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 Soil moisture, especially under drought conditions, is a factor that is known to impact crop 

yield predictions. Crop growth models used to make these predictions rely on soil texture estimates, 
which influence simulated soil moisture and ultimately crop growth.  The purpose of this research was 
to implement a k-means clustering approach to address the uncertainty of the soil texture estimates.  
By grouping similar soil textures based on their simulated responses, clustering reveals how soil texture 
uncertainty may impact yield estimates.  Wheat growth simulations were conducted using a HYDRUS 
1D and coupled crop model for soils defined on the USDA soil texture triangle. A k-means clustering 
algorithm was applied to the simulated biophysical data for each soil texture.  Resulting clusters were 
different from traditional soil type classifications.  The k-means clustering approach proved useful for 
investigating the relationship to soil texture that crop yield may have. This research shows that the 
impact of soil texture variation should be considered when conducting crop growth simulation for the 
purposes of yield forecasting. 
 

modeling; HYDRUS; clustering; yield; soil moisture

 
 

As a result of increased food demands for a growing population, large scale crop production must strive 
for maximum productivity while minimizing use of water and energy resources. Shifting demands for 
crop commodities as renewable sources of energy have further driven the need for increased 
production.  As the need for increased production continues to be a global concern for economic 
stability, food and energy security, the importance of anticipating accurate crop production levels will 
intensify as well. 
  
Crop progress is currently monitored throughout the growing season based on weather conditions, 
management practices, and crop scouting reports.  Collection of this information allows for forecasting 
of crop yield.  Yield forecasts are widely used today to predict yearly production for food and economic 
forecasting, making management decisions (crop type, fertilizer or water scheduling) and even policy 
decisions (Baez-Gonzalez et al. 2005; Bannayan, Crout, and Hoogenboom 2003; Moriondo, Maselli, 
and Bindi 2007; Prasad et al. 2006). 
 
Some of these forecasts are created using statistically based methods (Statistics Division, National 
Agricultural Statistics Service 2012) while others are based on biophysical computer models (Jones et 
al. 2003) or remote sensing techniques (Moriondo, Maselli, and Bindi 2007; Sakamoto, Gitelson, and 
Arkebauer 2014).  Regardless of the method used to create the forecast or its ultimate application, the 
main goal is to produce accurate estimates of crop yield.  
 
The computer models that are used to simulate crop growth typically simulate soil hydrologic responses 
as well.  Water stress is one of the primary factors limiting crop growth. Typically, water stress is 
calculated when the potential demand for water lost through crop transpiration and soil water 
evaporation is higher than the amount of water that can be supplied by the soil through the root system. 
Water stress or water availability is a primary management concern especially in water-limited regions.   
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The recent droughts in the central and southwest United States and the resulting impacts to the food 
markets ,highlight the need for improved yield estimation techniques that focus on water availability 
(Kaul, Hill, and Walthall 2005).   
 
Understanding the water response or water availability of a soil and the impact this will have on crop 
growth and ultimately yield is critical.  For this we can use crop model simulations of plant growth to 
predict yield and to guide management decisions.  It is known that soil conditions are important to such 
crop models (Hansen and Jones 2000; de Wit, Boogaard, and Van Diepen 2005), because soil texture 
largely determines the soil's capacity to hold water and provide moisture for crop transpiration 
processes.   
 
The hydrologic equations used to simulate water flow also require soil texture information, i.e. van 
Genuchten and Brooks and Corey models. However, consideration of soil texture variation or an in 
depth understanding of the hydrologic response in context of soil texture in a universal sense isn’t a 
common and functional part of methods used to study yield variation.  The crop models provide a useful 
system in which the relationship and behavior of yield, soil moisture and soil texture can be studied. 
 
It is common to define soil textures using the relative distribution of soil particle sizes present in the 
composite soil material.  Size limits are used to establish three types of particles: sand, silt and clay.  
To universally characterize soil texture, classification schemes have been developed that define soil 
groups using the percentages of sand, silt and clay. The total percentage of these particles in a 
composite soil material are used to establish specific soil types or classes.   The limits that define grain 
size of sand, silt, and clay particles vary, resulting in a lack of continuity or agreement between 
taxonomies or classification systems (Bormann 2010; Minasny and McBratney 2001).  
 

The varied agreement of the mechanical limits of 
soil particles and classes has led to two opposing 
taxonomies or classification systems: one 
developed by a Swedish soil scientist (Atterberg 
1905) which was adopted by the International 
Society of Soil Science (ISSS) in 1925 and the 
United States Department of Agriculture (UDSA) 
soil texture triangle (Davis and Bennett 1927) 
adopted by the Food and Agricultural Organization 
(FAO) in 1950.  Not only do the schemes vary in 
their mechanical limits but also in their layout, using 
either two axes or three axes to visually express 
the boundaries of the soil classes.  Classifying soils 
is important for understanding soil structure in the 
physical sense.  The understanding of hydrological 
behaviors and its significance in these 
classifications are less well known and have only 
minimally been considered. 
 
Soil texture is frequently used in pedotransfer 
functions to define soil hydraulic parameters so 

models can simulate hydraulic responses of the soil.  It is common to assign soil hydraulic parameters 
to each soil class within a classification system by averaging the parameter values across the soils 
within the assigned soil classes.  This common and yet often overlooked approach makes the 
assumption that soils within a class are hydrologically similar, meaning that they exhibit behavior 
comparable to other soils within the same class (Twarakavi, Šim nek, and Schaap 2010).  Averaging 
hydraulic parameters requires an assumption that within a soil class the hydraulic parameters and the 
hydraulic behaviors are similar to one another, as compared to those soils within other classes.  
 
Recently, clustering algorithms have been used successfully to form classifications based on hydraulic 
values (Bormann 2010; Twarakavi, Šim nek, and Schaap 2010). The hydraulic based classifications 
formed using the clustering algorithms were shown to differ from those based on the soil texture 
approaches.  It is also clear that the hydraulic parameters are different among themselves and among 
soil texture classifications. Twarakavi et al. (2010) considered free drainage only (no 

Figure 1. USDA soil texture triangle 
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evapotranspiration) when determining the soil hydraulic parameters for clustering.  Bormann (2010) 
used an annual water balance approach to classification.  These studies provide guidance for 
developing and applying a classification approach to further take into account variations and uncertainty 
related to soil texture variation in yield and soil moisture when plants are present. 
 
With this is mind, it is not the goal of this research to replace the texture triangle.  Rather, the main 
focus of this research is to address some of the shortcomings that physically based soil texture 
approaches, in particular the USDA texture triangle, share by proposing a simulation methodology 
useful for creating classifications based on soil moisture and crop growth to address uncertainty in yield 
forecasting.  The specific objectives were to a) couple a dynamic crop model with a water flow model 
b) create classifications based on biophysical variables using k-means clustering. 
 
 

The research focused on the USDA texture triangle to demonstrate hydrologic classification and 
comparison techniques. This approach implemented simulation modeling to explore hydraulic 
responses as it is neither cost-effective nor timely to retrieve actual samples for every soil on the USDA 
soil texture triangle.  To cover the entire range of soils, the USDA soil triangle was broken down into 
2% increments, resulting in 1326 unique soils.  These 1326 soils represented virtual columns of soil 
whose hydrological response was simulated using HYDRUS-1D and coupled crop model software 
(Simunek, Van Genuchten, and Sejna 2005).  Cluster analysis was performed on various biophysical 
variables over a growing season with related forcing data. 
 
 

 
HYDRUS-1D is a vertical hydrologic simulation model (Simunek, Van Genuchten, and Sejna 2005).  
The solution to soil water redistribution is found through numerical iteration and convergence of 
Richards' equation (Richards, 1931).  HYDRUS-1D considers time varying atmospheric and plant 
growth conditions.  However, the plant growth values must be provided and are not dependent 
upon changes within the model parameters. This means that soil hydraulic parameters as well as 
meteorological forcing data must match the conditions under which the plant growth data was collected.  
To achieve the objectives of this research, a dynamic crop growth model was written in Fortran and 
compiled with the original HYDRUS-1D code to allow for dynamic plant growth simulations.  The crop 
growth model was coupled to HYDRUS through the calculation of water fluxes at the surface and in the 
root zone.     
 
The crop growth model relies on heat units to mark key crop growth stages.  Once emergence has 
occurred biomass accumulation is based on a daily potential.  Daily maximum potential biomass growth 
is set by a fraction of photosynthetically active radiation (PAR).  PAR is a function of incoming radiation 
and leaf area index (LAI). Leaf area index (LAI) and ground cover fraction are exponential factors of 
biomass.  Actual daily biomass growth is reduced from potential growth based on plant stress factors. 
Plant water stress is a function of an evapotranspiration ratio (actual over potential) and temperature 
stress related to average daily temperature.  Crop height is an exponential function of biomass.  
Penman-Monteith evapotranspiration is related to the crop height.  Ground cover is used to partition 
evapotranspiration into soil evaporation and plant transpiration and to determine plant albedo.  Rooting 
depth is calculated using a logistic growth function based on the length of the growing season and was 
confirmed using data from destructive field samples.   Yield is a fraction of end of the season biomass.  
LAI can be used to calculate interception however was ignored here because flood irrigation was used 
and the rainfall was minimal in the arid environment where data was collected for model calibration.  

Columns representing vertical homogeneous soil profiles were created for each unique soil. The 
columns had a length of 200 cm and were separated into 1 cm layers.  The boundary condition at the 
top of the column was an atmospheric boundary with an allowable ponding surface layer. At the bottom 
the boundary condition was assumed to be free-drainage. Initially the profile was set to field collected 
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soil moisture values. For each one of the 1326 soils, van Genuchten-Mualem hydraulic soil parameters 
were found using the ROSETTA software (Schaap, Leij, and Vangenuchten 2001). 
 
   

Minimum HYDRUS-1D inputs included soil hydraulic parameters and initial profile conditions. Time-
varying boundary conditions for surface fluxes (i.e. precipitation and evaporation) can be added if 
desired.  When crops are included in simulations extra inputs are required that include the following 
meteorological conditions: radiation, daily maximum temperature, daily minimum temperature, relative 
humidity, wind speed.  Also considered for crops are root water uptake parameters.  The crop growth 
model that was added also includes several parameters related to plant phenology and growth factors: 
harvest index, biomass conversion factor, heat units at emergence, heat units at maturity, fraction of 
season when leaf senescence and LAI decline begins, maximum LAI, and maximum crop height.  The 
complete set of crop model parameters were calibrated against experimentally collected data.  
 
The experimental data used to run simulations and calibrate the complete set of crop model parameters 
was collected by Hunsaker  et  al. (2007a, 2007b).  The data was collected during two irrigated wheat 
experiments conducted in the winters of 2003-2004 and 2004-2005 in Maricopa, Arizona.  The dataset 
contains soil moisture measurements and soil texture information throughout the soil profile, grain yield 
and canopy weight measurements.  The experiments consisted of thirty-two 48 m2 sized plots each 
representing one of 12 different treatments.  Data for this study was taken from a single plot for the 
2003-2004 season representing typical management practices for irrigated winter wheat.  Irrigation was 
scheduled for the plots on the day after the daily soil water depletion of the effective root zone was 
greater than 45% of the available water capacity.  To account for irrigation inefficiencies, 110% of the 
estimated depth of soil water depletion was provided. This  irrigation   procedure  was  expected  to  
minimize  water  stress  (Hunsaker et al. 2007b).  Meteorological data for the duration of the experiment 
was provided by a University of Arizona, AZMET weather station, approximately 200 m away from the 
field site.  Complete senescence for each year occurred on 14 May, DOY 135.  On 26 May 2004 the 
wheat was harvested and grain yields were collected in samples from the south half of each plot.  
 
 

The k-means clustering algorithm is a centroid based approach using cluster distortion to decide when 
sufficient progress has been made but also can be restricted to a certain number of iterations (Hartigan 
and Wong 1979). Convergence of the algorithm is based on the change in distance of the mean cluster 
distance metric. This distance metric is often the squared Euclidean distance or squared normal 
distance between an observation and the centroid. Initially a set of cluster centers are chosen within 
the observations space based on a specified number of clusters.  Observations are added to a cluster 
that yields the smallest within cluster sum of square distances with respect its center.  This process 
results in the observations being assigned to the cluster with the closest center. The mean squared 
Euclidean distance between all the points is calculated, which is the centroid of all the points, and 
assigned as the new center location.  The observations are then re-assigned to clusters based on the 
distance to the new centers.  This process repeats until a given threshold of distortion or sum of squared 
distances for the clusters has been reached and the center and centroid are sufficiently close (or all 
iterations have been completed).  The k-means algorithm is sensitive to the initial guess and the shape 
of the data. The algorithm will find the local optimum in terms of sum of squares but does not guarantee 
that the global optimum is found.   
 
Each cluster analysis considered only one type of data.  This gave the resulting classes within a 
classification a physical meaning that could be compared against one another using statistical metrics.  
It also allowed values to be assigned to each class for example representing the centroid of the cluster.  
This is aids in the arrangement or ranking of classes based on a calculated value coming from the 
simulations within each class.  Each classification or clustering analysis considered only 12 clusters, 
consistent with the USDA texture classification. Only the biophysical variables of yield, crop height and 
leaf area index were considered in the analysis.  The average of the entire time-series of values were 
considered for variables that changed throughout the season. 
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It should be noted that the k-means algorithm calculates distances in regards to the values of the 
observations provided.  More specifically the Euclidean distance used to define the cluster membership 
is calculated in observation space and not using distances between soils as measured on the USDA 
texture triangle.  That is to say that the plotting of the classification on the textural triangle is simply 
done to visualize the results and that the relative position of the clusters or individual soils to one another 
on the triangle in no way indicate how closely related they are in terms of the clustering that was 
performed.   
 

The simulation was performed on a daily time-step using the observed meteorological data and 
experimental irrigation schedule.  The entire simulation period was 208 days. The simulation began on 
4 December 2003. This was the date of planting and heat units began to accumulate from this date 
forward.  Each simulation was run with the same set of parameters and input data except for the soil 
hydraulic parameters which were varied based on the set of 1326 soils.  Output of the HYDRUS model 
included soil moisture, meteorological information, plant growth and biomass data.  The simulations 
were called in batch using Python scripts. Post-processing of all the data was also completed using 
Python scripts. 
 
The simulations were driven by data from meteorological data collected during a single winter wheat 
season in Maricopa, AZ. Biophysical data from the HYDRUS coupled with the crop model simulations 
were used to create the classifications using the k-means clustering algorithm.  The classifications were 
made using observations of a single variable type. Each classification assigned every one of the 1326 
locations on the USDA texture triangle, representing a specific soil, to one of 12 classes.  
 
    

Figure 2 shows the classification of yield plotted onto the USDA soil texture triangle. The color bar to 
the right of the figure indicates the value of the centroid associated with each class.  Changing from red 
to white to blue as the centroid value of yield that represents the class increases.  
 
In Figure 2 it can be seen that the lower portion of the triangle aligns with the percentage of sand. 
Whereas the top half follows the silt gradient. Yield are lowest where the sand large percentages are 
above 90% and below 10% with high percentage (greater than 50%) silt.  Sand is an important factor 
contributing to increased porosity and the ability of water to move though the soil.  However, having a 
high percentage of sand results in water quickly draining leaving drier soils and the crop little water 
available.  The opposite also seems to be a factor that low sand percentages result in limited water 

Figure 2. Classification of yield Figure 3. Classification of average Leaf Area 
Index throughout the season 
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holding capacity and decreased water available to the plant, especially when there is small percentage 
of clay.  This may explain why the yields in these areas are greatly decreased.  
 
The classification of leaf area index (LAI) can be seen in Figure 3.  While the classes for this analysis 
are less uniform than those present in the yield classification, patterns are still visible. Again there is 
banding of the classes in the sands as well as in the upper corner with high clay contents and low sand 
and silt contents. A new pattern is present where silt content is greater than 50% and that is circular 
shape that appears in the silt loam and silty clay classes as designated by the USDA soil textures 
(outlined in black).  The classes near the upper range and lower range of the LAI scale are well grouped 
while those near the center of the color scale are scattered. This could be a result of the small range 
for these 6 classes as it only varies over 4 hundreths. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There are many similarities between the classification of LAI in Figure 3 and the classification of crop 
height in Figure 4. The banding and circular grouping patterns occur in the similar areas on the triangle 
although the exact ranking of the classes does change.  However, the values are still lower for the soils 
with high sand content.  The reason that LAI and crop height are classified so similarly is the fact that 
they are both based upon biomass. 
 
Yield is directly related to biomass unlike crop height and LAI which require extra calculations which 
may remove some of the variation of biomass. Although the variation seems dampened the banding 
patterns in each classification are still visible.  It is also apparent that there is something unique about 
the soils in the silt soils of the triangle with regards to what is happening with biomass production.  
 
An important result of the classifications is that the high and low ranked classes are often contiguous.  
Near the middle of the yield classification the classes fall along a gradient, ranging around 400 kg/ha in 
value, and are ordered with the soils with respect to their yield.  The ordered nature of this gradient 
means that there is agreement or continuity between clusters or across these soils with respect to yield 
for example.  However, in the soils with high silt contents we have a pattern that alternates from lower 
yields to higher yields back down to low yields as the sand content decreases. The changes between 
the classes ranges by as much as 2000 kg/ha. The large difference between the classes indicates that 
soils positioned on a line across the classes can have drastically different yields.   
 
This is significant because when modelling crop growth a soil texture is specified for the the simulation.  
Often the impact of selecting or committing to a soil type is not fully considered.  Although, it is apparent 
that by selecting a soil that falls closer to one class within the yield classification can result in a yield 
that may or may not represent the actual expected yield.  This also occurs since soils are chosen such 
that they may represent some spatial averaging of a larger area.  The manner in which representative 
soils are chosen will determine how well a modelled yield will agree with actual yield. 
 

Figure 4. Classification of average crop height 
throughout the season 
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It is frequently common in practice to measure leaf area index or crop height and relate these 
observations to yield. The assumption is that these measurement correlate to plant health and biomass 
production may be valid in some circumstances.  These plots indicate that leaf area index and crop 
height are not a strong indicator of biomass or yield. Even though the general trends and patterns for 
yield and LAI may agree, that is yield increases with LAI, the scattered nature of the LAI classes and 
limited range of variation make it difficult to draw a conclusive relationship.   
 

The results obtained by simulating 1326 virtual soil columns and performing clustering based 
biophysical variables show that there is value in considering the relationship between plant growth and 
soil texture.  These responses are useful for understanding when uncertainty in soil texture is important 
when attempting to make yield forecasts.  Spatial variation of soil texture is known to heterogeneous 
and may, over large areas, fall into different USDA soil classes.  The soil texture is important for 
hydrological behaviour and influences to a certain extent plant growth and ultimately yield.  Yield even 
within soil classes can vary drastically. Choosing a single soil class to simulate crop production may 
result in over or under estimation of actual yield depending on where the soils actually fit onto the USDA 
soil texture triangle.  General patterns in biomass growth can be observable using other biophysical 
quantities such as crop height and LAI.  This is rather difficult given the small range over which they 
may vary and disorder of the classifications made using them. 
 
Understanding the response of plant growth as a result of variations in soil texture is challenging.  It is 
likely that the main factors driving plant growth vary according to different conditions as well as soil 
textures. Further investigation into variations of soil texture will require consideration of other 
hydrological and biophysical aspects of the model.  It will be necessary to implement more thorough 
statistical tools to define relationships among and between classifications. 
 
Future research will focus on turning this general approach into a more formal methodology with 
quantitative analysis tools and measures. Exploring other components of plant growth using this 
methodology for producing classifications will hopefully lead to alternative and useful applications of the 
USDA soil texture.   
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