, only Mathcad was successful in evaluating the Fourier transform and neither 

software package was able to evaluate the Hankel transform.  With the analytical 

solution, both Mathcad and Maple successfully generated plots of the Fourier transform 

in only a few seconds.  However, only Mathcad could evaluate the Hankel transform.  

Furthermore, while attempts to evaluate the Hankel transform of the Fourier-transformed 

heat generation function (or vice versa) were successful using Mathcad, over an hour was 

required to generate a surface plot of 400 points with the default precision.  Because 

numerical evaluation of the inverse transforms to obtain temperature profiles would 

require several more evaluations of the forward transforms than are needed to make a 

surface plot, this was determined to be too computationally expensive.  Furthermore, 

certain measures had to be taken to avoid evaluating the heat generation at 1ρ =  and 

0ζ =  during the process of evaluating the Hankel and Fourier transforms.  As mentioned 

previously, a singularity exists in the heat generation function at this point.  One approach 

taken to avoid this problem was to change the lower limit on the Fourier transform to 

some small, but non-zero value.  However, such measures introduced an indeterminate 

amount of error into the results. 

 
3.1.2 Numerical Integration Routine in C 

It was eventually decided that the best approach would be to write a program to 

evaluate the solution to the bioheat equation.  This would provide much more control 

over and flexibility of the method of evaluation.  For example, difficulties encountered 
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while using commercial software, such as the inability to handle integration of the 

singularity at 1ρ =  and 0ζ = , would be more manageable because a program could be 

tailored to this specific problem. 

A routine that uses the trapezoidal method of integration was written in C.  This 

routine made use of three functions (trapzd, qromb, and polint) from Numerical Recipes 

in C: The Art of Scientific Computing [14].  The general method of evaluation consisted 

of obtaining increasingly accurate estimates for a given integral by dividing the area 

between the limits of integration into progressively smaller trapezoidal sections and 

summing the areas.  The first estimate is simply the area of one trapezoid, the second, the 

area of two trapezoids, the third, the area of four, and so on.  This is illustrated in Fig. 3.1. 

 

 
 

Figure 3.1 Schematic of numerical integration using the trapezoidal method. 
 

The C function, trapzd, is written such that, once the function to be integrated has been 

evaluated at a given location, it does not need to be evaluated again in subsequent 

approximations.  In other words, in Fig. 3.1, f1 and f2 do not need to be recalculated for 

the second approximation and f1, f2, and f3, likewise, do not need to be recalculated for the 

third approximation.  Equations (3.1) - (3.4) illustrate this concept, where A1, A2, and A3, 

represent the first, second, and third approximations, respectively, of the total area 



 29

between the limits of integration, x1 and x2.  The notation, ,n mx∆ , is defined as n mx x− .  

This derivation is based upon the assumption that the area is divided in half with each 

iteration. 
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Equations (3.1) - (3.3) lead to the following general formula for calculating the nth 

approximation for the integral of an arbitrary function of x, f(x), between the limits, x1 

and x2. 
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The summation in Eq. (3.4) represents the sum of all new function evaluations needed for 

the nth approximation that were not obtained in previous iterations.  The total number of 

function evaluations that would be required without using previously calculated values is 

12 1n− +  while the number of terms in this summation is equal to 22n− .  Therefore, the 
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number of function evaluations for the nth approximation where n > 1 is reduced by 

22 1n− + . 

The C function, trapzd, uses the results shown in Eq. (3.4) to calculate an 

approximate area for any specified function, set of integration limits, and n value.  The 

trapzd function is called by qromb, which passes in the necessary parameters and 

monitors convergence as it increments n.  To speed convergence, qromb uses the routine, 

polint, to fit an nth-order polynomial to the set of approximate areas already calculated 

and, from this polynomial, to predict the actual area to which the approximate values are 

converging.  The solution is considered converged when the predicted area changes by 

less than a specified percent from the previous prediction. 

 
3.1.3 Reformulation of the Fourier and Hankel Transforms 

With the integration routine described in Section 3.1.2, attempts were again made 

at evaluating the Fourier and Hankel transforms.  Difficulties were still encountered 

mainly because of the infinite upper limit of integration and the oscillatory nature of the 

integrand for both transforms.  A literature search on Fourier and Hankel transforms 

revealed that there are alternate forms into which such integrals may be cast to eliminate 

these difficulties [15-16].  One such method consists of converting Fourier sine and 

cosine integrals into infinite summations of integrals with finite limits of integration.  

These integrals are much easier to calculate because of the finite limits of integration as 

well as the fact that the integrands are not oscillatory over the range of integration.  

Furthermore, convergence of the summation can be easily accomplished by monitoring 

when the magnitude of the integrals drop below a specified value.  It was, also, found that 
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a Hankel transform can be recast into a form containing a Fourier transform.  Therefore, 

the Hankel transform could simply be evaluated using the same methods. 

Although, with this approach, the forward transforms of the heat generation 

function could be evaluated in less time than that required by Mathcad, the computation 

time was too long for such an approach to be used in generating temperature profiles.  In 

an attempt to further reduce computation time, a fast Fourier transform routine from 

Numerical Recipes in C was used instead of the integration routine described previously.  

However, both the computation time and accuracy of this routine were comparable to the 

integration routine. 

 
3.2 Development of an Alternate Approach 

While the computation time associated with these approaches is adequate for 

evaluating the forward transforms of the heat generation function, it is far from adequate 

for the subsequent evaluation of the inverse transforms.  The fundamental weakness of 

this approach is that it requires the evaluation of three nested integrals, which is very 

inefficient.  This becomes apparent by considering a hypothetical situation in which each 

integral requires on the order of 103 evaluations of its integrand to converge to a solution 

(which, for a highly oscillatory integrand integrated over a range that approximates a 

semi-infinite range of integration, is a reasonable estimate).  If evaluation of the inner-

most integral requires 1 ms, it would require 106 seconds, or about 11.5 days, to evaluate 

the outer-most integral only once.  To generate a temperature profile containing 100 data 

points would require over three years.  It is apparent from this example that the time 

required to evaluate Eqs. (2.69) and (2.70) can be significantly reduced by minimizing 

how often an integral must be evaluated inside another integral.  It was, therefore, 
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determined that an approach fundamentally different from those described previously 

would be necessary. 

It was recognized that the number of nested integrals could be reduced if a 

method of evaluating surface integrals was developed.  If so, evaluation of Eqs. (2.69) 

and (2.70) would simply consist of evaluating one surface integral nested within another.  

Although, surface integrals would require more time to calculate, only one of the two 

would require evaluation of another as part of its integrand.  This proved to be a much 

better approach. 

 
3.2.1 Description of a Surface Integration Routine 

 A method of evaluating surface integrals was developed that is analogous to the 

previously discussed trapezoidal method used for integration with respect to only one 

variable.  Instead of approximating the area under a curve, this method consists of 

approximating the volume under a surface whose boundaries are specified by the upper 

and lower limits on the integrals.  An iterative process, again, may be used in which the 

surface section to be integrated is divided into progressively smaller subsections whose 

individual volumes are summed to give an approximation for the total volume.  This is 

illustrated in Fig. 3.2, which shows how integration of an arbitrary function, ( , )f γ β , 

between finite limits of integration, may be accomplished.  In the present case, this 

function represents the integrand of Eq. (2.69).  Again, the polynomial interpolation 

routine, polint, may be used to reduce the time to convergence by predicting actual 

volumes based on approximate values calculated from each iteration.  Each prediction is 

compared with that from the previous iteration until the difference between the two is less 

than a specified value. 
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A derivation similar to that shown in Eqs. (3.1) - (3.4) may be used to obtain a 

generalized equation for use in a surface integration routine that does not require the 

recalculation of previously calculated values.  To emphasize this fact, the schematic for 

each approximation illustrated in Fig. 3.2 shows in bold the new points at which the 

integrand must be evaluated.  For example, to obtain the third approximation, the 

integrand only needs to be evaluated at points 10 through 25, since the integrand was 

already calculated at points 1 through 9 in obtaining first and second approximations. 

 
Figure 3.2 Schematic illustrating how a surface integral may be numerically 

evaluated. 
 

While the reduction in computation time for the first few approximations is very small, it 

becomes particularly significant in subsequent iterations since the number of volumes to 

calculate increases by a factor of four with each iteration. 
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The derivation of the necessary equations for use in the surface integration routine 

just described is shown in Eqs. (3.5) - (3.8), where V1, V2, and V3, represent the first, 

second, and third approximations, respectively, of the total volume between the limits of 

integration, 1γ  and 2γ  and 1β  and 3β  ( 1 3γ γ=  and 1 2β β=  as seen in Fig. 3.2).  The 

notation, ,n mγ∆ , signifies the quantity, n mγ γ− .  Likewise, ,n m n mβ β β∆ ≡ − .  Also, nf  is 

defined as ( ),n nf γ β . 

 

 1 2 3 4
1 2,1 3,1 2,1 3,1 14

f f f fV Sγ β γ β+ + + = ∆ ∆ = ∆ ∆ 
 

 (3.5) 

 

 

1 5 6 9 5 2 9 7
2 5,1 6,1 2,5 9,5

6 9 3 8 9 7 8 4
9,6 3,6 7,9 8,9

2,1 3,1 1 2 3 4 5 6 7 8
9

2,1 3,1 5 6 7 8
1 9

4 4

4 4

4 4 2

4 2

f f f f f f f fV

f f f f f f f f

f f f f f f f f f

f f f fS f

γ β γ β

γ β γ β

γ β

γ β

+ + + + + +   = ∆ ∆ + ∆ ∆   
   

+ + + + + +   +∆ ∆ + ∆ ∆   
   

∆ ∆ + + + + + + = + + 
 

∆ ∆ + + + = + + 
 

2,1 3,1
24

S
γ β∆ ∆

=

 (3.6) 

 

 

1 10 12 18 10 5 18 19
3 10,1 12,1 5,10 18,10

24 25 8 17 25 15 17 4
25,24 8,24 15,25 17,25

2,1 3,1 10 11 17
2 18 19 25

4 4
...

4 4
... ...

16 2

f f f f f f f fV

f f f f f f f f

f f fS f f f

γ β γ β

γ β γ β

γ β

+ + + + + +   = ∆ ∆ + ∆ ∆   
   

+

+ + + + + +   +∆ ∆ + ∆ ∆   
   

∆ ∆ + + + = + + + + + 
 

2,1 3,1 , 2,1 3,1
2 316 2 16

side new
interior,new

f
S f S

γ β γ β ∆ ∆ ∆ ∆
 = + + =
 
 

∑ ∑

 (3.7) 

 



 35

With each new approximation of the total volume over the range of integration, the 

surface subsections are each divided into four new subsections.  This results in new 

points, both inside of and along the edges of the region over which the surface is being 

integrated.  Therefore, in Eqs. (3.7) and (3.8), ,interior newf  represents any new point inside 

the region for which the integrand has not been calculated previously.  Likewise, ,side newf  

represents any new point along the boundary of the region for which the integrand has 

not been calculated previously. 

Equations (3.5) - (3.7) lead to the general formula in Eq. (3.8) for calculating the 

nth approximation for the surface integral of an arbitrary function, ( ),f γ β , between the 

limits of integration, 1γ  and 2γ  and 1β  and 3β . 
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The total number of function evaluations for any given approximation that would 

be required without using previously calculated values is 14 2 1n n− + +  while the number 

of new function evaluations (both inside of and along the edges of the region to be 

integrated) necessary for the nth approximation is 2 13 4 2n n− −⋅ +  (where n > 1).  Therefore, 

using the formulation outlined in Eqs. (3.5) - (3.8), the number of function evaluations for 

the nth approximation, where n > 1, is reduced by 2 14 2 1n n− −+ + . 

A C function called prism that is analogous to trapzd was written that uses the 

result shown in Eq. (3.8) to calculate an approximate volume for any specified function, 
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set of integration limits, and n value.  The prism function is called by qrombPrism, 

which, like qromb, passes in the necessary parameters and monitors convergence as n is 

incremented.  Again, polint is used by qrombPrism to speed convergence by fitting an 

nth-order polynomial to the set of approximate volumes already calculated and 

extrapolating the actual volume using this polynomial.  The solution is considered 

converged when the calculated volume changes by less than a specified percent from the 

previous evaluation. 

 
3.3 Implementation of the Surface Integration Routine 

The surface integration routine described above was used in evaluating Eqs. 

(2.69) and (2.70).  However, this routine by itself may only be used to evaluate surface 

integrals with finite limits of integration.  Evaluation of Eqs. (2.69) and (2.70) is 

complicated by the fact that the upper limits of integration are infinite.  These surface 

integrals may be evaluated, however, by integrating over several finite sections, adding 

the volume of each section to a total volume.  This can be done systematically by 

stepping along the surface, maintaining the lower and upper limits in one dimension 

constant while the limits in the other dimension are incremented.  Thus, surface sections 

are integrated along a strip or row of the whole surface until the magnitude of the section 

volumes drop below a specified value.  Because the integrands of both Eq. (2.69) and Eq. 

(2.70) are oscillatory, there is the possibility of satisfying this convergence criterion 

before the integrand has damped out sufficiently.  This occurs if the magnitude of the 

negative volume for a given surface section is close to that of the positive volume.  In 

such a case, the magnitude of the total volume may be small enough to satisfy the 

convergence criterion even if the amplitude of the oscillatory integrand is still large.  
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Therefore, an additional condition for convergence was used that required two 

consecutive section volumes to be below the specified value for convergence.  Once this 

additional condition is satisfied, the upper and lower limits that were previously held 

constant are incremented and the same process repeated to find the volume along the 

second row.  In this manner, the total volume may be calculated by summing row 

volumes until the total volume changes by less than a specified value.  This process is 

illustrated in Fig. 3.3.  Row volumes are obtained by summing section volumes along the 

row while the total volume is obtained by summing the row volumes. 

 
Figure 3.3 Schematic illustrating the process by which surface integrals are 

evaluated.  Row volumes are obtained by summing section volumes 
along the row while the total volume is obtained 

by summing the row volumes. 
 

This surface integration routine was validated by evaluating an integral of the 

same form as Eq. (2.70) but with the heat generation function replaced by a simpler 

function that was chosen such that Eq. (2.70) would have a known analytical solution.  
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This function is shown in Eq. (3.9).  Like the actual heat generation function, this 

function approaches zero as ρ and ζ approach infinity. 

 
 ( ) ( )* 2 2, bQ de aζρ ζ ρ−= +  (3.9) 
 

Values of 0.2, 2, and 20 were assigned to b, a, and d, respectively, while the Biot number 

was assigned a value of 8.  The values for a and d were chosen to scale Eq. (3.9) such 

that the values obtained from evaluating Eq. (2.70) would be of similar order to the 

values obtained when using the actual heat generation function.  The value of b governs 

the rate at which Eq. (3.9) decays as ζ increases and was chosen such that evaluation of 

Eq. (2.70) would require integration over a range at least as large as that required when 

evaluating Eq. (2.70) using the actual heat generation.  Finally, the value for the Biot 

number was chosen such that the corresponding convection coefficient obtained when R 

= 1.3 mm and k = 0.531 W/m·K would be within the range of values for which 

temperature profiles were generated.  Table 1 compares the program output to the exact 

solution for several values of γ and β.  These results show that the surface integration 

routine used in this study is very accurate. 

A difficulty arises when attempting to evaluate Eq. (2.70) using the actual heat 

generation function.  As mentioned previously, a discontinuity exists in the slope of the 

electric potential distribution at the electrode tip so that the partial derivative with respect 

to the radial variable required to evaluate Eq. (2.19) is undefined.  This discontinuity 

results in a heat generation function that approaches infinity as the values of ρ and ζ 

approach 1 and 0, respectively.  This makes integration of the surface section containing 

this singularity challenging. 
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Table 3.1 Validation of numerical integration by comparison with an exact solution. 
γ β Program Exact % Error 

0.1 0.1 57.33214 57.33219 0.00009 
0.6 0.1 10.41781 10.41863 0.00789 
0.2 0.3 42.03906 42.03955 0.00116 
0.7 0.3 9.18975 9.19056 0.00879 
0.3 0.5 21.88426 21.88427 0.00003 
0.8 0.5 5.28966 5.29021 0.01042 
0.4 0.7 12.16668 12.16676 0.00066 
0.9 0.7 3.14023 3.14057 0.01072 
0.5 0.9 7.24593 7.24592 0.00005 
1 0.9 1.95988 1.96014 0.01321 

 

To make integration of this surface section more manageable, the heat generation 

function was truncated in the vicinity of the singularity.  A maximum dimensionless heat 

generation rate, QMAX, was specified so that whenever the program attempted to 

evaluate the heat generation at ρ = 1 and ζ = 0, it was automatically assigned the value of 

QMAX.  Likewise, if the value of the heat generation at any other point close to the 

singularity exceeded QMAX, it was also assigned this value.  To find an optimum value 

for QMAX, Eq. (2.70) was evaluated many times for different values of γ and β, 

increasing the value of QMAX each time until the results no longer changed appreciably.  

Figure 3.4 shows the change in Eq. (2.70) with QMAX for nine different sets of values 

for γ and β.  All values were normalized using the initial values obtained for QMAX = 20 

so that they would be of the same order.  From Fig. 3.4, it can be seen that, above a value 

of 1000, the result of increasing QMAX is minimal.  In fact, for all nine cases, the values 

increase by less than 0.5 % when QMAX is increased from 1000 to 2000.  A value of 

2000 was, therefore, used in generating all temperature profiles.   
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Figure 3.4 Results of an optimization study to determine an appropriate value for 

QMAX.  Equation (2.70) (the Hankel and Fourier transforms of ( , )Q ρ ζ ) was 
evaluated using different values of QMAX for several different values 

of γ and β.  Results were normalized using the values 
obtained for QMAX = 20. 

 

The result of assigning a maximum heat generation rate can be seen in Fig. 3.5.  This 

figure shows surface plots of the dimensionless heat generation rate in the vicinity of the 

singularity with the singularity truncated at a value of 2000.  The range over which the 

heat generation is plotted in Fig. 3.5a is four times that of Fig. 3.5b.  It should also be 

noted that the range over which the heat generation is plotted in Fig. 3.5a represents only 

a tenth of the electrode radius in each direction from the singularity.  This should 

emphasize that the reduction in volume due to truncation is very minimal. 
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Figure 3.5 Surface plots of the dimensionless heat generation in the immediate 

vicinity of the truncated singularity (QMAX = 2000).  The range over which 
the heat generation is plotted in (a) is four times that of (b). 

 

3.4 Flow Chart for the Program Used to Generate Temperature Profiles 

The previous two sections described the development and validation of a surface 

integration routine that may be used in evaluating the integrals in Eqs. (2.69) and (2.70).  

However, some of the details as to how temperature profiles were generated were 

omitted.  A flow chart is shown in Fig. 3.6 that further details the algorithm.  The names 

of C functions are italicized.  The following is a detailed description of the steps outlined 

in Fig. 3.6: 

(1) Load_array_2d accepts inputs specifying the range of ρ and ζ values for which 

dimensionless temperatures will be evaluated as well as an integer used to 

determine the step size between adjacent data points.  These parameters are 

defined as global constants. 

(2) With these specified parameters, Load_array_2d generates a set of dimensionless 

temperatures, θ, by calling the function, Temperature, for the specified ρ and ζ 

values.  The temperatures are stored in a matrix and, also, written to a data file. 
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Figure 3.6 A flow chart outlining the sequence of function calls required to generate a 

dimensionless temperature profile. 
 

(3) The integrand of Eq. (2.69) is shown as Eq. (3.10).  To calculate dimensionless 

temperatures, ρ, ζ, and τ must be substituted into Eq. (3.10) and the resulting 

expression integrated with respect to γ and β (While values of ρ and ζ are 

provided by Load_array_2d, the value of τ is declared as a global constant).  As 

described previously, the surface represented by Eq. (3.10) may be integrated in 

finite sections.  Based on the specified values of ρ and ζ, Temperature calculates 

an appropriate size for the surface sections to be integrated by qrombPrism2.  An 

appropriate size is determined by calculating the frequency with which Eq. (3.10) 

oscillates in both the γ and β directions since this determines the ease with which 
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qrombPrism2 converges to a solution.  The value of ρ determines the frequency in 

the γ direction, which approaches / 2ρ π  as γ increases.  Likewise, the frequency 

of oscillation in the β direction is determined by ζ and is exactly equal to 2ζ π . 

 ( )
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( , , , , ) ,

Q e
f K J
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Temperature calculates these frequencies and, from this information, determines 

limits of integration over which the integrand only oscillates a few times.  These 

limits are passed into qrombPrism2, which returns a converged solution for the 

section volume.  Temperature also increments the limits of integration 

appropriately and monitors the section volumes to determine when to begin 

integrating along a new row (as described previously).  Ultimately, Temperature 

determines when the solution to Eq. (2.69) is completely converged for the 

current value of ρ and ζ. 

(4) The function, qrombPrism2, directs and monitors the process of integrating Eq. 

(3.10) between the finite limits of integration provided by Temperature.  After 

being called by Temperature, it obtains an initial series of increasingly accurate 

volume approximations for the current surface section using prism2.  The initial 

number of approximations in this series is determined by a variable, K, which has 

been assigned a value of 5 for all temperature calculations in this study.  This set 

of approximations is passed to polint which uses a Kth-order polynomial curve fit 

routine to obtain a predicted volume based on this set of approximate volumes.  

The (K+1)th volume approximation is obtained from prism2 and polint is, again, 

used to obtain an improved volume prediction.  This process of obtaining a new 
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volume approximation and using polint to predict the actual volume based on the 

approximations is repeated until the percent difference between the most current 

prediction and the previous prediction is less than a specified value. 

(5) The function, prism2, is called by qrombPrism2, which passes in the limits of 

integration for the current surface section as well as an integer that specifies 

which volume approximation to return.  The first time prism2 is called for a given 

set of integration limits, this integer is always equal to 1.  This instructs prism2 to 

return the first volume approximation, which is illustrated in Fig. 3.2.  In each 

subsequent call to prism2, this integer is incremented by one, instructing prism2 

to divide each section into four new ones and calculate the next volume 

approximation.  The value of Sn in Eq. (3.8) is updated by prism2 with each 

iteration so that Eq. (3.10) does not need to be reevaluated for the same values of 

γ and β. 

(6) The function, InverseHankFourINTEGRAND, receives values for ρ, ζ, γ, and β 

from prism2 and calculates Eq. (3.10) for these values.  The value of τ, also 

required to evaluate Eq. (3.10), is defined as a global constant, as mentioned 

previously.  Using these values of ρ, ζ, γ, β, and τ, this function evaluates the 

integrand of Eq. (2.69) and returns the value to prism2.  However, each call to 

InverseHankFourINTEGRAND requires evaluation of Eq. (2.70).  Therefore, this 

function calls DoubTranOfHG, passing in the current values of γ and β needed to 

evaluate Eq. (2.70). 

(7) Similar to the purpose of Temperature, which is to evaluate the surface integral in 

Eq. (2.69), the purpose of DoubTranOfHG is to evaluate the surface integral in 
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Eq. (2.70).  This integral represents the forward Hankel and Fourier transforms of 

the dimensionless heat generation function.  As discussed previously, a maximum 

dimensionless heat generation, QMAX, was defined to truncate the heat 

generation function in the immediate vicinity of the electrode perimeter since it 

approaches infinity at ρ = 1 and ζ = 0.  Despite such measures to make the 

evaluation of Eq. (2.70) more manageable, very high gradients in the heat 

generation still exist near ρ = 1 and ζ = 0.  Therefore, while the general procedure 

used by DoubTranOfHG to evaluate Eq. (2.70) is essentially identical to that of 

Temperature, a difference exists in the way DoubTranOfHG determines 

appropriate limits of integration and assesses convergence for the row of surface 

sections containing ρ = 1 and ζ = 0.  The values of γ and β, substituted into Eq. 

(2.70), determine the oscillation frequencies of the integrand, which are ~ / 2γ π  

and / 2β π  in the ρ and ζ directions, respectively.  Like Temperature, 

DoubTranOfHG calculates these oscillation frequencies for the integrand of Eq. 

(2.70), which is shown in Eq. (3.11), and uses these values to determine 

appropriate limits of integration.   

 ( ) ( ) ( )0( , , , ) , ,f J K Qρ ζ γ β ρ γρ β ζ ρ ζ=  (3.11) 

However, instead of integrating over surface sections of the same size for the 

entire surface as Temperature does, DoubTranOfHG integrates over smaller 

surface sections along the row containing ρ = 1 and ζ = 0 than it does along 

subsequent rows.  The convergence criterion for the section volumes along this 

row must be proportionally smaller to avoid prematurely determining that the row 

volume is converged. 
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(8) The purpose of, qrombPrism1, is analogous to qrombPrism2 in that it directs and 

monitors the process of integrating Eq. (3.11) between the finite limits of 

integration provided by DoubTranOfHG.  Using volume approximations obtained 

from prism1 for the current surface section as well as the polynomial curve fit 

routine, polint, qrombPrism1 obtains an appropriately converged section volume 

that is returned to DoubTranOfHG. 

(9) Similar to prism2, prism1 follows the procedure illustrated in Fig. 3.2 to calculate 

approximate volumes for the current limits of integration.  In addition to the 

integration limits, it receives an integer from qrombPrism1 that specifies which 

volume approximation to return. 

(10) The function, HankFourINTEGRAND, receives values for ρ, ζ, γ, and β from 

prism1 and calculates Eq. (3.11) for these values.  It then returns this value to 

prism1. 

Evaluation of Eqs. (3.10) and (3.11) in steps (6) and (10), respectively, requires 

evaluation of the kernel for the Fourier transform, Eq. (2.22).  A separate function was 

written that accepts values for β and ζ from either InverseHankFourINTEGRAND or 

HankFourINTEGRAND and evaluates Eq. (2.22) for these values.  The value of the Biot 

number, also required for evaluation of the kernel, is specified as a global constant.  

Evaluation of Eqs. (3.10) and (3.11) also requires evaluation of the zero-order Bessel 

function of the first kind, J0.  This was accomplished using a function from Numerical 

Recipes in C called bessj0.  See Appendix B for a full listing of the C program code. 
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3.5 Reduction of Computation Time 

Since numerical evaluation of Eq. (2.69) for all values of ρ, ζ, and τ requires 

evaluation of the integrand and thus Eq. (2.70) for the same discrete set of γ and β values, 

calculation of more than one temperature for a given program execution results in 

repetitive calculations.  This is a particularly important consideration since the evaluation 

of Eq. (2.70) is computationally demanding.  An approach was, therefore, used in 

generating temperature profiles that greatly reduced computation time by avoiding the 

recalculation of previously calculated values.  In describing this approach, it is helpful to 

point out that Eq. (2.22) can be written as a sum of two separate terms.  Therefore, Eq. 

(2.70) can, likewise, be written as the sum of two terms as shown in Eq. (3.12). 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
22

02 2
0 0

1
22

02 2
0 0

2 cos ,

2 sin ,

Q J Q d d
Bi

Bi J Q d d
Bi

β ρ γρ βζ ρ ζ ρ ζ
π β

ρ γρ βζ ρ ζ ρ ζ
π β

∞ ∞

∞ ∞

 
 =
 + 

 
 +
 + 

∫ ∫

∫ ∫

 (3.12) 

The above integrals, without their respective coefficients, were evaluated for 

several values of γ and β over the range of values needed to evaluate Eq. (2.69).  These 

values were then stored in two separate data files.  Storing the evaluated surface integrals 

in Eq. (3.12) without their coefficients allows these same data files to be used for all Biot 

numbers.  Because the Biot number contains the convective heat transfer coefficient, h, 

evaluation of these integrals with their coefficients would require that a set of data files 

be generated for each value of h for which temperature profiles were generated.  Thus, 

evaluating the integrals without their coefficients makes the data files general for any 

chosen conditions. 
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To generate these data files for the forward Hankel and Fourier transforms, the 

algorithm illustrated in Fig. 3.6 was modified so that Load_array_2d would directly call 

DoubTranOfHG instead of Temperature.  In addition, HankFourINTEGRAND was 

modified so that, in place of evaluating Eq. (2.22), it would calculate either ( )cos βζ  or 

( )sin βζ  depending on whether data was being generated for the first or second surface 

integral, respectively, in Eq. (3.12).  Once the files were generated, the algorithm 

illustrated in Fig. 3.6 was, again, modified so that a function called DTinterp would be 

called instead of DoubTranOfHG.  With the first call to DTinterp, this function reads 

values from each data file, multiplies the values by their respective coefficients shown in 

Eq. (3.12), and stores them in an array.  In this and subsequent calls to DTinterp, the 

needed values are simply read from the array. 

To allow for the possibility that evaluation of Eq. (2.69) may require Eq. (2.70) to 

be evaluated for some γ and β value not contained in the data files, a linear interpolation 

routine was written so that a reasonable estimate for this value could be obtained.  As 

long as the distance between adjacent data points was small enough, a linear interpolation 

between these points would be sufficiently accurate to obtain the needed value.  Thus, an 

appropriate step size was assessed qualitatively by generating surface plots of Eq. (2.70) 

for different step sizes and observing the smoothness of these plots.  A suitable step size 

was considered to be one that is small enough to obtain a sufficiently smooth surface plot, 

but not so small that an unreasonable amount of time or an unreasonably large file was 

required to generate and store the data over the required range of γ and β values.  The 

range of γ and β values necessary to obtain accurate results was determined by modifying 

the algorithm in Fig. 3.6 so that Temperature would write to a file the limits of 
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integration for the current surface section each time that it called qrombPrism2.  In this 

way, it was possible to see, for any specified convergence criterion, typical maximum 

values for the limits of integration.  For example, if in evaluating Eq. (2.69) it was 

decided that the volume along any given row was sufficiently converged when section 

volumes dropped below 0.001 (i.e. section volumes are negligible), the output file would 

provide typical values of γ and β beyond which surface section volumes are negligible.  

In this manner it was determined that sufficiently accurate dimensionless temperature 

values could be obtained if Eq. (2.69) were evaluated between the limits of integration 

0γ β= =  and 100γ β= = .  Based on this range of values, an appropriate step size for 

generating the data files described previously was determined to be 0.15625.  Thus, both 

data files contain 2641  (410 881) values.  While this represents a large amount of 

computation time, this alternative approach for evaluating Eq. (2.69) saves an enormous 

amount of time when generating entire temperature profiles.  As mentioned previously, 

this is because evaluation of Eq. (2.69) for different values of ρ, ζ, and τ requires 

evaluation of Eq. (2.70) for the same discrete set of γ and β values.  Furthermore, since 

the initial investment of time to generate the data files only needs to be made once, a 

stricter convergence criterion for evaluating Eq. (2.70) may be used with only a small 

cost.  Therefore, this approach yields much more accurate results in much less time. 
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CHAPTER 4 – TEMPERATURE PROFILES 
 

4.1 Analytical Results 

After developing an analytical solution to the bioheat equation and a suitable 

means of evaluating the solution as described in Chapters 2 and 3, respectively, 

temperature profiles were generated at three dimensionless times, τ = 0.3, 2.0, and 5.5, 

and for three convection coefficients, h = 1000, 2000, and 4000 W/m2K.  Property values 

were obtained from the literature [7-8] and are summarized in Table 4.1.  Contour plots 

for all nine cases appear in Figs. 4.1 to 4.3 where Figs. 4.1a to 4.1c show profiles for h = 

1000 W/m2K, Figs. 4.2a to 4.2c for h = 2000 W/m2K, and Figs. 4.3a to 4.3c for h = 4000 

W/m2K.  Arranged in this manner, it is easy to observe the time progression of the 

temperature profile for any one of the three convection coefficients. 

 
Table 4.1 Cardiac Tissue Properties [7-8]. 
 Density, ρt 1100 kg/m3 
 Specific Heat Capacity, c 3111 J/kgK 
 Thermal Conductivity, k 0.531 W/mK 
 Electrical Conductivity, σ 0.5 S/m 

 

Above approximately 50°C or a dimensionless temperature of 0.35, permanent 

tissue damage is assumed to occur [2].  Therefore, the 50°C isotherm represents the 

assumed location of the lesion boundary.  For convenience, the contours in Figs. 4.1 to 

4.3 are shown in increments of 0.35 so that the outermost isotherm corresponds to the 

lesion boundary predicted by this model.  Additionally, it is convenient to note that when 

using the properties in Table 4.1 and an electrode radius of 1.3 mm, the ablation time in 
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seconds is obtained by multiplying the dimensionless time, τ, by a conversion factor of 

10.9 sec. 

There are two trends in particular that one would expect to observe 

experimentally as the convection coefficient at the tissue surface increases.  First, the 

lesion size for any given time will decrease as the convection coefficient increases.  This 

can be observed in Figs. 4.1 to 4.3 for any one of the three ablation times for which 

profiles were generated.  The trend is particularly easy to observe for τ = 5.5.  The second 

trend is related to the first and has to do with the size of the lesion near the tissue surface.  

Experimentally, one would expect the size of the lesion as viewed from the surface (at ζ = 

0) to become smaller as the convection coefficient increases.  This was observed at each 

ablation time and is most obvious again for τ = 5.5.  In fact, at this time and for a 

convection coefficient of 4000 W/m2K, the lesion diameter at ζ = 0 is only slightly larger 

than that of the electrode.  Recognizing that the edge of the electrode is located at ρ = 1 

and ζ = 0, this can be seen in Fig. 4.3c.  On the other hand, for the case of τ = 5.5 and h = 

1000 W/m2K, the lesion diameter at ζ = 0 is about twice the electrode diameter.  This is 

seen in Fig. 4.1c. 

For τ = 0.3, the highest temperature was observed to be located at about ρ = 0.95 

and ζ = 0.05 for a convection coefficient of 1000 W/m2K.  However, for τ = 5.5 the 

highest temperature for the same convection coefficient occurs at ρ = 0.05 and about ζ = 

0.5.  This behavior can be explained by the fact that for a flat-tipped electrode, the current 

density is highest along the perimeter of the electrode.  This is known as the edge effect 

[5].  The heat generation is greatest at ρ = 1 and ζ = 0 so that before significant heat 

transfer into the tissue and from the surface has occurred, the highest tissue temperatures  
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Figure 4.1 Dimensionless temperature profiles for h = 1000 W/m2K and (a) τ = 0.3, 
(b) τ = 2.0, and (c) τ = 5.5. 
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Figure 4.2 Dimensionless temperature profiles for h = 2000 W/m2K and (a) τ = 0.3, 
(b) τ = 2.0, and (c) τ = 5.5. 
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Figure 4.3 Dimensionless temperature profiles for h = 4000 W/m2K and (a) τ = 0.3, 
(b) τ = 2.0, and (c) τ = 5.5. 
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occur near the perimeter of the electrode.  As heat is conducted through the tissue and 

convected from the surface, the peak temperature moves toward ρ = 0 and further into the 

tissue.  The instant ablation begins, the peak temperature occurs precisely at ρ = 1 and ζ = 

0. 

Tungjitkusolmun et al. [7] provide a case to which the results of the current study 

can be compared.  They simulate an ablation procedure in which the electrode is held at a 

constant rms voltage of 28 V for 60 seconds.  For the current study, the electrode voltage, 

tissue properties, convection coefficient, and ablation time were chosen to be the same as 

those used by Tungjitkusolmun et al. [7].  The conditions for the case where τ is 5.5 (~60 

sec) and the convection coefficient is 2000 W/m2K are comparable.  One significant 

difference between the two studies is that a flat-tipped electrode is assumed in the current 

study while Tungjitkusolmun et al. [7] assume a round-tipped electrode.  Also, 

Tungjitkusolmun et al. [7] physically include the electrode in their model, thus 

accounting for conductive heat loss to the electrode. 

The most significant differences in the results were in lesion width and maximum 

tissue temperature while the differences in lesion depth and location of maximum 

temperature were not so significant.  Tungjitkusolmun et al. [7] reported values of 9.1 

mm and 4.6 mm for the maximum lesion width and depth, respectively, while the current 

study found corresponding values of about 7.4 mm and 4.9 mm (differences of about -19 

and +6.5 percent, respectively).  It is believed these discrepancies are attributable to the 

difference in electrode shape.  It seems that the regions in the tissue of highest current 

density when using a flat-tipped electrode would be relatively close to the axis, while the 

current density distribution for a round-tipped electrode would be more diffuse and not so 
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concentrated along the axis.  This would explain why the lesion produced using a flat-

tipped electrode is not as wide and extends further into the tissue. 

The large discrepancy in maximum tissue temperature is likewise explained, in 

part, by the difference in electrode geometry.  While Tungjitkusolmun et al. [7] report a 

value of 82.6°C, the maximum temperature observed in the current study was 110.9°C or 

about 28 degrees higher.  As was mentioned, using a flat-tipped electrode instead of a 

round-tipped one results in a lesion that is 19 percent smaller in width.  Assuming that the 

lesions are ellipsoid in shape, Eq. (4.1) gives their volume [17], where d  is the lesion 

depth and w  is the lesion width. 

 24
3

volume dwπ≈  (4.1) 

Based on Eq. (4.1), it can be seen that a decrease of 19 percent in lesion width results in a 

lesion that is about 34 percent smaller in volume.  This decrease in volume is partially 

offset by the fact that the lesion produced using a flat-tipped electrode is about 6.5 

percent larger in depth.  Accounting for this, the volume of the lesion produced using a 

flat-tipped electrode should be about 30 percent smaller than that produced using a 

round-tipped electrode.  Thus, if the amount of energy entering the volume is comparable 

in both cases, a much greater average temperature increase would occur using a flat-

tipped electrode. 

The discrepancy in maximum tissue temperature is, also, attributable to the fact 

that the analytical model does not account for conduction of energy into the electrode, 

whereas Tungjitkusolmun et al. [7] do account for this.  As will be seen in Section 5.5, 

the effect of conduction into the electrode is significant. 
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4.2 Numerical Results 

To validate the numerical methods used to obtain the temperature profiles in Figs. 

4.1 – 4.3, a numerical model was developed with a commercial software package 

(FLUENT®) using the same assumptions as were used in developing the analytical 

solution.  Namely, constant tissue properties, negligible metabolic heat generation and 

heat loss due to blood perfusion, and a uniform convective boundary condition were 

assumed.  The heat generation, Eq. (2.41), was incorporated into the model using a user-

defined function (UDF) (See Appendix C).  As seen in Fig. 4.4, the grids were 

constructed with a concentration of cells near the electrode.  The cells are highly 

concentrated along the electrode perimeter.  This was done in order to resolve the high 

gradients in heat generation near the electrode.  The tissue section has two symmetry 

surfaces (sides), an adiabatic surface (bottom), and a surface with a convective boundary 

condition (top).  The lengths of the straight edges in Fig. 4.4 are all 2 cm. 

Three grids were created, one with 7290 cells, another with 26 264 cells, and the 

third with 58 320 cells.  The coarsest grid was used in determining an appropriate time 

step for a 60 second simulation.  In doing this, a convection coefficient of 2000 W/m2K 

was used.  Maximum tissue temperatures for cases where ∆t = 0.5 sec and ∆t = 1.0 sec 

were 382.68 K and 382.66 K, respectively.  This represents a difference of 0.005%.  

Therefore, 1 second was assumed to be an appropriate time step.  Simulations were then 

run using the three grids for the case where h = 2000 W/m2K and t = 60 sec.  Again, the 

maximum tissue temperatures were compared.  These values, beginning with the coarsest 

grid were 382.7 K, 383.3 K, and 383.4 K.  Based on the results of this grid refinement 

study, the finest of the three grids was assumed to be sufficient. 
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Figure 4.4 An image showing the general features of the mesh used for the numerical 

model.  The tissue section has two symmetry surfaces (sides), an adiabatic surface 
(bottom), and a surface with a convective boundary condition (top).  The 

lengths of the straight edges are all 2 cm. 
 

 
Surface and axial temperature profiles predicted by the numerical model are 

shown in Fig. 4.5.  The corresponding profiles predicted by the analytical solution are  

included as well for comparison.  Excellent agreement in both surface (Fig. 4.5a) and 

axial (Fig. 4.5b) temperatures is observed except for a slight discrepancy in surface 

temperatures immediately near the electrode perimeter.  This is most readily apparent in 

Fig. 4.6. 
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Figure 4.5 Dimensionless temperature profiles for τ = 5.5 and h = 2000 W/m2K (a) 

along the surface and (b) along the axis. 
 

 

 
Figure 4.6 Dimensionless surface temperature profile for τ = 5.5 and h = 2000 

W/m2K near the electrode edge. 
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Contour plots of both the numerical (Fig. 4.7a) and analytical (Fig. 4.7b) results 

for the case where τ = 5.5 and h = 2000 W/m2K are shown in Fig. 4.7.  There are no 

discernable differences between the two plots.  Such close agreement between the 

analytical and numerical results validates the numerical methods used in evaluating the 

analytical solution to the bioheat equation. 

 
Figure 4.7 Dimensionless temperature profiles for τ = 5.5 and h = 2000 W/m2K (a) 

predicted numerically and (b) predicted analytically. 
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The slight discrepancy between analytical and numerical modeling results near 

the electrode perimeter was assumed to be a result of not completely resolving the large 

gradients in heat generation in the numerical model.  To investigate whether or not this 

was the case, a comparison was made between surface temperature profiles obtained 

using each of the three grids from the grid refinement study.  Figure 4.8 shows the three 

profiles that were obtained numerically as well as the surface temperature profile 

obtained from the analytical solution.  This figure shows that the numerical results 

approach the analytical results as the mesh size near the electrode is reduced. 

 
Figure 4.8 Plot of surface temperatures showing that the numerical results approach 

those of the analytical solution as the mesh is refined near the electrode. 
 

Although an even finer grid near the electrode perimeter would further reduce the 

discrepancy, this seemed unnecessary based on results shown in Figs. 4.5 and 4.7.  
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Despite differences of up to about 1.5 degrees immediately near the perimeter, Fig. 4.5b 

shows that numerical temperature predictions along the axis are nearly identical to the 

analytical predictions.  Furthermore, lesion dimensions predicted by the numerical model 

are nearly identical to the analytical predictions as seen by comparing Figs. 4.7a and 4.7b.  

This is also seen in Fig. 4.5.  The ρ value in Fig. 4.5a and the ζ value in Fig. 4.5b at which 

dimensionless tissue temperatures fall below 0.35 (50oC) represent the approximate 

locations of the lesion boundary on the tissue surface and along the axis, respectively.  It 

can be seen from these plots that the ρ and ζ values predicted by the numerical and 

analytical solutions are nearly identical.  This is significant since very accurate 

predictions of lesion geometry can be obtained numerically without completely resolving 

the high gradients in heat generation that occur using a flat-tipped electrode. 
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CHAPTER 5 – NUMERICAL VALIDATION OF MODEL ASSUMPTIONS 
 

5.1 Discussion of Analytical Model Assumptions 

This chapter addresses the third objective listed in Section 1.2 by investigating the 

validity of certain assumptions made in developing the analytical model described in 

Chapter 2.  This investigation has been done using numerical modeling techniques.  As 

mentioned in the introduction, the knowledge obtained from such numerical studies will 

be useful in assessing the quality of results obtained from an inverse heat transfer study.  

In addition, the following demonstrates how the analytical solution can serve as a 

benchmark for numerical studies to gain insights into RF ablation. 

The approach for each numerical model was to relax only one or two of the 

assumptions made in the analytical model to isolate them and better assess the degree to 

which they influence results.  Previous studies on RF ablation indicate which 

assumptions have the most significant effect on model accuracy.  For example, the 

assumption that tissue properties are independent of temperature is good for all properties 

except for electrical conductivity [5,7].  A study by Tungjitkusolmun et al. [7] attempted 

to quantify changes in lesion geometry resulting from variations in electrical conductivity 

with temperature.  Assuming a change in electrical conductivity of +2%/°C, 

Tungjitkusolmun et al. [7] showed a 57% increase in lesion volume and a 19% increase 

in maximum tissue temperature as compared with the case of constant electrical 

conductivity. 
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Another study by Jain and Wolf [4] assessed the effect of solving the conservation 

of mass, momentum, and energy equations for blood flow over the tissue surface instead 

of assuming a convective boundary condition.  Their objective in doing this was to 

account for heating of the blood as it flows past the ablation site, which results in non-

uniform conditions both upstream and downstream of the ablation site.  Jain and Wolf 

show that, while some distortion of the lesion occurs, it is not significant for the blood 

velocities used.  However, the authors do not present a clear basis for their selection of 

appropriate flow conditions.  Section 5.3 describes a method for choosing flow conditions 

corresponding to a given convection coefficient that makes use of the analytical solution 

described in Chapters 2 and 3.  This method is believed to be an improvement upon the 

work of Jain and Wolf. 

Another important assumption of the analytical model is that the heat lost by 

convection from the portion of the tissue surface inside ρ = 1 is comparable to that which 

would be lost by conduction to the ablation electrode.  This assumption is implicit in the 

fact that the electrode is not physically included in the analytical model.  Rather, a 

uniform convective boundary condition is applied over the entire tissue surface.  Previous 

numerical studies have physically included the electrode and have thus accounted for the 

conductive heat losses to the electrode. 

 
5.2 Numerical Model Descriptions 

Three numerical models have been developed to gain some insights into RF 

ablation and to address the most significant assumptions made in obtaining an analytical 

solution to the bioheat equation.  These models have the following characteristics: 
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Model 1 This model assumes constant tissue properties, but solves the continuity, 

momentum, and energy equations for blood flow over the tissue surface 

instead of using a convective boundary condition.  This accounts for blood 

heating, which results in non-uniform conditions at the surface.  However, 

as with the analytical model, the electrode has been physically omitted.  

Therefore, this model does not account for the conduction of heat from the 

tissue into the electrode or effects associated with flow around the 

electrode. 

Model 2 Like Model 1, this model assumes constant tissue properties and, also, 

solves the conservation equations for blood flow over the tissue surface.  

However, the electrode is physically included in this model to account for 

conduction of heat into the electrode and effects associated with flow 

around the electrode. 

Model 3 Like the analytical model, this model neglects the presence of the ablation 

electrode and, instead, assumes a uniform convective boundary condition 

at the tissue surface.  All tissue properties are assumed to be temperature-

independent except for the electrical conductivity, which is assumed to 

increase by 2%/°C. 

The results of these three models are summarized in Sections 5.4 to 5.6, which 

follow.  Figure 5.2 (in Section 5.4) shows a schematic for Model 1 while Fig. 5.6 (in 

Section 5.5) shows one for Model 2.  Note from these figures that the only difference 

between the two models is that Model 2 physically includes the ablation electrode while 

Model 1 does not.  In numerically solving the conservation equations for the blood flow 
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in these two models, laminar flow is assumed.  Also, it is important to recognize that, 

while blood heating results in different conditions upstream and downstream of the 

ablation site, a plane of symmetry exists that is parallel to the blood flow direction.  

Therefore, the region over which calculations were performed for Models 1 and 2 was 

divided in half, as depicted in Figs. 5.2 and 5.6. 

For Model 3, a grid similar to that depicted in Fig. 4.4 was used.  However, the 

boundary opposite the electrode was located 20 cm from the center of the electrode face 

for Model 3 instead of only 2 cm.  For the numerical model described in Chapter 4, a 

distance of 2 cm was sufficiently far from the ablation site to be able to assign the 

temperature at this boundary to be body temperature, or 37°C.  For Model 3, it was 

necessary to specify, not only thermal boundary conditions, but electrical boundary 

conditions, as well, to numerically calculate the energy generation in the tissue.  The 

electric potential distribution decays much more slowly than the temperature distribution, 

thus, making it necessary to move the boundary opposite the electrode much further away 

so that conditions at this boundary would be very close to those that exist at infinity.  As 

will be shown, assigning an electric potential of zero at this boundary, located 20 cm 

from the center of the electrode face, results in a heat generation profile nearly identical 

to that predicted analytically when assuming a constant electrical conductivity. 

Because Models 1 and 2 make use of the heat generation function obtained 

analytically in Chapter 2, it was not necessary for the blood and tissue regions in these 

two models to be as large as the tissue region in Model 3.  As shown in Figs. 5.2 and 5.6, 

the thickness and width of the blood and tissue for Models 1 and 2 are both 2 cm, while 

the length (in the streamwise direction) is 4 cm.  The diameter of the electrode depicted 
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in Fig. 5.6 is 0.26 cm, which is small compared to the blood and tissue dimensions.  For 

both Models 1 and 2, the heat generation in the tissue is calculated assuming this 

electrode diameter.  It is important for the electrode diameter to be small compared to the 

blood and tissue dimensions since the models must closely approximate a semi-infinite 

region.  In other words, all boundaries except for the inlet and outlet of the blood domain 

and the symmetry boundaries have to be far enough from the ablation site to be 

considered adiabatic.  A negligible increase in temperature at these surfaces was observed 

at a steady-state condition when they were defined as adiabats.  Therefore, the blood and 

tissue regions for Models 1 and 2 were assumed to be sufficiently large to model a semi-

infinite region. 

 
5.3 Determination of Appropriate Velocity Profiles 

To properly model blood flow over the tissue surface, it was necessary to 

determine appropriate flow conditions corresponding to each of the convection 

coefficients used to generate the profiles shown in Chapter 4.  The following describes a 

method for determining these flow conditions that is believed to be an improvement upon 

the approach used by Jain and Wolf [4].  As mentioned, Jain and Wolf do not present a 

clear basis for their selection of flow conditions.  The approach used in the current study 

for determining such conditions is similar to experimental methods used to develop 

correlations that relate fluid velocity and properties to the convection coefficient.  Such 

methods are based on the fact that Nusselt number is a function of both the Reynolds 

number and Prandtl number [18].  By varying the latter two parameters and measuring 

the resultant heat transfer rate from a surface, it is possible to develop expressions 

relating all three dimensionless parameters. 
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The current study used similar reasoning to obtain flow conditions corresponding 

to 1000, 2000, and 4000 W/m2K by means of numerical experimentation.  Because the 

Nusselt number indicates the magnitude of the heat flux at a location on the tissue 

surface, given the temperature difference between the surface and the free stream at that 

point, velocity profiles corresponding to these three convection coefficients were chosen 

by matching the total rate of heat transfer near the ablation site from numerical simulation 

to that obtained analytically.  Characteristics of the velocity profiles were modified until 

the heat transfer rate obtained from numerical simulation was very close to that predicted 

by the analytical solution.  For simplicity, heat transfer rates were obtained at a steady-

state condition.  Furthermore, they were only calculated for a small rectangular portion of 

the surface near the ablation site through which the heat flux is very high compared to 

that of the remaining surface (~50 times).  The dimensions of this surface section are 1 

cm in the streamwise direction and 0.5 cm in the cross-flow direction.  The area of this 

section represents 1/16th of the area of the entire blood-tissue interface. 

 
5.3.1 Analytical Heat Rate Calculations 

Equation (2.69) may be used to calculate the steady-state heat transfer rate 

through the small rectangular surface section described previously for any specified 

convective heat transfer coefficient.  Allowing τ to approach infinity, the exponential 

term in Eq. (2.69) approaches zero so that the resulting steady-state temperature profile is 

described by Eq. (5.1). 

 ( ) ( )02 2
0 0

, ( , ) QK J d dθ ρ ζ γ β ζ γρ β γ
γ β

∞ ∞

=
+∫ ∫  (5.1) 
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Using the non-dimensional parameters defined in the nomenclature, Fourier’s law can be 

non-dimensionalized to obtain Eq. (5.2), where Q′′  represents a dimensionless heat flux. 

 
0

( ) ( )
o

RQ q r
kT ζ

θρ
ζ =

∂′′ ′′= = −
∂

 (5.2) 

This equation relates the heat flux through the blood-tissue interface to the dimensionless 

temperature gradient at the surface.  Thus, an expression for heat flux through the tissue 

surface can be obtained by calculating the derivative of θ with respect to ζ and evaluating 

this expression for ζ = 0.  Doing so, and using Eq. (5.2), the following equation is 

obtained: 
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Equation (5.3) was evaluated for several values of r in the same manner that Eq. (2.69) 

was evaluated (described in Chapter 3).  In other words, the heat flux was calculated at 

several discrete locations within the small surface section mentioned previously.  In 

addition, the program used to evaluate Eq. (5.3) was modified so that each local heat flux 

value was multiplied by an appropriate area and summed to obtain the total steady-state 

heat transfer rate through the surface section.  This was done for the three convection 

coefficients used previously (1000, 2000, and 4000 W/m2K) and the results are 

summarized in Table 5.1. 

 
Table 5.1 Steady-state heat transfer rates through a 1 cm by 0.5 cm surface section at 
the ablation site, calculated from the analytical solution.  This was done for three 
convection coefficients: 1000, 2000, and 4000 W/m2K. 

Convection Coefficient (W/m2K) Heat Transfer Rate (W) 
1000 0.681 
2000 0.718 
4000 0.739 
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The heat transfer rates summarized in Table 5.1 were used to determine 

appropriate velocity profiles corresponding to each of the three convection coefficients. 

 
5.3.2 Numerical Heat Rate Calculations 

Once heat transfer rates were obtained analytically, several steady-state numerical 

models were run, each with different flow conditions.  In each of these models, a 

different free stream velocity, u∞, and hydrodynamic boundary layer thickness, δ, were 

specified.  The desired flow conditions were produced in FLUENT by specifying the inlet 

velocity profile using a UDF.  For nodes located within the boundary layer, velocities 

were calculated using a sine function approximation for the profile.  Otherwise, the UDF 

simply returned the free stream velocity.  See Appendix C for a listing of the UDF code. 

By varying both free stream velocity and boundary layer thickness, it was 

possible to obtain three sets of blood flow conditions for which the resulting steady-state 

heat transfer rates match the values shown in Table 5.1.  It is important to point out that, 

for this process, the electrode was physically omitted as it is in Model 1.  The flow 

conditions obtained are summarized in Table 5.2 with the corresponding convection 

coefficients shown in the first column.  A plot containing the normalized velocity profiles 

is shown in Fig. 5.1.  From this figure, the result of varying both the boundary layer 

thickness and the free stream velocity can be seen.  For a relatively low convection 

coefficient of 1000 W/m2K and a correspondingly low free stream velocity, the profile 

resembles a laminar profile.  On the other hand, the profile corresponding to 4000 

W/m2K resembles a turbulent profile that is likely to exist for higher free stream 

velocities.  Thus, the profile characteristics summarized in Table 5.2 and depicted in Fig. 

5.1 are consistent with what is physically expected for different convection coefficients. 
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Table 5.2 Flow conditions corresponding to convective heat transfer coefficients of 
1000, 2000, and 4000 W/m2K. 

Convection Coefficient, h 
(W/m2K) 

Boundary Layer Thickness, δ 
(cm) 

Free Stream Velocity , u∞ 
(m/s) 

1000 2.0 0.21 
2000 0.4 0.40 
4000 0.1 1.30 

 

 
Figure 5.1 Normalized velocity profiles corresponding to three different convection 

coefficients.  The free stream velocities (u∞) for the profiles corresponding to 1000, 
2000, and 4000 W/m2K, are 0.21, 0.40, and 1.30 m/s, respectively. 

 

The actual heat transfer rates obtained for each of these three sets of flow 

conditions are summarized in Table 5.3.  Also included in Table 5.3 are the heat transfer 

rates obtained from the analytical solution and the percent difference between analytical 

and numerical values. 
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Table 5.3 Comparison of heat transfer rates obtained analytically and numerically 
for convection coefficients of 1000, 2000, and 4000 W/m2K. 

Convection 
Coefficient (W/m2K) 

Heat Rate (W) 
(Analytical) 

Heat Rate (W) 
(Numerical) 

Percent Difference 

1000 0.681 0.681 0.029 
2000 0.718 0.719 0.056 
4000 0.739 0.738 0.149 

 

Because the heat transfer rates calculated near the ablation site are so small, it was 

especially important to ensure that the values calculated numerically were obtained from 

a grid-independent solution.  Therefore, a grid adaptation feature in FLUENT was used to 

produce four grids with progressively finer meshes in the vicinity of the electrode.  The 

number of cells for each of these grids, in order of increasing cell number, is 61 246, 81 

630, 175 024, and 536 350.  Flow conditions were specified to be 1.6 cm and 0.2 m/s for 

the boundary layer thickness and the free stream velocity, respectively.  Steady-state heat 

transfer rates through the small surface section were obtained for each of the grids.  The 

results are summarized in Table 5.4.  From this grid-refinement study, it was determined 

that the grid containing 175 024 cells was sufficient.  The improved accuracy obtained by 

increasing the cell number from 175 024 to 536 350 did not justify the large increase in 

computation time.  This grid was, therefore, used in obtaining the numerical heat transfer 

rates shown in Table 5.3 as well as the results for Model 1 summarized in Section 5.4. 

 
Table 5.4 Results of a grid-refinement study that compares heat transfer rates near 
the ablation electrode.  The boundary layer thickness, δ, and free stream velocity, u∞, of 
the blood flow are 1.6 cm and 0.2 m/s, respectively. 

Number of Cells Heat Rate (W) Percent Difference from 
Previous Value 

61 246 0.652 − 
81 630 0.675 3.58 

175 024 0.685 1.47 
536 350 0.690 0.73 
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5.4 Model 1 – Actual Flow with Electrode Omitted 

Figure 5.2 is a schematic for Model 1 showing dimensions for the blood and 

tissue domains. 

 
Figure 5.2 Schematic showing the main features of numerical model 1 with 

dimensions.  The boundary layer thickness and free stream velocity of 
the blood are represented by δ and u∞, respectively. 

 

The purpose for obtaining flow conditions that resulted in heat transfer rates 

similar to those calculated analytically was so that the analytical temperature profiles 

shown in Chapter 4 could be used as a standard for comparison.  It was expected that this 

process for choosing appropriate flow conditions would, for a given ablation time, result 

in lesions of comparable size to those shown in Figs. 4.1 – 4.3.  Thus, the degree to which 

distortion of the lesions occurred could be better evaluated. 
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Temperature profiles were generated numerically for each of the three sets of flow 

conditions shown in Table 5.2 for ablation times of 3.2, 22, and 60 seconds.  These times 

correspond to dimensionless times of 0.3, 2.0, and 5.5, which were used previously.  

Appropriate time steps for each of the three ablation times were determined using the 

flow conditions that correspond to a convection coefficient of 1000 W/m2K.  For each 

ablation time, three time step sizes were selected.  These values are shown in Table 5.5. 

 
Table 5.5 Time step sizes used in the temporal grid refinement study for Model 1.  
Heat transfer rates through the small surface section were compared using flow 
conditions for a convection coefficient of 1000 W/m2K. 

t = 3.2 sec t = 22 sec t = 60 sec 
∆t = 0.1 sec ∆t = 0.5 sec ∆t = 1.0 sec 
∆t = 0.2 sec ∆t = 1.0 sec ∆t = 2.0 sec 
∆t = 0.4 sec ∆t = 2.0 sec ∆t = 5.0 sec 

 

They are 0.1, 0.2, and 0.4 seconds for the shortest ablation time of 3.2 seconds, 0.5, 1.0, 

and 2.0 seconds for the ablation time of 22 seconds, and 1.0, 2.0, and 5.0 seconds for the 

ablation time of 60 seconds.  For each ablation time, heat transfer rates through the small 

surface section were compared for the three time step sizes.  These values are 

summarized in Table 5.6.  From these results, it can be seen that the values obtained 

using the smallest time step are about 1.3%, 0.9%, and 0.6% greater than the values 

obtained using the largest time step for ablation times of 3.2, 22, and 60 seconds, 

respectively.  The intermediate time step values were, therefore, considered appropriate. 

Once appropriate flow conditions were determined that correspond to the 

convection coefficients used previously and spatial as well as temporal grid-refinement 

studies were performed, simulations were run for the nine cases discussed previously. 
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Table 5.6 Heat transfer rates through the small surface section for different step 
sizes.  Flow conditions were used that correspond to a convection coefficient of 1000 
W/m2K. 

t = 3.2 sec 

∆t = 0.1 sec 
0.307 W 

∆t = 0.2 sec 
0.305 W 

∆t = 0.4 sec 
0.303 W 

t = 22 sec 

∆t = 0.5 sec 
0.548 W 

∆t = 1.0 sec 
0.546 W 

∆t = 2.0 sec 
0.543 W 

t = 60 sec 

∆t = 1.0 sec 
0.626 W 

∆t = 2.0 sec 
0.625 W 

∆t = 5.0 sec 
0.622 W 

 

Figures 5.3 – 5.5 show results for these cases.  Figure 5.3 contains profiles for the case 

where δ = 2 cm and u∞ = 0.21 m/s, Fig. 5.4 for the case where δ = 0.40 cm and u∞ = 0.40 

m/s, and Fig. 5.5 for the case where δ = 0.10 cm and u∞ = 1.30 m/s.  For comparison, 

profiles obtained from the analytical solution for the corresponding set of conditions are, 

also, shown in the plots as gray contours.  From these figures, it can be seen that the 

amount of lesion distortion decreases as blood velocity increases.  The distortion is most 

obvious on the downstream side of the electrode, whereas on the upstream side, the 

numerical and analytical models match relatively well for all three sets of flow 

conditions.  It is important to note that on the upstream side, the analytical model over-

predicts temperatures, while on the downstream side, it under-predicts them.  This can be 

explained by the fact that the thermal boundary layer on the upstream side is very small 

(a high temperature gradient exists) resulting in a higher rate of heat transfer than 

predicted by the analytical solution.  On the other hand, the thermal boundary layer is 

larger (a lower temperature gradient exists) on the downstream side resulting in a lower 

rate of heat transfer than predicted by the analytical solution. 



 78

 
Figure 5.3 Temperature profiles obtained numerically for the case where δ = 2 cm 

and u∞ = 0.21 m/s for ablation times of (a) 3.2 sec, (b) 22 sec, and (c) 60 sec.  Also 
shown, in gray contours, are temperature profiles obtained analytically for 

the corresponding convection coefficient of 1000 W/m2K. 



 79

 
Figure 5.4 Temperature profiles obtained numerically for the case where δ = 0.40 cm 

and u∞ = 0.40 m/s for ablation times of (a) 3.2 sec, (b) 22 sec, (c) and 60 sec.  Also 
shown, in gray contours, are temperature profiles obtained analytically for 

the corresponding convection coefficient of 2000 W/m2K.
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Figure 5.5 Temperature profiles obtained numerically for the case where δ = 0.10 cm 

and u∞ = 1.30 m/s for ablation times of (a) 3.2 sec, (b) 22 sec, and (c) 60 sec.  Also 
shown, in gray contours, are temperature profiles obtained analytically for 

the corresponding convection coefficient of 4000 W/m2K.



 81

The greater amount of lesion distortion that occurs for lower flow rates can be 

explained in a similar manner.  The thickness of the thermal boundary layer depends on 

the time required for a given volume of blood to flow over the ablation site.  At lower 

flow rates, thermal effects extend further into the flow, resulting in smaller temperature 

gradients and reduced convective heat transfer rates, particularly on the downstream side. 

This explains why the lesion distortion becomes more pronounced as the blood velocity 

is decreased.  Comparing Figs. 5.3 and 5.5, a dramatic difference in lesion distortion is 

observed for flow conditions corresponding to 1000 W/m2K and 4000 W/m2K, 

respectively.  Figure 5.3 shows that the analytical solution significantly under-predicts 

temperatures on the downstream side, resulting in less accurate predictions of lesion 

geometry.  In contrast, Fig. 5.5 shows that very accurate predictions of lesion geometry 

can be obtained from the analytical solution for high convection coefficients. 

 
5.5 Model 2 – Actual Flow with Electrode Included 

Figure 5.6 is a schematic for Model 2 showing dimensions for the blood and 

tissue domains.  Also, shown in this figure is the ablation electrode.  The purpose of 

Model 2 was to investigate how lesion geometry is influenced by the ablation electrode.  

Model 1 did not consider the effects on lesion geometry resulting from conduction of heat 

into the electrode from the tissue or the significant changes in flow characteristics that 

occur near the ablation site.  Model 2 accounts for both of these factors.  A potentially 

important effect that is not considered in Model 2 is the resistive heating of the blood that 

occurs as it flows around the electrode. 
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Figure 5.6 Schematic showing the main features of numerical model 2 with 

dimensions.  The boundary layer thickness and free stream velocity of 
the blood are represented by δ and u∞, respectively. 

 

The properties of a Platinum-Iridium (Pt-Ir) ablation electrode are shown in Table 

5.7 [5].  The thermally insulated core of the actual electrode, through which the 

thermistor wires run, was replaced by an air-filled core.  This core is 0.5 mm in diameter 

[3]. 

 
Table 5.7 Ablation electrode properties (Pt-Ir) [5] 

Density, ρ (kg/m3) Thermal Conductivity, k 
(W/m K) 

Specific Heat, c (J/kg K) 

21 500 73 131 
 

The flow conditions shown in Table 5.2, which were used for Model 1, were 

again used for Model 2.  The only difference between the two models was, therefore, the 
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physical presence of the electrode in Model 2.  In addition, the time steps used for Model 

1 were assumed to be appropriate for Model 2.  Therefore, the only preliminary work that 

needed to be done before running Model 2 was a grid-refinement study.  In this case, only 

two grids were used, one with 150 124 cells and the other with 336 681 cells.  An 

ablation time of 60 seconds (∆t = 2 sec) and flow conditions corresponding to a 

convection coefficient of 2000 W/m2K were used.  Because the results were so similar 

using the two grids, it was not necessary to use more than two.  Table 5.8 summarizes the 

results of the grid-refinement study, where maximum tissue temperature was used as a 

standard for comparison. 

 
Table 5.8 Results of a grid-refinement study that compares maximum tissue 
temperature.  An ablation time of 60 seconds (∆t = 2 sec) and flow conditions 
corresponding to a convection coefficient of 2000 W/m2K were used. 

Number of Cells Maximum Tissue Temperature 
(°C) 

Percent Difference from 
Previous Value 

150 124 88.087 − 
336 681 88.242 0.176 

 

The difference in maximum temperature for the two grids is only 0.176%.  Furthermore, 

Fig. 5.7 shows that there is only a slight difference in lesion geometry for the two cases.  

As a result, the grid containing 150 124 cells was considered appropriate. 

 



 84

 
Figure 5.7 Temperature profiles for an ablation time of 60 seconds (∆t = 2 sec) using 

flow conditions that correspond to a convection coefficient of 2000 W/m2K.  The 
two profiles shown were obtained using grids of 150 124 and 336 681 cells. 

 

Figure 5.8 shows results obtained for Model 2 for an ablation time of 60 seconds 

and convection coefficients of 1000, 2000, and 4000 W/m2K.  Both the numerical and 

corresponding analytical results are shown, where the gray contours are the analytical 

results.  The results of Models 1 and 2 are also compared in Fig. 5.9, for an ablation time 

of 60 seconds and flow conditions corresponding to all three convection coefficients.  

Results from Model 1 in Fig. 5.9 are shown as gray contours. 

An important observation that may be made, particularly in comparing the results 

of Models 1 and 2 shown in Fig. 5.9, is that the disruption in flow caused by physically 

including the electrode actually eliminates the distortion that resulted when the electrode 

was not included (shown in Figs. 5.4 – 5.6).  In other words, the assumption that 

temperature profiles are axisymmetric (which was made in obtaining the analytical 

solution) is a good one. 
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Figure 5.8 Results obtained for Model 2 for an ablation time of 60 seconds and 

convection coefficients of (a) 1000, (b) 2000, and (c) 4000 W/m2K.  Also in- 
cluded are the corresponding analytical results shown as gray contours. 
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Figure 5.9 Results obtained for Model 2 for an ablation time of 60 seconds and 

convection coefficients of (a) 1000, (b) 2000, and (c) 4000 W/m2K.  Also in- 
cluded are the corresponding Model 1 results shown as gray contours. 
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This is consistent with results obtained by Jain and Wolf [4].  However, whereas the 

profiles in Figs. 5.8 and 5.9 show no discernible distortion, the results of Jain and Wolf 

show some distortion for all flow rates studied.  This is explained by the fact that Model 2 

does not account for resistive heating of the blood while Jain and Wolf do account for 

this.  By comparison of the two models, resistive heating of the blood does affect lesion 

distortion, even if it is not very significant.  The fact that some lesion distortion was 

observed by Jain and Wolf when accounting for resistive heating of the blood is 

consistent with what one would expect since stagnant flow conditions exist immediately 

upstream and downstream of the electrode. 

Another observation that may be made from Figs. 5.8 and 5.9 is that accounting 

for conduction into the electrode results in much smaller lesions as compared to the 

analytical solution or Model 1.  Therefore, conduction to the electrode is a dominant 

mode of heat transfer from the ablation site.  The discrepancy in lesion size between 

Model 2 and the analytical solution could be reduced by accounting for resistive heating 

of the blood as Jain and Wolf did.  However, while their results show that resistive 

heating of the blood affects lesion distortion, they do not address the issue of how 

resistive heating of the blood affects lesion size.  When accounting for resistive heating, 

lesion sizes would be larger, but it is difficult to anticipate how much larger lesions 

would be as compared to the current case that does not account for resistive heating. 

Another interesting result seen in Figs. 5.8 and 5.9 is that as the convection 

coefficient is increased, the lesion size predicted by Model 2 changes very little.  The 

results of Model 2 show that the electrode temperature remains very close to the ambient 

body temperature of 37°C for convection coefficients over the range of 1000 to 4000 
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W/m2K.  Since conduction into the electrode is a dominant mode of heat transfer from the 

tissue surface, the minimal effect of the convection coefficient on electrode temperature 

explains why lesion size is not affected very much by the convection coefficient.  Once 

again, however, it is important to consider the potential affects of resistive heating in the 

blood.  The degree to which this heating occurs should be significantly influenced by the 

blood flow rate and, thus, the convection coefficient.  Therefore, to gain an accurate 

understanding of how the convection coefficient influences lesion shape and size, it is 

necessary, as mentioned previously, to account for this effect. 

 
5.6 Model 3 – Temperature-dependent Electrical Conductivity 

Figure 5.10 is a schematic showing the main features of numerical model 3, 

including the thermal (Fig. 5.10a) and electrical (Fig. 5.10b) boundary conditions. 

 
Figure 5.10 Schematic showing the main features of numerical model 3, including (a) 

thermal and (b) electrical boundary conditions. 
 

Since Model 3 is similar to the numerical model described in Section 4.2, a grid 

similar to that shown in Fig. 4.4 was used for this model.  However, as mentioned 
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previously, it was necessary to move the boundary opposite the electrode to a location 20 

cm from the center of the electrode face.  The reason for doing this was so that the 

potential at this boundary would more closely match the zero-potential condition that 

exists at infinity.  The portion of the grid within 2 cm of the center of the electrode face 

was constructed in exactly the same manner as the finest grid for the model described in 

Chapter 4.  Thus, it was not necessary to perform another grid-refinement study. 

Because the purpose of Model 3 was to account for the dependence of electrical 

conductivity on temperature, the expression for heat generation developed previously (in 

Section 2.3) on the assumption of constant electrical conductivity could not be used.  

Solution of the Laplace equation to obtain the electric potential distribution had to be 

done numerically for each time step.  This was accomplished by including the electric 

potential in the FLUENT model as a user-defined scalar (UDS).  The equation for the 

electric potential could, thus, be solved simultaneously with the energy equation.  A UDF 

was, once again, used to calculate heat generation rates for each cell using the local 

electric potential gradient (See Appendix C for a listing of the UDF code).  As discussed 

in Chapter 2, the heat generation rate may be calculated from Eq. (2.11) at any location if 

both the electrical conductivity and the potential gradient are known at that location.  

Therefore, the local temperature (from which the electrical conductivity is calculated) and 

the potential gradient for each cell were passed to the UDF, which evaluated Eq. (2.11) 

using these values.  Local heat generation rates were then returned to FLUENT.  In this 

way, the coupled thermal-electric problem was solved. 
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The electrical conductivity was assumed to have a value of 0.5 S/m at 37°C and to 

increase by 2%/°C [7].  Therefore, the electrical conductivity as a function of temperature 

(in °C) is given by Eq. (5.4). 

 ( ) ( )@37 1 0.02 37CT Tσ σ °  = + −   (5.4) 

To validate the approach just described for numerically solving the coupled 

thermal-electrical problem, the electrical conductivity was assigned a constant value of 

0.5 S/m.  The portion of tissue surface that the electrode would contact if it were included 

in the model was assigned a potential value of 28 V while the potential gradient over the 

remaining tissue surface was assigned a value of zero.  As mentioned previously, the 

potential at the boundary opposite the ablation electrode was assigned a value of zero 

volts.  As Figs. 5.11 and 5.12 show, the analytical and numerical results match very 

closely.  Figure 5.11 shows axial heat generation rate profiles and Fig. 5.12 shows 

contour plots for an ablation time of 60 seconds and a convection coefficient of 2000 

W/m2K.  In Fig. 5.12, the dashed contours were obtained numerically, while the solid 

contours were obtained analytically. 

After validating the numerical methods used to obtain the heat generation in the 

tissue, temperature profiles were generated assuming the electrical conductivity varies 

with temperature according to Eq. (5.4).  As mentioned previously, the electrical 

conductivity at 37°C was assumed to be 0.5 S/m.  Temperature profiles were obtained for 

an ablation time of 60 seconds and convection coefficients of 1000, 2000, and 4000 

W/m2K.  The results are shown in Figs. 5.13, 5.14, and 5.15, respectively.  Figures 5.13a, 

5.14a, and 5.15a show temperature distributions obtained analytically assuming a 
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Figure 5.11 Heat generation rates predicted analytically and numerically for the case 

of a temperature-independent electrical conductivity. 
 

 
Figure 5.12 Temperature contours generated for a convection coefficient of 2000 
W/m2K and an ablation time of 60 seconds.  The dashed contours were generated 

from a numerical model in which the heat generation rate was calculated 
numerically.  The solid lines are contours obtained analytically. 
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Figure 5.13 Contour plots for a convection coefficient of 1000 W/m2K and an ablation 
time of 60 seconds assuming (a) a constant electrical conductivity and (b) an 

electrical conductivity that increases 2%/°C. 
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Figure 5.14 Contour plots for a convection coefficient of 2000 W/m2K and an ablation 
time of 60 seconds assuming (a) a constant electrical conductivity and (b) an 

electrical conductivity that increases 2%/°C. 
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Figure 5.15 Contour plots for a convection coefficient of 4000 W/m2K and an ablation 
time of 60 seconds assuming (a) a constant electrical conductivity and (b) an 

electrical conductivity that increases 2%/°C. 
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constant electrical conductivity and Figs. 5.13b, 5.14b, and 5.15b show the temperature 

distributions obtained numerically assuming a temperature-dependent electrical 

conductivity.  Accounting for the temperature-dependence of electrical conductivity 

resulted in increases in maximum temperature of 62.4, 45.8, and 35.1°C for 1000, 2000, 

and 4000 W/m2K, respectively.  While it is important to note that the temperature 

distributions in Figs. 5.13b, 5.14b, and 5.15b could not represent reality (since charring 

and phase change of the water in the tissue would occur at such extreme temperatures), 

they do show qualitatively that lesion size and maximum temperature are dramatically 

affected by changes in electrical conductivity. 

During an actual ablation procedure, excessively high tissue temperatures are 

avoided by the fact that the applied potential is continuously adjusted to maintain either a 

constant electrode tip temperature or a constant applied power.  Furthermore, as the 

results to Model 2 show, conduction of heat into the ablation electrode (not accounted for 

in Model 3) significantly lowers tissue temperatures.  Previous numerical studies that 

have accounted for these facts have reported much lower tissue temperatures [3-7].  For 

example, Tungjitkusolmun et al. [7] report an increase in maximum temperature of only 

15.3°C for a power-controlled case in which the convection coefficient is assumed to be 

2000 W/m2K (electrical conductivity is assumed to increases 2%/°C). 

As mentioned previously, the results in Figs. 5.13b – 5.15b were obtained 

assuming that the potential is zero at a distance of 20 cm from the center of the electrode 

face.  According to Eq. (2.38), this potential is actually about 0.12 V.  To assess the 

quality of this approximation, another grid was made where the boundary opposite the 

electrode was located 40 cm from the center of the electrode face instead of 20 cm.  The 



 96

potential at this distance, as predicted by Eq. (2.38) is 0.056 V.  A simulation was run for 

the case where the electrical conductivity is assumed to be independent of temperature.  

An ablation time of 60 seconds and a convection coefficient of 2000 W/m2K were used.  

Upon comparison of these results with those obtained for the same conditions, but with 

the boundary located 20 cm from the center of the electrode face, a decrease of only 

0.2°C in the maximum temperature was observed.  Thus, a distance of 20 cm was 

assumed to be sufficiently large. 

An interesting observation is made by comparing the electric potential and heat 

generation profiles for the constant-conductivity case to those for the variable-

conductivity case.  These profiles are shown in Figs. 5.16 and 5.17, respectively. 

 
Figure 5.16 Electric potential distribution in the tissue along the axis (ρ = 0) after 60 

seconds of ablation using a convection coefficient of 2000 W/m2K.  The dashed line 
shows the distribution assuming a temperature dependence of +2%/°C for the 

electrical conductivity and the solid line for a constant conductivity. 
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Figure 5.17 Heat generation rate in the tissue along the axis (ρ = 0) after 60 seconds of 

ablation using a convection coefficient of 2000 W/m2K.  The dashed line shows the 
distribution assuming a temperature dependence of +2%/°C for the electrical 

conductivity and the solid line for a constant conductivity. 
 

Based on the fact that the slope in the electric potential near the electrode is 

greater in magnitude for the constant-conductivity case, it seems the heat generation 

would, likewise, be greater.  This is because, according to Eq. (2.11), the heat generation 

is proportional to the square of the potential gradient.  However, the degree to which the 

electrical conductivity increases with temperature appears to offset this fact.  The result is 

that the heat generation is higher along the entire axis for the case where electrical 

conductivity is temperature-dependent.  This can be seen in Fig. 5.17. 
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CHAPTER 6 – CONCLUSIONS AND RECOMMENDATIONS 
 

An analytical solution to the bioheat equation has been developed using integral 

transforms.  Important assumptions that were made in obtaining this solution include the 

following: 

(1) Tissue properties are uniform and do not change with time 

(2) The tissue temperature distribution is axisymmetric 

(3) Metabolic heat generation and heat loss due to blood perfusion are 

negligible 

(4) Heat loss at the tissue surface can be accurately modeled using a convective 

boundary condition with a uniform convection coefficient 

(5) The heat loss that would occur to the ablation electrode at ζ = 0 and ρ < 1 is 

comparable to that which occurs when a convective boundary condition is 

assumed within this region. 

(6) The heat generation is accurately modeled by assuming the electrode is a 

flat disk and that the voltage field is equivalent to the steady field produced 

when the potential at the electrode is held at a constant rms voltage. 

Once an analytical solution was obtained, an integration routine was written in C 

that is capable of evaluating surface integrals.  This routine was validated using a surface 

integral with a known analytical solution and several temperature profiles were generated 

for various times and convection coefficients.  To reduce computation time while 

improving the accuracy of temperatures calculated from the analytical solution, Eq. 
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(2.70) was evaluated for several γ and β values and these values were stored in data files.  

In this way it was possible to avoid having to recalculate them several times.  Upon 

execution of the program, the data files were read and their contents stored in arrays for 

use in generating temperature profiles.  Upon comparison of this temperature data to that 

obtained for a similar case using a round-tipped electrode, significant differences were 

found particularly for the lesion width and maximum temperature.  These discrepancies 

are explained, in part, by the difference in electrode shape.  Numerical modeling results, 

also, show that the discrepancies are largely explained by the fact that the analytical 

model does not account for conduction of heat into the electrode. 

A numerical model was developed using the same assumptions used to obtain the 

analytical solution.  This was done to validate the numerical methods used to evaluate the 

analytical solution of the bioheat equation.  Agreement between the analytical and 

numerical solutions is excellent except for a slight discrepancy in surface temperatures in 

the immediate vicinity of the ablation electrode edge.  This is explained by the fact that 

the mesh used in the numerical model does not completely resolve the high gradients in 

heat generation that exist near the electrode perimeter.  Nevertheless, there is excellent 

agreement in lesion dimensions as predicted by the two models. 

Three more numerical models were developed to assess the validity of some of 

the assumptions made in obtaining the analytical solution and to gain insight into RF 

ablation.  The three models have the following characteristics: 

Model 1 Assumes constant tissue properties, but replaces the convective boundary 

condition at the tissue surface with blood flow to account for blood 

heating.  The electrode is physically omitted. 
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Model 2 Identical to Model 1 except that the electrode is physically included to 

account for conduction of energy into the electrode and effects from flow 

disruption. 

Model 3 All tissue properties are assumed to be temperature-independent except for 

electrical conductivity.  The electrode is physically omitted and a uniform 

convective boundary condition is assumed at the tissue surface. 

Appropriate flow conditions used for Models 1 and 2 were determined using an 

approach similar to experimental methods used to develop correlations relating fluid 

velocity and properties to the convection coefficient.  This approach is considered an 

improvement upon that used by Jain and Wolf [4].  While the results of Model 1 indicate 

that the assumption of uniform conditions at the tissue surface (and, thus, that tissue 

temperature distributions are axisymmetric) is only good for convection coefficients 

greater than about 4000 W/m2K, inclusion of the electrode results in very negligible 

lesion distortion for convection coefficients between 1000 and 4000 W/m2K.  Thus, the 

assumption of axisymmetric temperature profiles is a good one.  This is consistent with 

results reported by Jain and Wolf. 

Comparing the results of Model 2 with those of Model 1 and the analytical 

solution, a noticeable difference in lesion size is observed.  Particularly for convection 

coefficients of 1000 and 2000 W/m2K, lesions as predicted by Model 2 are much smaller.  

Thus, conduction of heat into the electrode has a significant impact on lesion size.  A 

potentially important effect that was not considered, however, in either of these two 

models is the resistive heating of the blood that occurs near the electrode.  This is, likely, 

significant since there are regions of relatively stagnant blood immediately upstream and 
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downstream of the electrode.  The effect of resistive heating in the blood would be to 

reduce the rate of heat transfer from the tissue surface and, thus, increase tissue 

temperatures.  This, in turn, would reduce the discrepancy between analytical and 

numerical modeling results.  Therefore, to better assess the feasibility of using the 

analytical solution in solving an inverse heat transfer problem, it is recommended that 

further numerical modeling be done to determine how significant this effect is. 

The results of Model 3 indicate that lesion size and maximum temperature are 

strongly influenced by the temperature-dependence of electrical conductivity.  Assuming 

electrical conductivity increases 2%/°C, significantly higher values for lesion size and 

maximum temperature are observed.  Accounting for the temperature-dependence of 

electrical conductivity resulted in increases in maximum temperature of 62.4, 45.8, and 

35.1°C for 1000, 2000, and 4000 W/m2K, respectively.  While the observed temperatures 

would not, in practice, be possible because of charring, phase change of water in the 

tissue, and monitors that control the electrode potential, the results of Model 3 

qualitatively indicate the degree to which temperature distributions are influenced by the 

temperature-dependence of electrical conductivity.  These results are consistent with 

those of Tungjitkusolmun et al. [7] who reported an increase of 15.3°C in maximum 

tissue temperature.  The discrepancy between these results is explained, both by the fact 

that Tungjitkusolmun et al. account for conduction of heat into the electrode and that the 

energy is applied in a power-controlled manner.  Furthermore, a round-tipped electrode is 

used by Tungjitkusolmun et al., while the current study assumes a flat-tipped electrode. 

The results of these three numerical models have provided insights into RF 

ablation and some of the factors influencing lesion geometry.  This work has, also, 
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demonstrated how the analytical solution effectively serves as a benchmark for numerical 

studies of RF ablation.  To better determine the feasibility of using the analytical solution 

for the inverse problem, it is recommended that additional numerical modeling be done.  

In particular, it is recommended that a model be developed to account for the resistive 

heating of the blood, which may significantly affect maximum tissue temperature and 

lesion distortion.  In addition, it is suggested that a single model be developed that 

incorporates all factors of interest to determine their combined effect on lesion geometry. 
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APPENDIX A – DERIVATION OF THE APPROPRIATE FORM FOR THE 

FOURIER TRANSFORM KERNEL 



 110

 



 111

The kernel for the Fourier transform in a semi-infinite region with a convective 

boundary condition at the surface, shown as Eq. (A.1), may be shown to have the correct 

form by considering the appropriate auxiliary problem [19].  This auxiliary problem is 

shown as Eqs. (A.2) and (A.3). 

 
2 2

2 cos sin( , ) BiK
Bi

β βζ βζβ ζ
π β

 +
=  

 + 
 (A.1) 
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ζ ζ
ζ
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Equation (A.4), below, can be shown to satisfy Eqs. (A.2) and (A.3).  The parameter, β , 

is assumed to take all values from zero to infinity, continuously. 

 ( ), cos sinZ Biβ ζ β βζ βζ= +  (A.4) 

Any arbitrary function, ( )F ζ , in the semi-infinite interval, 0 ζ≤ < ∞ , may be written in 

terms of the function, ( ),Z β ζ .  Because Eq. (A.4) satisfies the auxiliary problem 

described by Eqs. (A.2) and (A.3) for all values of β , ( )F ζ  is the integral of Eq. (A.4) 

over the range of β  values.  This arbitrary function is shown as Eq. (A.5), below. 

 ( ) ( )( )
0

cos sin 0F C Bi dζ β β βζ βζ β ζ
∞

= + ≤ < ∞∫  (A.5) 

The coefficient, ( )C β , has been determined by Churchill [20] by means of the Laplace 

transformation so that Eq. (A.5) may be written in the form shown in Eq. (A.6), below. 

 ( ) ( ) ( )2 2
0 0

2 cos sincos sin BiF Bi F d d
Bi

β βζ βζζ β βζ βζ ζ ζ β
π β

∞ ∞ ′ ′+ ′ ′= +  + 
∫ ∫  (A.6) 



 112

The form of the kernel shown in Eq. (A.1) is found by comparison of Eq. (A.6) with the 

expressions for the Fourier integral transform of a function, ( )F ζ , in the semi-infinite 

interval, 0 ζ≤ < ∞ , and its inversion formula.  These expressions are shown in Eqs. 

(A.7) and (A.8), below. 

 ( ) ( ) ( )
0

, ( )F K F d inversion formulaζ β ζ β β
∞

= ∫  (A.7) 

 ( ) ( ) ( )
0

,F K F d (integral transform)β β ζ ζ ζ
∞

′ ′ ′= ∫  (A.8) 

By comparison of Eq. (A.6) with Eqs. (A.7) and (A.8), it is apparent that the correct form 

of the kernel, ( ),K β ζ , for the case of a convective boundary condition at the surface of 

a semi-infinite medium is that shown above in Eq. (A.1). 
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APPENDIX B – C CODE USED IN EVALUATING THE ANALYTICAL 

SOLUTION TO THE BIOHEAT EQUATION 
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#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <stddef.h> 
#include <time.h> 
#define NR_END 1 
#define FREE_ARG char* 
 
#define SINGULARITY_EPS 0.00000001 /***convergence criterion for qrombPrism1 used when 

calculating the volume of the surface section containing the 
singularity***/ 

#define EPS 0.00001 /***convergence criterion for qrombPrism1, qrombPrism2, and 
DoubTranOfHG***/ 

#define EPS2 0.0005 /***convergence criterion for Temperature***/ 
 
#define H 2000  /***convection coefficient***/ 
#define TAU 5.5  /***dimensionless time***/ 
#define RGRID 12 /***number of rows in array for load_array2d***/ 
#define CGRID 12 /***number of columns in array for load_array2d***/ 
#define RSTART 0.0 /***minimum rho value***/ 
#define RSTOP 2.4 /***maximum rho value***/ 
#define CSTART 0.0 /***minimum zeta value***/ 
#define CSTOP 2.4 /***maximum zeta value***/ 
 
#define TEMPERATURE "TemperatureLOG.dat" /***some output file that used to have a purpose***/ 
#define LOADARRAY "TemperatureDATA.dat" /***output file for load_array2d***/ 
 
/***files containing forward Hankel and Fourier transform data***/ 
#define DOUBTRAN1 "CosTranDataMar26.dat"  
#define DOUBTRAN2 "SineTranDataMar26.dat" 
 
#define QMAX 2000 /***maximum value for dimensionless heat generation***/ 
 
#define RHOSMALL 0.001 /***criterion used by DoubTranOfHG for determining convergence of 

volume along a row***/ 
#define ZETASMALL 0.005  /***criterion used by DoubTranOfHG for determining convergence of 

entire surface volume***/ 
#define GAMMASMALL 0.0004 /***criterion used by Temperature for determining convergence of 

volume along a row***/ 
#define BETASMALL 0.0004 /***criterion used by Temperature for determining convergence of 

entire surface volume***/ 
 
#define PI 3.141592653589793 
#define PI2 3.14159 
#define SIGMA 0.5 /***tissue electrical conductivity used by HeatGenFUNCTION***/ 
#define R 0.0013  /***electrode radius used by HeatGenFUNCTION***/ 
#define VO 28  /***electrode potential used by HeatGenFUNCTION***/ 
#define KK 0.531  /***tissue thermal conductivity used by HeatGenFUNCTION***/ 
#define TO 37  /***body temperature used by HeatGenFUNCTION***/ 
#define BIOT (H*R/KK) /***Biot number used by Kernel ***/ 
 
#define JMAX 12 /***specifies the maximum iteration number for qrombPrism1 and 

qrombPrism2***/ 
#define JMAXP (JMAX+1) 
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/***values used by DTinterp***********************/  
#define TEMPSTEP 5 
#define GAMMA_MAX 100 
#define BETA_MAX 100 
#define MINSTEP (TEMPSTEP/pow(2,JMAX-1)) 
#define DTINTERP_CONSTANT (20*pow(2,JMAX-1)) 
/**********************************************/ 
 
#define FUNCprism(w, x, y, z) ((*funcPrism)(w, x, y, z)) 
#define SMALL 0.0000000001 /***used in determining if rho and zeta values are too close to the 

singularity***/ 
#define MAXSIZE 2000 /***specifies maximum array size for load_array2d***/ 
 
#define K 5 /***number of section volume approximations obtained by qrombPrism1 and 

qrombPrism2 before using polint to obtain an initial prediction of the actual section 
volume***/ 

 
main(){ 
 double bessj0(double x); 
 void nrerror(char error_text[]); 
 double **matrix(long nrl, long nrh, long ncl, long nch); 
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch); 
 void load_array2d(double **array2d, double (*function)(double, double, double, double), double 
gamma, double beta, double a1, double a2, double b1, double b2, int agrid, int bgrid); 
 void print_array2d(double **array2d, int agrid, int bgrid); 
 void writeMatrix(double **matrix, FILE* filepointer, double a1, double a2, double b1, double b2, 
int agrid, int bgrid); 
 void writeMatrix2(double **matrix, FILE* filepointer, double a1, double a2, double b1, double 
b2, int agrid, int bgrid); 
 double HeatGenFUNCTION(double dummy1, double dummy2,double x, double y); 
 double Kernel(double beta, double zeta); 
 double *vector(long nl, long nh); 
 void free_vector(double *v, long nl, long nh); 
 void polint(double xa[], double ya[], int n, double x, double *y, double *dy); 
 double prism1(double(*funcPrism)(double, double, double, double), double gamma, double beta, 
double LLrho, double ULrho, double LLzeta, double ULzeta, int n); 
 double prism2(double(*funcPrism)(double, double, double, double), double gamma, double beta, 
double LLrho, double ULrho, double LLzeta, double ULzeta, int n); 
 double qrombPrism1(double (*funcQromb)(double, double, double, double), double gamma, 
double beta, double LLIMrho, double ULIMrho, double LLIMzeta, double ULIMzeta); 
 double qrombPrism2(double (*funcQromb)(double, double, double, double), double gamma, 
double beta, double LLIMrho, double ULIMrho, double LLIMzeta, double ULIMzeta); 
 double DoubTranOfHG(double dummy1, double dummy2, double gamma, double beta); 
 double Temperature(double dummy1, double dummy2, double rho, double zeta); 
 double HankFourINTEGRAND(double gamma, double beta, double rho, double zeta); 
 double InverseHankFourINTEGRAND(double rho, double zeta, double gamma, double beta); 
 double DTinterp(double gamma, double beta); 
  
 int rgrid, cgrid, i; 
 double start, stop, difference; 
 double rstart, rstop, cstart, cstop; 
 double rhodummy=0.0, zetadummy=0.0; 
 double **Temperature_data; 
 FILE *TemperatureFILE; 
 
 rgrid=RGRID; cgrid=CGRID; rstart=RSTART; cstart=CSTART; rstop=RSTOP; cstop=CSTOP; 
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 Temperature_data = matrix(1, rgrid, 1, cgrid); 
 

/***A file is opened to write the dimensionless time for which temperatures are being 
generated***/ 

 TemperatureFILE=fopen(TEMPERATURE, "w"); 
 fprintf(TemperatureFILE, "Generating a temperature profile for tau = %1.2f...\n", TAU); 
 fclose(TemperatureFILE); 
 
 start = time(NULL); 
 for(i=1;i<=1;i++){ 

/***An array, Temperature (a function for evaluating temperatures), and other necessary 
parameters are passed into load_array2d***/ 

  load_array2d(Temperature_data, Temperature, rhodummy, zetadummy, rstart, rstop, 
cstart, cstop, rgrid, cgrid); 
 } 
 stop = time(NULL); 
 difference = difftime(stop,start); 
  
 /***The total time to generate the temperature profile is written to a file***/ 
 TemperatureFILE=fopen(TEMPERATURE, "a"); 
 fprintf(TemperatureFILE, "Elapsed time for temperature data: %1.0lf seconds.\n", difference); 
 fclose(TemperatureFILE); 
  
 free_matrix(Temperature_data, 1, rgrid, 1, cgrid);  
} 
 
double bessj0(double x) 
/***Numerical Recipes© function that returns the Bessel function Jo(x) for any real x.***/ 
{ 
 double ax,z; 
 double xx, y, ans, ans1, ans2; 
  
 if ((ax=fabs(x)) < 8.0){ 
  y=x*x; 
  ans1=57568490574.0+y*(-13362590354.0+y*(651619640.7 
     +y*(-11214424.18+y*(77392.33017+y*(-184.9052456))))); 
  ans2=57568490411.0+y*(1029532985.0+y*(9494680.718 
     +y*(59272.64853+y*(267.8532712+y*1.0)))); 
  ans=ans1/ans2; 
 }else{ 
  z=8.0/ax; 
  y=z*z; 
  xx=ax-0.785398164; 
  ans1=1.0+y*(-0.1098628627e-2+y*(0.2734510407e-4 
     +y*(-0.2073370639e-5+y*0.2093887211e-6))); 
  ans2=-0.1562499995e-1+y*(0.1430488765e-3 
     +y*(-0.6911147651e-5+y*(0.7621095161e-6 
     -y*0.934935152e-7))); 
  ans=sqrt(0.636619772/ax)*(cos(xx)*ans1-z*sin(xx)*ans2); 
 } 
 return ans; 
} 
 
void nrerror(char error_text[]) 
/***Numerical Recipes© standard error handler***/ 
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{ 
 fprintf(stderr, "Numerical Recipes run-time error...\n"); 
 fprintf(stderr, "%s\n", error_text); 
 fprintf(stderr, "...now exiting to system...\n"); 
 exit(1);  
}  
 
double **matrix(long nrl, long nrh, long ncl, long nch) 
/***Numerical Recipes© function that allocates memory for a 2-D array***/ 
{ 
 long i, nrow=nrh-nrl+1, ncol=nch-ncl+1; 
 double **m; 
  
 m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*))); 
 if (!m) nrerror("allocation failure 1 in matrix()"); 
 m += NR_END; 
 m -= nrl; 
  
 m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); 
 if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 m[nrl] += NR_END; 
 m[nrl] -= ncl; 
  
 for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
  
 return m; 
} 
 
void free_matrix(double **m, long nrl, long nrh, long ncl, long nch) 
/***Numerical Recipes© function that frees memory that has been allocated for a 2-D array using 
matrix***/ 
{ 
 free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 free((FREE_ARG) (m+nrl-NR_END)); 
} 
 
 
/***load_array2d accepts inputs specifying the range of rho and zeta values for which dimensionless 
temperatures are evaluated as well as integers used to determine the step size between adjacent data points.  
These parameters are defined as global constants: RGRID, CGRID, RSTART, RSTOP, CSTART, 
CSTOP***/ 
 
void load_array2d(double **array2d, double (*function)(double, double, double, double), double gamma, 
double beta, double a1, double a2, double b1, double b2, int agrid, int bgrid) 
{ 
 double astep, bstep, x, y; 
 int n, m; 
 double start, stop; 
 static int print=1; 
 FILE *LoadArrayFILE; 
  
 if(agrid>MAXSIZE || bgrid>MAXSIZE) 
  printf("Grid size must not exceed %i.\n", MAXSIZE); 
 else{ 
  astep = (a2-a1)/agrid; 
  bstep = (b2-b1)/bgrid; 
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  for(n= 1; n<=agrid; n++){ 
   x = a1 + (n-1)*astep; 
 
   if(n==1){ 
    LoadArrayFILE=fopen(LOADARRAY, "a");  
    if(print==1) fprintf(LoadArrayFILE, "\t"); 
    for(m= 1; m<=bgrid; m++){ 
     if(print==1){ 
      if(m!=bgrid) fprintf(LoadArrayFILE, "%1.12e\t", 
(b1+(m-1)*bstep)); 
      else fprintf(LoadArrayFILE, "%1.12e\n", (b1+(m-
1)*bstep)); 
     } 
    } 
    fclose(LoadArrayFILE); 
   } 
    
   for(m= 1; m<=bgrid; m++){ 
     
    y = b1 + (m-1)*bstep; 
     
    array2d[n][m] = function(gamma,beta,x,y); 
     
    LoadArrayFILE=fopen(LOADARRAY, "a"); 
    if(print==1){ 
     if(m==1) fprintf(LoadArrayFILE, "%1.12e\t", x); 
      
     if(m!=bgrid) fprintf(LoadArrayFILE, "%1.12e\t", 
array2d[n][m]); 
     else fprintf(LoadArrayFILE, "%1.12e\n", array2d[n][m]); 
     } 
    fclose(LoadArrayFILE); 
    } 
   } 
  } 
 print++;  
} 
 
 
void print_array2d(double **array2d, int agrid, int bgrid) 
/***may be used to print an array of any specified size to the screen***/ 
{ 
 int j, k; 
  
 for(j= 1; j<=agrid; j++){ 
  for(k= 1; k<=bgrid; k++){ 
   
  if(k==bgrid) printf("%1.3f\n", array2d[j][k]); 
   else printf("%1.3f   ", array2d[j][k]); 
  } 
 } 
} 
 
double HeatGenFUNCTION(double dummy1, double dummy2,double x, double y) 
/***calculates the dimensionless heat generation for any specified values of rho and zeta***/ 
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{ 
 double v1, v2, v1v2, Q; 
 double r, z, dVdr, dVdz, q; 
 int whichQ; 
 float rhigh, rlow, zhigh; 
  
 r = x; 
 z = y; 
  
 if(z==0.0 && (r>-1.0 && r<1.0)) whichQ = 0; 
 else if(r>(1.0-SMALL) && r<(1.0+SMALL) && z<SMALL) whichQ = 1; 
 else whichQ = 2; 
  
 if(r>(1.0-SMALL) && r<(1.0+SMALL) && z<SMALL){ 
  printf("Oopsie, you're trying to evaluate at rho=1.0 and zeta=0.0\n"); 
  } 
  
 switch(whichQ){ 
  case 0: 
   Q = ((4*SIGMA*VO*VO)/(KK*TO*PI*PI))*((1.0/2.0)*(1/(1+r) + 1/(1-r))); 
   
   if(Q>QMAX) Q = QMAX;  
    
   return Q; 
   break; 
   
  case 1: 
    
   Q = QMAX; 
    
   printf("You are evaluating at rho = 1 and zeta = 0\n"); 
   printf("The heat generation is assigned to be %1.0f.\n",Q); 
    
   return Q; 
   break; 
   
  case 2: 
   v1 = sqrt(z*z + (1+r)*(1+r)); 
   v2 = sqrt(z*z + (1-r)*(1-r)); 
   v1v2 = (v1+v2)*(v1+v2); 
    
   dVdr = -(2*(r+1)/v1+2*(r-1)/v2)/(v1v2*sqrt(1-4/v1v2)); 
   dVdz = -(2*z/v1 + 2*z/v2)/(v1v2*sqrt(1-4/v1v2)); 
   Q = ((4*SIGMA*VO*VO)/(KK*TO*PI*PI))*(dVdr*dVdr + dVdz*dVdz); 
    
   if(Q>QMAX) Q = QMAX; 
    
   return Q; 
   break; 
 }  
} 
 
double Kernel(double beta, double zeta) 
/***calculates the kernel for the Fourier transform***/ 
{ 
 double Kernel; 
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 Kernel=sqrt(2/PI)*((beta*cos(beta*zeta) + BIOT*sin(beta*zeta))/(sqrt(beta*beta+BIOT*BIOT))); 
  
 return Kernel; 
} 
 
double *vector(long nl, long nh) 
/*** Numerical Recipes© function that allocates a double vector with subscript range v[nl..nh]***/ 
{ 
 double *v; 
  
 v=(double *)malloc((size_t) ((nh-nl+1+NR_END)*sizeof(double))); 
 if (!v) printf("allocation error in vector()"); 
 return v-nl+NR_END; 
} 
 
void free_vector(double *v, long nl, long nh) 
/*** Numerical Recipes© function that frees a double vector allocated with vector()***/ 
{ 
 free((FREE_ARG) (v+nl-NR_END)); 
}  
 
void polint(double xa[], double ya[], int n, double x, double *y, double *dy) 
/***Given arrays xa[1..n] and ya[1..n], and given a value x, this routine returns a value y, and an error 
estimate dy.  If P(x) is a polynomial such that P(xai) = yai (i = 1, .., n) then the returned value y = P(x)***/ 
{ 
 int i, m, ns=1; 
 double den, dif, dift, ho, hp, w; 
 double *c, *d; 
  
 dif=fabs(x-xa[1]); 
 c=vector(1,n); 
 d=vector(1,n); 
 for(i=1;i<=n;i++){ 
  if((dift=fabs(x-xa[i]))<dif){ 
   ns=i; 
   dif=dift; 
  } 
  c[i]=ya[i]; 
  d[i]=ya[i]; 
 } 
 *y=ya[ns--]; 
 for(m=1;m<n;m++){ 
  for(i=1;i<=n-m;i++){ 
   ho=xa[i]-x; 
   hp=xa[i+m]-x; 
   w=c[i+1]-d[i]; 
   if((den=ho-hp)==0.0) nrerror("Error in routine polint"); 
   den=w/den; 
   d[i]=hp*den; 
   c[i]=ho*den; 
  } 
  *y+=(*dy=(2*ns<(n-m) ? c[ns+1] : d[ns--])); 
 } 
 free_vector(d,1,n); 
 free_vector(c,1,n); 
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} 
 
 
/*** prism1 calculates approximate volumes for a surface section for which the limits of integration have 
been specified by DoubTranOfHG (integration limits are passed from DoubTranOfHG to qrombPrism1 to 
prism1).  It receives an integer from qrombPrism1 that specifies which volume approximation to return.  
Note that this function is not called if DTinterp is used instead of DoubTranOfHG ***/ 
 
double prism1(double(*funcPrism)(double, double, double, double), double gamma, double beta, double 
LLrho, double ULrho, double LLzeta, double ULzeta, int n) 
{ 
 int i, k, iterations; 
 double h, side_sum=0.0, center_sum=0.0; 
 double rho, zeta, s1, rhostep, zetastep, drho, dzeta, coolbeans; 
 static double sum1; 
  
 drho = ULrho-LLrho; 
 dzeta = ULzeta-LLzeta; 
 rho = LLrho; 
  
 if(n==1){ 
  rhostep = drho; 
  zetastep = dzeta; 
 }else{  
  rhostep = drho; 
  zetastep = dzeta; 
  for(k=1;k<n;k++){ 
   rhostep *= 0.5; 
   zetastep *= 0.5; 
  } 
 } 
  
 if(n==1){ 
  sum1 = 0.25*(FUNCprism(gamma, beta, LLrho, LLzeta) + FUNCprism(gamma, beta, 
LLrho, ULzeta) + FUNCprism(gamma, beta, ULrho, LLzeta) + FUNCprism(gamma, beta, ULrho, 
ULzeta)); 
   
 }else{ 
  iterations = 1; 
  for(k=1;k<n;k++) iterations *= 2; 
  iterations++; 
   
  for(i=1; i<=iterations; i++){ 
   if((i-1)%2 == 0){ 
    zeta = LLzeta + zetastep; 
    do{ 
     if((i==1) || (i==iterations)){ 
      side_sum += FUNCprism(gamma, beta, rho, zeta); 
     }else{ 
      center_sum += FUNCprism(gamma, beta, rho, zeta); 
     } 
     zeta += 2*zetastep; 
    }while(zeta < ULzeta); 
   }else{ 
    zeta = LLzeta; 
    do{ 
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     if((zeta < (LLzeta + zetastep/2)) || (zeta>(ULzeta - 
zetastep/2))){ 
      side_sum += FUNCprism(gamma, beta, rho, zeta); 
     }else{ 
      center_sum += FUNCprism(gamma, beta, rho,zeta); 
     } 
     zeta += zetastep; 
    }while(zeta<(ULzeta + zetastep/2)); 
   } 
  rho += rhostep; 
  } 
 sum1 += (0.5*(side_sum) + center_sum); 
 } 
  
 s1 = sum1*rhostep*zetastep; 
  
 return s1; 
} 
 
 
/*** prism2 calculates approximate volumes for a surface section for which the limits of integration have 
been specified by Temperature (integration limits are passed from Temperature to qrombPrism2 to 
prism2).  It receives an integer from qrombPrism2 that specifies which volume approximation to 
return.***/ 
 
double prism2(double(*funcPrism)(double, double, double, double), double gamma, double beta, double 
LLrho, double ULrho, double LLzeta, double ULzeta, int n) 
{ 
 int i, k, iterations; 
 double h, side_sum=0.0, center_sum=0.0; 
 double rho, zeta, s2, rhostep, zetastep, drho, dzeta, coolbeans; 
 double value1, value2, value3, value4; 
 static double sum2; 
  
 drho = ULrho-LLrho; 
 dzeta = ULzeta-LLzeta; 
 rho = LLrho; 
  
 if(n==1){ 
  rhostep = drho; 
  zetastep = dzeta; 
 }else{  
  rhostep = drho; 
  zetastep = dzeta; 
  for(k=1;k<n;k++){ 
   rhostep *= 0.5; 
   zetastep *= 0.5; 
  } 
 } 
  
 if(n==1){   
  sum2 = 0.25*(FUNCprism(gamma, beta, LLrho, LLzeta) + FUNCprism(gamma, beta, 
LLrho, ULzeta) + FUNCprism(gamma, beta, ULrho, LLzeta) + FUNCprism(gamma, beta, ULrho, 
ULzeta)); 
   
 }else{ 
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  iterations = 1; 
  for(k=1;k<n;k++) iterations *= 2; 
  iterations++; 
   
  for(i=1; i<=iterations; i++){ 
   if((i-1)%2 == 0){ 
    zeta = LLzeta + zetastep; 
    do{ 
     if((i==1) || (i==iterations)){ 
      side_sum += FUNCprism(gamma, beta, rho, zeta); 
     }else{ 
      center_sum += FUNCprism(gamma, beta, rho, zeta); 
     } 
     zeta += 2*zetastep; 
    }while(zeta < ULzeta); 
   }else{ 
    zeta = LLzeta; 
    do{ 
     if((zeta < (LLzeta + zetastep/2)) || (zeta>(ULzeta - 
zetastep/2))){ 
      side_sum += FUNCprism(gamma, beta, rho, zeta); 
     }else{ 
      center_sum += FUNCprism(gamma, beta, rho,zeta); 
     } 
     zeta += zetastep; 
    }while(zeta<(ULzeta + zetastep/2)); 
   } 
  rho += rhostep; 
  } 
 sum2 += (0.5*(side_sum) + center_sum); 
 } 
  
 s2 = sum2*rhostep*zetastep; 
  
 return s2; 
} 
 
 
/*** qrombPrism1 directs and monitors the process of integrating the integrand of the forward Hankel and 
Fourier transforms of the dimensionless heat generation between the finite limits of integration provided by 
DoubTranOfHG.  Using volume approximations obtained from prism1 for the current surface section as 
well as the polynomial curve fit routine, polint, qrombPrism1 obtains an appropriately converged section 
volume that is returned to DoubTranOfHG.  Note that this function is not called if DTinterp is used instead 
of DoubTranOfHG ***/ 
 
double qrombPrism1(double (*funcQromb)(double, double, double, double), double gamma, double beta, 
double LLIMrho, double ULIMrho, double LLIMzeta, double ULIMzeta) 
{ 
 double ss,dss,precision; 
 double s[JMAXP], h[JMAXP+1]; 
 int j,toomany=0; 
 static int f1=1; 
 FILE *DoubTranLogFILE; 
  
 if((LLIMzeta<SMALL) && (ULIMrho>1.0) && (LLIMrho<1.0)) 
precision=SINGULARITY_EPS; 
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 else precision=EPS1; 
  
 h[1]=1.0; 
 for (j=1;j<=JMAX;j++){ 
  
  s[j]=prism1(funcQromb,gamma,beta,LLIMrho, ULIMrho, LLIMzeta, ULIMzeta, j); 
  if(j>=K){ 
   toomany++; 
   polint(&h[j-K],&s[j-K],K,0.0,&ss,&dss); 
   if((fabs(dss)<=precision*fabs(ss)) || (j==JMAX)) return ss; 
  } 
  h[j+1]=0.25*h[j]; 
 } 
 nrerror("Too many steps in routine qromb. Too bad for you."); 
 return 0.0; 
} 
 
 
/*** qrombPrism2 directs and monitors the process of integrating the integrand of the inverse Hankel and 
Fourier transforms between the finite limits of integration provided by Temperature.  Using volume 
approximations obtained from prism2 for the current surface section as well as the polynomial curve fit 
routine, polint, qrombPrism2 obtains an appropriately converged section volume that is returned to 
Temperature.***/ 
 
double qrombPrism2(double (*funcQromb)(double, double, double, double), double gamma, double beta, 
double LLIMrho, double ULIMrho, double LLIMzeta, double ULIMzeta) 
{ 
 double ss,dss; 
 double s[JMAXP], h[JMAXP+1]; 
 int j; 
 static int f2=1; 
  
 h[1]=1.0; 
 for (j=1;j<=JMAX;j++){ 
  s[j]=prism2(funcQromb,gamma,beta,LLIMrho, ULIMrho, LLIMzeta, ULIMzeta, j); 
 
  if(j>=K){ 
   polint(&h[j-K],&s[j-K],K,0.0,&ss,&dss); 
   if((fabs(dss)<=EPS*fabs(ss)) || (j==JMAX)){  
    
    return ss; 
   } 
  } 
  h[j+1]=0.25*h[j]; 
 } 
 nrerror("Too many steps in routine qromb. Too bad for you."); 
 return 0.0; 
} 
 
 
/***DoubTranOfHG evaluates the forward Hankel and Fourier transforms of the dimensionless heat 
generation function.  It does this by adding surface section volumes along rows and then adding these row 
volumes to obtain a total surface volume.  It also determines appropriate section sizes to be integrated by 
qrombPrism1.  Note that DTinterp may be used instead of DoubTranOfHG***/ 
 
double DoubTranOfHG(double dummy1, double dummy2, double gamma, double beta){ 
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 double HankFourINTEGRAND(double gamma, double beta, double rho, double zeta); 
 
 int stopr=0, stopz=0, row=1; 
 double rhosumN=0.0, rhosum=0.0, zetasum=0.0; 
 double LLrho=0.0, ULrho=0.0, LLzeta=0.0, ULzeta=0.0; 
 double period, smallstep, bigstep, step; 
 double distanceUL, distanceLL, ztestvalue; 
  
 if(gamma<2 && beta<2) period = PI2; 
 else{ 
  if(gamma>=beta) period=2*PI2/gamma; 
  if(gamma<beta) period=2*PI2/beta; 
 } 
  
 smallstep=0.2*period; 
 bigstep=0.8*period; 
  
 do{ 
  if(row==1){ 
   step=smallstep; 
   ULzeta+=step; 
  } 
  do{ 
   LLrho=ULrho; 
   ULrho+=step; 
    
  
 rhosumN=qrombPrism1(HankFourINTEGRAND,gamma,beta,LLrho,ULrho,LLzeta,ULzeta); 
   rhosum+=rhosumN; 
    
   if((fabs(rhosumN)<fabs(EPS*rhosum)) || (fabs(rhosumN)<RHOSMALL)){  
    if(row==1) stopr+=1; 
    else stopr+=2; 
    } 
   else stopr=0;  
    
  }while(stopr<=6); 
   
  if(row==1){ 
   step=bigstep; 
   row++; 
  } 
  ULrho=0.0; 
  LLzeta=ULzeta; 
  ULzeta+=step; 
  zetasum+=rhosum; 
  if((fabs(rhosum)<fabs(EPS*zetasum)) || (fabs(rhosum)<ZETASMALL)) stopz++; 
  else stopz=0; 
   
  rhosum=0.0; 
  stopr=0; 
   
 }while(stopz<=3); 
  
 stopz=0; 
  



 127

 return zetasum; 
} 
 
 
/***Temperature evaluates the inverse Hankel and Fourier transforms.  It does this by adding surface 
section volumes along rows and then adding these row volumes to obtain a total surface volume. It also 
determines appropriate section sizes to be integrated by qrombPrism2***/ 
 
double Temperature(double dummy1, double dummy2, double rho, double zeta){ 
 double InverseHankFourINTEGRAND(double rho, double zeta, double gamma, double beta); 
 
 int stopgamma=1, stopbeta=1, row=1, n=0; 
 double gammasumN=0.0, gammasum=0.0, betasum=0.0; 
 double LLgamma=0.0, ULgamma=0.0, LLbeta=0.0, ULbeta=0.0; 
 double period, step; 
 double distanceUL, distanceLL; 
 FILE *TemperatureFILE; 
 static int x=1; 
  
 if(rho<2 && zeta<2) period = 3; 
 else{ 
  if(rho>=zeta) period=6/rho; 
  if(rho<zeta) period=6/zeta; 
 } 
  
 step=period; 
  
 do{ 
  if(n==0) ULbeta+=step; 
   
  do{ 
   LLgamma=ULgamma; 
   ULgamma+=step; 
    
  
 gammasumN=qrombPrism2(InverseHankFourINTEGRAND,rho,zeta,LLgamma,ULgamma,LLbet
a,ULbeta); 
   gammasum+=gammasumN; 
   if((fabs(gammasumN)>0.005) && 
(fabs(gammasumN)>fabs(EPS2*gammasum))) stopgamma=1; 
   else stopgamma++; 
    
   if(x==1) x++; 
    
  }while(stopgamma<=2); 
   
  if(n==0) n++; 
  ULgamma=0.0; 
  LLbeta=ULbeta; 
  ULbeta+=step; 
  betasum+=gammasum; 
  if(fabs(gammasum)<1.0e-2 || (fabs(gammasum)<fabs(EPS2*betasum))) stopbeta++; 
  else stopbeta=1; 
  gammasum=0.0; 
   
  stopgamma=1; 
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 }while(stopbeta<=2); 
  
 return betasum; 
} 
 
double HankFourINTEGRAND(double gamma, double beta, double rho, double zeta) 
/***Evaluates the integrand for the forward Hankel and Fourier transforms of the dimensionless heat 
generation.  Note that this function is not called if DTinterp is used instead of DoubTranOfHG***/ 
{ 
 double HankFourINT,dummy1, dummy2; 
 static int n; 
  
 HankFourINT=rho*bessj0(gamma*rho)*Kernel(beta,zeta)*HeatGenFUNCTION(dummy1,dumm
y2,rho,zeta); 
  
 return HankFourINT; 
} 
 
double InverseHankFourINTEGRAND(double rho, double zeta, double gamma, double beta) 
/***Evaluates the integrand for the inverse Hankel and Fourier transforms ***/ 
{ 
 double InverseHankFourINT,dummy1=0.0,dummy2=0.0; 
 double tau; 
  
 if((gamma==0.0) && (beta==0.0)) InverseHankFourINT=0.0; 
 else 
InverseHankFourINT=gamma*bessj0(gamma*rho)*Kernel(beta,zeta)*DoubTranOfHG(dummy1,dummy2,
gamma,beta)*(1-exp(-(gamma*gamma+beta*beta)*TAU))/(gamma*gamma+beta*beta); 
 
 /*** note that this function may be modified to call DTinterp instead of DoubTranOfHG.  In this 
case, previously calculated data for the forward Hankel and Fourier transforms of the dimensionless heat 
generation would be read from the files, CosTranDataMar26.dat and SineTranDataMar26.dat ***/ 
  
 return InverseHankFourINT; 
} 
 
 
/***DTinterp may be used in place of DoubTranOfHG to read previously calculated values for the forward 
Hankel and Fourier transforms of the dimensionless heat generation from the files, CosTranDataMar26.dat 
and SineTranDataMar26.dat.  If a needed value is not contained in these files, DTinterp calculates an 
approximate value by interpolating between values contained in the files***/ 
 
double DTinterp(double gamma, double beta){ 
 static int call=1, n, ratio; 
 static double low, high, step, convert; 
 static double **FourTranARRAY; 
 double DTinterp, FourCosCoef, FourSinCoef, R1, S1, T1, gammax, betax, denom, num, FourCos, 
FourSin; 
 int i, j, gammai, betaj, pseudo_gammai, pseudo_betaj, gamma_remainder, beta_remainder; 
 FILE *FourCosFILE, *FourSinFILE, *array_check, *DoubTranLogFILE, *InvTranLogFILE; 
  
 if(call==1){ 
  printf("This is inside the call=1 loop.\n"); 
    
  FourCosFILE=fopen(DOUBTRAN1, "r"); 
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  FourSinFILE=fopen(DOUBTRAN2, "r"); 
   
  fscanf(FourCosFILE,"%i",&n); 
  printf("call: %i, n: %i\n", call, n); 
   
  FourTranARRAY=matrix(1, n+2, 1, n+2); 
  FourTranARRAY[1][1]=0.0; 
  
  fscanf(FourCosFILE,"%lf %lf", &low, &high); 
  step=(high-low)/n; 
   
  ratio=DTINTERP_CONSTANT/n; 
  convert=DTINTERP_CONSTANT/high; 
   
  for(i=2;i<=n+2;i++){ 
   FourTranARRAY[1][i]=(i-2)*step; 
   FourTranARRAY[i][1]=(i-2)*step; 
  } 
   
  for(i=2;i<=n+2;i++){ 
   for(j=1;j<=n+2;j++){ 
    if(j==1){ 
     fscanf(FourCosFILE, "%lf", &FourCos); 
     fscanf(FourSinFILE, "%lf", &FourSin); 
    }else{ 
     num= sqrt(2/(PI*(FourTranARRAY[1][j] * 
FourTranARRAY[1][j] + BIOT*BIOT))); 
     fscanf(FourCosFILE, "%lf", &FourCos); 
     fscanf(FourSinFILE, "%lf", &FourSin); 
     FourTranARRAY[i][j]= num*FourTranARRAY[1][j] * 
FourCos + num*BIOT*FourSin; 
    }  
   } 
  } 
   
  fclose(FourCosFILE); 
  fclose(FourSinFILE); 
 } 
  
 pseudo_gammai=(int)(gamma*convert+SMALL); 
 pseudo_betaj=(int)(beta*convert+SMALL); 
 gamma_remainder=pseudo_gammai%ratio; 
 beta_remainder=pseudo_betaj%ratio; 
 gammai=(pseudo_gammai-gamma_remainder)/ratio + 2; 
 betaj=(pseudo_betaj-beta_remainder)/ratio + 2; 
  
 if((gamma_remainder==0) && (beta_remainder==0)){ 
  DTinterp = FourTranARRAY[gammai][betaj];   
 }else{ 
  gammax = (double)gamma_remainder/(double)ratio; 
  betax = (double)beta_remainder/(double)ratio; 
  R1=(FourTranARRAY[gammai+1][betaj]-FourTranARRAY[gammai][betaj])*gammax 
+ FourTranARRAY[gammai][betaj]; 
  S1=(FourTranARRAY[gammai+1][betaj+1]-
FourTranARRAY[gammai][betaj+1])*gammax + FourTranARRAY[gammai][betaj+1]; 
  DTinterp=(S1-R1)*betax + R1; 
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 } 
  
 call++; 
  
 return DTinterp; 
} 
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APPENDIX C – USER-DEFINED FUNCTIONS USED FOR NUMERICAL 

MODELING 
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UDF USED FOR MODELS 1 AND 2 

 
/***UDF used in Models 1 and 2 to specify inlet velocity profiles.  Three different sets of flow conditions 
may be specified by changing the values of FREE_STREAM 1, FREE_STREAM 2 and FREE_STREAM 
3, for the free-stream blood velocity, and DELTA 1, DELTA 2, and DELTA 3, for the boundary layer 
thickness***/ 
 
#include "udf.h" 
  
#define SIGMA 0.5 
#define QMAX 2.33e10 
#define RADIUS 0.0013 
#define PI 3.14159265 
#define SMALLN 0.00000001 
#define HEIGHT 0.02 
 
#define FREE_STREAM_1 0.2 
#define DELTA_1 0.02 
 
#define FREE_STREAM_2 0.3 
#define DELTA_2 0.01 
 
#define FREE_STREAM_3 0.4 
#define DELTA_3 0.005 
 
DEFINE_SOURCE(THREED_energy_source_xz, cell, thread, dS, eqn){ 
 real source; 
  
 real v1, v2, v1v2, rlow, rhigh; 
 real r, z, xyzcoords[ND_ND],dvdr, dvdz, q; 
 int whichq; 
  
 C_CENTROID(xyzcoords, cell, thread); 
 r=sqrt(pow(xyzcoords[2],2) + pow(xyzcoords[0],2))/RADIUS; 
 z=fabs(xyzcoords[1])/RADIUS; 
  
 v1 = sqrt(z*z + (1+r)*(1+r)); 
 v2 = sqrt(z*z + (1-r)*(1-r)); 
 v1v2 = (v1+v2)*(v1+v2); 
  
 dvdr = -(2*(r+1)/v1+2*(r-1)/v2)/(v1v2*sqrt(1-4/v1v2)); 
 dvdz = -(2*z/v1 + 2*z/v2)/(v1v2*sqrt(1-4/v1v2)); 
 q = (4*SIGMA*28*28/(RADIUS*RADIUS*PI*PI))*(dvdr*dvdr + dvdz*dvdz); 
 /*if(q>QMAX) q = QMAX;*/ 
 dS[eqn]=0.0; 
  
 return q; 
  
} 
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DEFINE_PROFILE(inlet_x_velocity_1, thread, nv){ 
 face_t f; 
 real x[ND_ND]; 
  
 begin_f_loop(f, thread) 
  { 
   F_CENTROID(x,f,thread); 
   if(x[1]<=DELTA_1){ 
    F_PROFILE(f,thread,nv) = 
FREE_STREAM_1*sin(PI*x[1]/(2*DELTA_1)); 
   }else{ 
    F_PROFILE(f,thread,nv) = FREE_STREAM_1; 
   } 
  } 
 end_f_loop(f,thread) 
  
} 
 
DEFINE_PROFILE(inlet_x_velocity_2, thread, nv){ 
 face_t f; 
 real x[ND_ND]; 
  
 begin_f_loop(f, thread) 
  { 
   F_CENTROID(x,f,thread); 
   if(x[1]<=DELTA_2){ 
    F_PROFILE(f,thread,nv) = 
FREE_STREAM_2*sin(PI*x[1]/(2*DELTA_2)); 
   }else{ 
    F_PROFILE(f,thread,nv) = FREE_STREAM_2; 
   } 
  } 
 end_f_loop(f,thread) 
  
} 
 
DEFINE_PROFILE(inlet_x_velocity_3, thread, nv){ 
 face_t f; 
 real x[ND_ND]; 
  
  
 begin_f_loop(f, thread) 
  { 
   F_CENTROID(x,f,thread); 
   if(x[1]<=DELTA_3){ 
    F_PROFILE(f,thread,nv) = 
FREE_STREAM_3*sin(PI*x[1]/(2*DELTA_3)); 
   }else{ 
    F_PROFILE(f,thread,nv) = FREE_STREAM_3; 
   } 
  } 
 end_f_loop(f,thread) 
  
} 
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UDF USED FOR MODEL 3 

 
/***UDF used in Model 3 to calculate local heat generation rates.  Given the local temperature, the 
electrical conductivity is calculated.  Also, given the local electric potential gradient, the UDF calculates 
the heat generation as the product of the electrical conductivity and the square of the electric potential 
gradient***/ 
 
#include "udf.h" 
  
#define SIGMA 0.5 
 
#define QMAX 2.33e10 
#define RADIUS 0.0013 
#define PI 3.14159265 
#define SMALLN 0.00000001 
#define FACTOR 0.02 
 
 
DEFINE_SOURCE(THREED_energy_source_xy_Tdepen, cell, thread, dS, eqn){ 
 real q, temperature, elec_cond; 
 real grad0, grad1, grad2; 
 int i; 
  
 grad0 = NV_MAG(C_UDSI_G(cell,thread,0)); 
  
 temperature = C_T(cell, thread); 
 elec_cond = SIGMA + FACTOR*SIGMA*(temperature-310); 
  
 q = elec_cond*(grad0*grad0); 
  
 dS[eqn]=0.0; 
  
 return q; 
  
} 
 
DEFINE_DIFFUSIVITY(electrical_conductivity, cell, thread, i) 
{ 
 real temperature; 
  
 temperature = C_T(cell, thread); 
  
 return SIGMA + FACTOR*SIGMA*(temperature-310); 
} 
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