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Chapter 1

INTRODUCTION

Radar observations of the ocean surface are becoming increasingly im-
portant. Common applications are wind retrieval and global weather forecasting
and characterization. Because of the common use of ocean radar measurements, it
is important to understand the scattering characteristics of rough, ocean surfaces.
In particular, it is important to understand the sensitivity of the backscatter to
both radar parameters and surface parameters.

At near-normal incidence angles, it has been assumed that the radar
backscatter exhibits little or no azimuth dependence (Colton, 1989). However,
recent data taken by the BYU YSCAT radar system suggests that this is not the
case. At an incidence angle of 10°, the YSCAT radar data shows from a fraction
of a decibel to up to 10 decibels of azimuth modulation, depending on the surface
conditions. In this thesis, a physical optics approach is used with a two-dimensional
surface model to derive the electromagnetic backscatter from the ocean surface.
If the waves on the ocean surface are directed, azimuth modulation is predicted
at near-normal incidence angles. The effects of surface and radar parameters on
the azimuth modulation are studied, and the results are compared to data taken
by the YSCAT radar system. It is shown that the theory correctly predicts of the
shape of the curve when the normalized radar cross-section is plotted as a function
of azimuth angle. The theory also predicts the correct trend of the modulation
magnitude as a function the surface roughness. However, the simplifications in the
model limit its prediction of the frequency dependence of the modulation. Relaxing

some of the assumptions of the model is likely to correct this problem.

1.1 Overview

The first step in predicting the azimuth modulation is to characterize
the ocean surface. The surface is modeled as a two-dimensional stochastic process

which is assumed to have Gaussian statistics. The process is assumed zero-mean



and wide-sense stationary. The power spectral density is modeled as a function of
wavenumber and wave direction. The wavenumber dependence is described by &,”
for k,, larger than the low wavenumber cut-off, ko, and the directional dependence
is described by a Gaussian function whose width is varied with the directional
parameter, . The correlation coefficient, which is needed to derive the radar
backscatter, is found by evaluating the inverse Fourier transform of the power
spectral density.

After characterizing the ocean surface, the backscatter is found using
Green’s theorem and the tangent plane approximation. The result is an integral
expression that is referred to as the backscatter integral. Asymptotic approxima-
tion and numerical integration are used to evaluate the integral, which is the basis
for predicting the azimuth modulation.

After finding the expected backscatter, the physical reasons for azimuth
modulation are discussed. A directed surface leads to azimuth modulation, and
the amount of modulation depends on the orientation of surface facets in differ-
ent azimuth directions. For practical ocean surfaces, the azimuth modulation is
predicted to decrease is the surface becomes increasingly rough. In general, the
modulation also depends on the surface parameters and the radar parameters.
The surface parameters effect the orientation of the surface facets, and the radar
parameters effect which surface facets produce backscatter. Thus, any of these
parameters can effect the azimuth modulation.

Once the theory has been established, it is compared to radar data.
First, the YSCAT94 radar experiment is described. Methods of data collection are
discussed, and known data errors are corrected. The data is then compared to the
theory. The theory predicts a curve similar to a cosine wave when the normalized
radar cross-section is plotted as a function of azimuth angle. As mentioned above,
it is shown that this prediction is the correct shape of the modulation curve. The
radar data also exhibits decreasing azimuth modulation as the surface becomes
increasingly rough, as predicted by the theory. However, the theory predicts that
the modulation will remain constant as the radar frequency is varied. In the data,
the modulation is increasing as the radar frequency is increased. The prediction of

this frequency trend has been limited by assumptions in the surface model. The




correct frequency trend is likely to be predicted if the assumptions on the power

spectrum of the surface are relaxed.

1.2 Contributions

While azimuth modulation has been observed incidence angles larger
than 20°, little understanding has been developed for near normal incidence angles
(< 20°). In fact, many have assumed that no modulation is present at near-normal
incidence. This work shows that modulation is present at near-normal incidence
angles. Further, it develops a theory which predicts the shape of the modulation
curve and the dependence of the modulation on surface roughness. It is a step

toward improved understanding of azimuth modulation of the radar backscatter.
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Chapter 2

THEORETICAL SCATTERING AT NEAR-NORMAL
INCIDENCE

This chapter considers the derivation of an expression for the electro-
magnetic backscatter from a rough, ocean surface. In order to derive the backscat-
ter, a descriptive model of the surface is first needed. Due to the complexity of the
ocean surface, the most useful models are statistical; thus, the surface is modeled
as a stochastic process. It is assumed that the statistics of the surface are Gaussian
and wide-sense stationary over distances on the order of the size of a typical radar
footprint. Under the stated assumptions, knowledge of the mean, variance, and
correlation of the stochastic process are all that are necessary to characterize the
surface. In particular, values of the correlation coefficient are needed to find the
backscatter. Thus, much of the section on the surface is devoted to describing its
correlation.

Once the surface has been described, the backscatter can be found using
Physical Optics and Green’s theorem. The tangent plane approximation is used in
connection with the surface model to find the source current term for Green’s theo-
rem. The result of the derivation is an integral expression for the normalized radar
cross section. This integral is referred to as the backscatter integral. Methods of
evaluating or approximating the backscatter integral include numerical integration

and asymptotic evaluation.

2.1 The Surface Model

Before attempting to describe the ocean surface, it is first necessary to
define a coordinate system as a frame of reference. The coordinate system is shown
in Figure 2.1. Figure 2.1a shows that the radar antenna is located in the x-z plane
and that ; represents the radar incidence angle. Similarly, Figure 2.1b shows that
the coordinate origin is the center of radar footprint, and the mean of the surface

height is the  — y plane. The radar footprint is assumed to be L x L in size, and
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(a) Radar geometry (z — z plane). (b) Surface geometry (z — y plane).

Figure 2.1: Geometry of the system. The radar antenna is located in the z — z
plane, and the mean of the surface height is defined to be the  — y plane.

84, is the relative azimuth angle, the angle between the z-axis and the dominant
wave direction on the surface. (Recall that the z-axis is defined by the location of
the radar antenna.) For reference, all of the symbols used in the surface description

are summarized in Table 2.1.

2.1.1 Qualitative surface description

The development of a precise description of the ocean surface is a very
complex problem. As previously mentioned, the most useful approach is to model
the ocean surface as a two-dimensional stochastic process. Thus the height of
the surface at each point is represented by a random variable, n(z,y). It is as-
sumed that the statistics of the surface are Gaussian. Under the assumption that
the ocean statistics are Gaussian, knowledge of the surface mean, variance, and
correlation coefficient are necessary to characterize the surface.

It is assumed that the surface is wide sense stationary over distances on
the order of the size of the radar footprint. Under this assumption, the surface

mean and variance are constants, and the correlation coefficient is a function only
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Symbol | Explanation
(z,y,z) | Rectangular coordinates of a point on the surface
(p, ¢,2) | Cylindrical coordinates of a point on the surface
n(z',y") | Height of the ocean surface at point (', y’)
L Dimension of radar footprint
o Standard deviation of the ocean surface height
k., Wave number on the ocean surface
p Power parameter of the surface
ko Spectral peak on the surface
0 Wave direction on the ocean surface |
04, Angle between the x-axis and the dominant wave
direction (see Figure 2.1)
P(k,,,0) | Power spectral density of the ocean surface height
process
W(0) [ Function describing the dependence of the power spectral
density on wave direction
So Normalization constant in the power spectral density
function
Cyo(z,y) | Correlation Coeflicient of the ocean surface (distances
in rectangular coordinates)
C,(p, #) | Correlation Coeflicient of the ocean surface
(distances in polar [cylindrical] coordinates)
v Euler-Mascheroni constant (0.577215664901 - - -)
Table 2.1: Definition of symbols used in the surface model dérivation



of the x-distance and the y-distance between two surface points. The coordinate
system (see Figure 2.1) is defined such that the surface mean is zero. The surface
variance is represented by o%, and the surface correlation coefficient is denoted

C,(z,y) in rectangular coordinates or C,(p, ¢) in polar coordinates.

2.1.2 The correlation coefficient

To find the surface correlation coefficient, first consider the power spec-
tral density of the waves on the surface. The power spectral density is a function of
the wave number k,, and the wave direction 6, and it is denoted P(k,, ). The cor-
relation coefficient and the power spectral density form a Fourier transform pair.
The dependence of the power spectral density on the wave number is assumed
to follow the model P(k,) = k_Pu(k, — ko) where u(-) represents the unit step
function (Phillips, 1966, pp. 111-113, Donelan and Pierson, 1987). This function
is linear in log-log space. For two dimensional surfaces, the power parameter (p),
has been empirically shown to lie in the range 3 < p < 5 (Banner et al., 1989,
Jahne and Riemer, 1990, Shemdin et al., 1988). This model for the power spectral
density has been simplified from that plotted by Phillips in that a sharp cut-off
is assumed at k = k,, rather than a function that tapers to zero (see Figure 2.2).
This sharp cut-off causes the correlation coefficient (the inverse Fourier transform
of the power spectral density) to oscillate with a behavior similar to %—’5 This
infinite oscillation is tolerable, however, because the correlation is of interest only
for points a small distance apart.

The k2P model for the power spectral density is valid only for some
segment of wave numbers in the spectrum. The low wave number cut-off, ko, is
defined to be the peak of the spectrum in the region of interest. For the purposes
of this derivation, the region of interest corresponds to the part of the spectrum
that is known to dominate the backscatter. Typically, this region contains those
waves whose height is on the order of one electromagnetic wavelength. An upper
wave number cut-off for the region of interest is not needed for the model because

the physical optics approach contains an implicit surface filtering function (Arnold,
1992).

The power spectral density dependence on the wave direction is not
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Figure 2.2: Dependence of the power spectral density on wave number. Figure a
is a sketch similar to plots by Phillps (Phillips, 1966, p. 113). Figure b shows the
approximation using a sharp cut-off.

well understood, although it is reasonable to believe that waves do not propagate
equally in all directions. In fact, ocean waves are wind driven, and most of the
wave energy propagates in directions close to that of the wind. A function of the

form

6 — oAz
5 )
has been used to describe the directional dependence of the power spectral density

h(6) = cos?( (2.1)

(Donelan et al., 1983). Plots of (8) (normalized by its area) for various values of
q are shown in Figure 2.3a. While h(f) is consistent with the expected directional
properties of wind driven waves, it is difficult to work with under integration.
Thus, the directional dependence of the power spectrum is assumed to be of the

form
0 — eAz
bo

2
W(B) = exp |:_3 ( ) ] ’ aAz - g S 6 S aAz + ‘g’ (22)

where o is a parameter describing the width of the directivity. Plots of W(9)
(normalized by its area) for various values of f are shown in Figure 2.3b. The
function W () is chosen instead of A(8) because the two functions differ little in
shape and in value, and W(8) is easier to work with under integration. Because

of the assumption that the statistics of the surface are Gaussian, there is a 180°
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Figure 2.3: Functions describing the directionality of the power spectral density.
Figure a shows k() (normalized for by its area) for ¢ = 85, 21, 9, 5, 3, and 2.
Figure b shows W(8) (normalized by its area) for 6 = 30°, 60°, 90°, 120°, 150°,
and 180°. For comparison, W(8) for 6, = 90° is shown (dotted line) on the h(0)
plot, and h(6) for ¢ = 9 is shown (dotted line) on the W(f) plot. In this thesis,
W (0) is used to describe the surface directionality.

ambiguity in the direction of wave propagation. Hence, if § is outside of the range
04, — % < 0 < 04, + 5, the value of W(0) is found by symmetry.

As mentioned, the directivity of the surface is described by 6, in W(#).
If 6, is very small, the waves are almost unidirectional, and the surface is highly
directed. For 6, &~ 7, the waves are traveling in all directions, and the surface is
nearly isotropic. W(#) has been defined such that its half-power points are located
at 0 =04, + 229-.

Putting the wavenumber and directionality pieces together, the com-

plete power spectral density is given by

0 — 0Az
bo

T

2

2
P(ky,8) = Sok;?u(k, — ko) exp |:—3 ( ) } , 04z — % <O <04, += (23)
where S, is a normalization constant to be evaluated below.
The correlation coefficient of the surface can now be found by evaluating
the inverse Fourier transform of Equation 2.3. To facilitate the derivation, the

correlation coefficient is represented as a function of polar coordinates (p and ¢)

9



instead of rectangular coordinates (z and y). After simplifying the Fourier integral

using symmetry arguments, the correlation coefficient is given by

+3 0—0 z 2 oo _
Co(p, ¢) = So /9:_- df exp [ 3 ( e 4 ) ] A dky, kPt cos(kyp| cos(8 — 8)]).
(2.4)

So, the normalization constant, can be determined by setting p = 0, evaluating
the integral, and noting that C,(0,0) = 1. Thus,

— p—2
SO — (p 2)k0

(2.5)
Zhgerf(1LZ).

Unfortunately, the integral for Cp(p, ¢) has no closed form result for
general p and ¢. It is, however, possible to find a series solution for the inner (dk,,
integral) when p is not an integer. The details of the series derivation are presented

in Appendix A. Applying the series result yields

Co(p ) =1 + ,,0(—17;(%;5 cos [E(p - 2)] (2 — p)(kop)**L(p — 2,9)
2 Vp€r
00 (kop)2r
— "Ooerf( 31r 1‘2_:1 (27‘)' 2 P+27‘) 1(27'a ¢) (2-6)
where \
0az+% — 04,
L(v,¢) = /0 A,-; df | cos(8 — ¢)|” exp [-3 (9 ef" ) } . (2.7)

Upon inspection, it can be seen that Equation 2.6 is singular for integer p. Since
3 < p < 5, p=4is the only integer value of concern. In Appendix A, an alternate

series is derived for the case p = 4, resulting in

(kop)? 3,  (kop)?

Ca(p,d) =1 + L(p:¢) + (v = 3) hL(2,9)

—g—aoerf(é%) 2 ferf(Lr)
= 1) (kop)
- L(2r, 2.8
”Goerf g 1) 29

where v is the Euler-Mascheroni constant, I;(v, ¢) is given by Equation 2.7, and
L(p, $) is given by

fazt+3 \ 0—0,\°
L(p, ) = /oA,-E df cos?*(8 — @) In(kop| cos[d — ¢]|) exp —3( e ) . (2.9)

2
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Plots of the correlation coefficient are shown in Figures 2.4 and 2.5. Figure 2.4 also
shows the effect of the various surface parameters on the correlation coefficient.
Changing p causes the function to fall off faster or slower near the origin; changing
ko stretches or shrinks the function with respect to the « and y axes, and changing
6, makes the function appear more rounded or more oblong. Figure 2.5 shows that
changing the radar azimuth angle (64;) rotates the function about the z-axis.
The mean, variance, and correlation coefficient of the surface have now
been found. Because the statistics of the surface are assumed to be Gaussian and
wide-sense stationary over the area of the radar footprint, the surface has been
completely characterized. In summary, the ocean surface is modeled as a two-
dimensional Gaussian random process. The mean of the process is zero, and the
variance is o2. The correlation coefficient is found by first considering the power
spectral density, which is given by Equation 2.3 where 3 < p < 5. If p # 4, the
correlation coefficient is then given by Equation 2.6. When p = 4, the correlation

coefficient is given by Equation 2.8.

2.2 Derivation of the Normalized Radar Cross-Section

After developing a description of the ocean surface, that description can
be used to derive the expected radar backscatter from the surface. The geometry of
the system is the same as that used to derive the surface description and is shown
in Figure 2.1. It is assumed that the ocean surface is in the far field of the radar
antenna and that all electromagnetic fields are time harmonic. For this derivation,
it is also assumed that the radar is transmitting a vertically polarized electric
field (v-pol). A parallel derivation is given in Appendix B assuming a horizontally
polarized electric field. Because the tangent plane approximation is used in the
derivation, any backscatter dependence on the polarization is lost. Hence, both
derivations result in an identical expression for the normalized radar cross section
(0°).

The development is an extension of that given by Johnson (Johnson,
1994). Johnson considered only normal incidence; here, small off-normal incident
angles are considered. Because shadowing and multiple scattering are ignored, the

incidence angle must be limited to less than approximately 20°.

11
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Figure 2.4: Effects of the surface parameters on the correlation coefficient. Unless
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function to fall off faster or slower near the origin; changing ko stretches or shrinks
the function with respect to the r and y axes, and changing 6, makes the function
appear more rounded or more oblong.
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At microwave frequencies, the ocean is modeled as a nearly perfect con-
ductor. When microwave radiation strikes the surface, a surface current is induced.
This surface current then generates a reflected wave according to Green’s theorem.
Thus, the approach to derive the backscatter is to find the current induced on the
surface by the incident (transmitted) field, and then apply Green’s theorem. The
induced current becomes the source term in Green’s theorem.

Green’s theorem states that
By(7) = iwpo /V V') T (2.10)

where —G_(F ,7") is the dyadic Green’s function and J(7') is the source current den-
sity (Kong, 1990m p. 230). The symbols used in the backscatter derivation are
summarized in Table 2.2 to avoid any ambiguity.

In three dimensions, the dyadic Green’s function is given by

=/ = - = 1 - -

G(F, ) = (I + 5 v V)9(F,7) (2.11)
where g(7,7") is the scalar Green’s function. The scalar Green’s function is in turn
given by

. ciklF=7] o1
g(r,r ) = m ( . )

The Green’s function can be simplified based on the geometry and con-

ditions of the problem. Recall that the ocean surface is in the far field of the radar
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Explanation

2 Coordinates of observation point (radar antenna)
i Coordinates of source point (on surface)
7, 0, # | Unit vectors in spherical coordinate system
Z, 9, £ | Unit vectors in rectangular coordinate system
(z,y,2) | Rectangular coordinates of an observation point
(radar antenna)
(z',y',2') | Rectangular coordinates of a point in the source
region (on the surface)
n Unit vector normal to the surface
J(7') | Current density in source region
Jo(7') | Current density restricted to the surface at point
H;(7") | Incident magnetic field at point 7’
:(7") | Incident electric field at point 7
E, Magnitude of incident electric field in the vicinity
of the surface
|4 Volume of source region
E,(7) | Scattered electric field at point 7
o° Normalized radar cross section
w Frequency of radar signal
k Electromagnetic wave number of radar signal
f Frequency of radar signal
o Permeability of space
Mo Impedance of space
G(7,7) | Dyadic Green’s function
g(7,7) | Scalar Green’s function
1 Unit dyad
\VAV/ 3-dimensional dyadic operator

Table 2.2: Definition of symbols used in the backscatter derivation
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antenna and that the electromagnetic fields are time harmonic. Based on these

assumption, the follow approximations are valid:

F=7| = r—¢".¢
G 7) = (T-#) et (2.13)
= rr 47(‘7‘6 . .

where 77 represents an outer product.
Because the ocean surface is nearly a perfect conductor at microwave

frequencies, the source current density is restricted to the surface. Hence,

J(7) = Ji(7)8[2' = n(<',y")]- (2.14)

where n(z’,y’) is the height of the surface at point (z’,y’). The current on the
surface can be found by boundary conditions:
J(F") = 27 x H(7) | (2.15)

Z'=n(z'y').

where ﬁ,-(f" ) is the incident magnetic field and 7 is a unit vector normal to the

surface. 7 is given by

5 ~

[1+(a) ( )]

Equation 2.15 models the surface current at each point as the current that would

A

Ié"

]

°’I§°
D

y

n=

(2.16)

°’I§’

be present on the plane tangent to the surface at that point. This tangent plane
approximation requires the radius of curvature of the surface to be large compared
to an electromagnetic wavelength. This assumption holds for most surfaces of
interest. As will be seen (Appendix B), the tangent plane approximation also
does not account for any backscatter difference between horizontal and vertical
polarizations.

Since it is assumed that the radar source is vertically polarized, the

incident magnetic field is
ﬁi(F,) — g&eﬂz-i" - yEO ik(z’ sin6; —2' cose.')- (217)
To Mo

where Ej is a constant and a function of the transmitted power.
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Substituting Equations 2.16 and 2.17 into Equation 2.15 yields the fol-

lowing expression for the surface current,

X b 2E. tk(zPrimesin 6; — 2’ cos 6;)
R Syl (219)

wli+ (&) + ()]

This expression can then be substituted into Equation 2.10 to find an expression
for the backscattered electric field.

-3 —lkEo ikr .Iil' / % ! e ! ! 1.1
E(r) = ———e /_%dy/_%dﬂv/_oodztﬂz—ﬂ(xy)]'
[:i‘(cos2 0; + 122 5in 26;) + 2(2% sin? 6; + 1 sin 20,-)]

1+ (28)" + ()]

ei2k(z"sin 6;—2z' cos 6;)

(2.19)

In Equation 2.19, the delta function integration can be performed resulting in

(F') zkEo z,cr/—— /__dx

27r

[a?:(cos2 0; + 1o sin26;) + 2

S T sin?0; + = sin 20,.)] :

(55 tT o

(8 (2) +(2) (3
1

1+ @)+ @7

)2] 2
ei2k(z’ sin 8; —n(z',y’) cos 6;)

(2.20)

On practical ocean surfaces, the slopes are much less than one. Hence, Equa-
2 2

tion 2.20 can be simplified by neglecting ( 8:1:’) (%’,—) . Further, ;g - sin 20; and

# sin? §; are negligible. Applying these approximations results in

L

L
(Z cosb; + zsm@)/ldy [_1 da' ¢2k(@'sinbi—n(z'y’) cosbi)
2 2
(2.21)

Because the backscattered power is proportional to |E3(F)|2, Equation 2.21 is ex-

cos ; Fy gikr

B="2%

2rr

panded to give an expression for |E,(7)|?,

Lo k? cos? 0,E% % 5 %
|Es(7‘)|2=—W“g/_% dy' /__d”” /Ldy/__g.d“’

12k[(:c —z) sin i +(n(z,y)—n(z',y')) ‘3059"]_ (222)
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This expression can be used to to compute the normalized radar cross

. drr? [ B, (PP
=5 < m ) (2.23)

The angle brackets in Equation 2.23 denote statistical expectation. Substituting

section, given by

Equation 2.22 into Equation 2.23 gives

L

k*cos?0; (% ,, [% % e eind: s i (et o ‘
o = _____/ dy / d:v'/ dy/ dz esz(:c z)sm@.(eﬂk(n(z,y) n(z',y ))cosO.).
L2 J_L -L L A
2 2 2 2
(2.24)
The quantity (e2k((@¥)-n(='w')coséiy can be evaluated in terms of the

characteristic function of the surface (Gray and Davisson, 1986, p. 257, Papoulis,
1991, p. 159); thus,

(ei2k(n(z,y)—n(:c',y’)) cos 6; ) — 6—40'21;:2 cos? 8;(1~Cp(z—2'y—v')) (225)

Substituting Equation 2.25 into Equation 2.24 and simplifying with the substitu-

tion o« =z — z',v = y — ¢’ gives a form of the backscatter integral,

k%cos?§; (L L la| Iyl oo sind:  —402k? cos? b:
o__ 2 P d / d Al | _ —12kasind; _—40°k* cos 9.(1—0,,(0:,'1)).
o - [_L «a . 0 (1 L) (1 A e e
(2.26)

This final form of the backscatter integral can be non-dimensionalized by substi-

tuting u = § and v = 7.

2 c0c2 .
o = (kL) cos 91 /1 du /1 dv(1_|u|)(1_I,Ul)e—iZ(ch)u,sinO.~e—‘t(ak)2 cos? 0;(1—Cp(uL,uL))-
s -1 -1
(2.27)
This integral is used to evaluated the backscatter, which is proportional to the

normalized radar cross section.

2.3 Evaluation of the Backscatter Integral

Because of the complexity of the integrand, the backscatter integral
(Equatioﬂ 2.27) cannot be evaluated in closed form. In general, it must be evalu-
ated numerically. Numerical evaluation is accomplished using a modified Romberg
integration routine. In addition to numerical integration, when the power parame-

ter of the surface (p) is not equal to 4 and the roughness of the surface (ok) is large,
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the integral can be approximated asymptotically. Because the dominant term in
the correlation coefficient is very complicated when p = 4, asymptotic evaluation
as not attempted for this case. The asymptotic approximation is most useful when
p is not close to 4. The closer p is to 4, the slower the asymptotic approximation
converges to the true value. When these conditions for asymptotic approximation

are not met, numerical integration must be employed to evaluate the backscatter

integral.

2.3.1 Numerical evaluation

When numerically integrating a complicated function, such as the back-
scatter integral (Equation 2.27), care must be taken to ensure correct results. If
the integration step size is too large, for example, the numerical result may not
converge, or it may converge to an incorrect value. Numerically integrating the
backscatter integral is particularly difficult because the integrand contains an os-
cillatory term. Due to this oscillatory term, extra care must be taken to avoid
evaluating the function only at maxima (or minima) of the oscillation. Because
of the oscillatory term in the integrand, a generalized Romberg numerical integra-
tion routine is used to evaluate the backscatter integral. The generalized Romberg
routine avoids evaluating the function only at maxima or minima by varying the
step size between points where the integrand is evaluated. In addition, since the
period of oscillation in the backscatter integrand is known, (the period is given
by 2(kL)sin8;), it is insured that step size is sufficiently small to avoid prob-
lems. In addition to varying the step size, the generalized Romberg routine also
uses extrapolation to find the value of the integral with maximum computational
efficiency.

To further insure that the numerical integration is producing correct
values, it is useful to check some limiting cases. Figures 2.7 and 2.8 in Section
2.3.2 show that when the surface roughness is large, the asymptotic approximations
converge to the corresponding numerically integrated curves. In addition, when the
surface roughness is very small, the ¢~ 4{ck)? cos? 8:(1~Cp(uL.vL)) term in the backscatter

integral can be approximated by the first term of its Taylor series. With this
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Figure 2.6: Results of integrating the backscatter integral with a modified Romberg
routine. The plots were generated with p = 4.0, ko = 1.5m™', 6 = 90°, 6; = 10°,
and f = 10GHz (k = 209m™!). Up/downwind corresponds to 84, = 0°, and
crosswind corresponds to 84, = 90°

approximation, the integral can be evaluated in closed form, giving

. 1 — cos[2(kL) sin 6]
= 27 tan? 0;

(2.28)

as a small roughness approximation. The small roughness approximation has been
included in Figure 2.6, which gives some examples of the results of numerically
integrating the backscatter integral. The figure shows that the numerical results
converge to the small roughness approximation when the surface roughness is small.
Confidence is gained in the numerical results by knowing that they converge to the

appropriate approximations for extreme values of surface roughness.

2.3.2 Asymptotic evaluation

As noted previously, the backscatter integral can be approximated asymp-
totically when the roughness (k) is large. If the roughness of the surface is large,
the integrand in Equation 2.27 is very small unless Cp(uL,vL) is very close to one.
Cp(uL,vL) is very close to one when u and v are close to zero, or in polar coordi-
nates, when p is close to zero. Since the integrand is small unless p is near zero, the
correlation coefficient can be approximated by its dominant term. The first three
terms of the correlation coefficient are Cp(pL, ¢) = 1 — T1(¢)(pL)P~? — To(4)(pL)?
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where

_@=p) e k2
TO) = ™ S -2)| 1 - pi
z 2

/0,4,+2 df | cos(8 — ¢)|P" % exp |:——3 (0 - 0Az> :| (2.29)

0a:—% bo

and
(2 — p)k? fa:+5 ) (0 - gAz)Z
To(d) = —¢)exp | — - (2.

2(¢) 2 —p)§00erf(>§01) /GM-Z;- df cos*(8 — ¢) exp [ 3 B (2.30)

When p < 4 the (pL)?~? term dominates, whereas for p > 4, the (pL)? term
dominates. Thus, for asymptotic evaluation, when p < 4, the correlation coefficient
is taken to be Cp(p,¢) =~ 1 — T1(8)(pL)""?, and when p > 4, the correlation
coefficient is approximated by C,(p, ¢) = 1 — To(¢)(pL)>.

Because the integrand is very small except when u and v are near zero,
the integral can be simplified by neglecting the (1 — |u]) and (1 — |v]) terms. Also,

the limits of integration can be extended, resulting in

o’ =

2 20. roo 0
(kL) cos 0'/ du/ dv e—i2(kL)u.sin9.'e—4(ak)2cos2 0;(1—Cp(uL,uL))' (231)

T -

While Equation 2.31 is useful for some asymptotic evaluations, It is also useful to
consider polar coordinates. After conversion to polar coordinates, Equation 2.31

is given by

2 2p. T
o° = (kL) :OS 01 /2 d¢ /oo dp pe—iZ(kL) sin€;pcos¢e—4(a’k)2 cos? 0;(1—Cp(pL,d>))‘ (232)
0 0

Asymptotic evaluation for p < 4

Because the dominant term that dominates changes when p = 4, it is
necessary to consider the cases p < 4 and p > 4 separately. The case p < 4 is
considered first. Substituting the dominant term for the correlation coefficient into

Equation 2.32 gives

o° = (kL)2:OS2 02' /27r d¢ /oo dp pe—i2(kL) sinO.‘pcosc}Se—4(¢‘l'ls:)2cos2 0.'T1(d>)(pL)P’2' (233)
0 0
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For convenience in the derivation, the following are defined:

2 c0e? -
4 - (kL)? cos? b;
m
B = 2(kL)sin¥;
C = 4(ok)*cos®é;. (2.34)

With these definitions, Equation 2.33 becomes
27 o . —
o° = A/o dd)/o dp pe~Breos¢=CT1(4)(oL) : (2.35)

Because the e CT1#)%"™ term in Equation 2.35 approaches zero rapidly as p gets
larger, the e *B*<*¢ can be approximated by the first three terms of its Taylor

Series. This gives
27 (o]
o° = A/o d¢/0 dp p(1 — iBpcos ¢ — B2p? cos? ¢)e CTH (ALY, (2.36)
Substituting ¢t = CTy(¢)(pL)?~? gives

oo = A/2"d¢ (CT1(¢))_2/(p_2) /oodtt(4—p)/(p—2)e—t
0 0

L*p-2)

—1B cos ¢(CT1(¢))_3/(p—2) /oo dt 16—/ (p=2) —t
L3(p-2) 0

B? cos? qi(“C(Zl(q;)))_‘l/(p_z) /°° dt't(s—p)/(p-2)e—t] . (2.37)
— 0

The integrals in Equation 2.37 can be evaluated in terms of the gamma function,

giving

Q
il

- oL [ ()

—~tB cos ¢(CT1(¢))'3/(’°'2)F ( 3 )
L3(p—-2) p—2

B cos? (CTi(¢)~4/~2 (4 )}
T 2) T (p — ]| (2.38)

In Equation 2.38, Ti(¢) is periodic with period 7. In the second term of the
Equation 2.38, Ty(4) is multiplied by cos ¢ which has the property cos(¢ + 7) =

— cos ¢. Thus, when this term is integrated with respect to ¢, the result is zero.
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Substituting the definitions for A, B, C, and T;(¢) into the remaining terms and

rearranging gives an approximation for o° when p < 4:

o n X 2\ " ~2/(p-2)
e [r (p _2) | do (o)
4 2 ]
— 4Xtan?T (———) / d¢ cos® ¢pI3( )=+ (P2 (2.39)
p—2/Jo |
where ,
6ast} — 04,
I3(¢) = / T | cos(6 — ¢)[P~? exp [—3 (0 b ) (2.40)
aAz_'ng 00
and

/(p-2)
ok cos §,)2(P=9/(P-2) (29 erf Var))?
x= ) (300ert (7)) . (2.41)

[42 ~ p)P(2 ~ p) cos (5(p — 2))] 7" (oko)?

Unfortunately, Equation 2.39 is clumsy because it still contains two-

dimensional integrals which must be numerically evaluated. These integrals have
carried over from the derivation of the correlation coefficient of the surface. While
they do make Equation 2.39 clumsy, the integrands are not oscillatory over the area
of integration as is the case with the backscatter integral. Further, the integrands
in Equation 2.37 are simple enough to be readily approximated by trapezoidal
integration. These properties make Equation 2.39 much easier to numerically
evaluate than is the backscatter integral. Plots comparing the results of Equation
2.39 to numerical evaluations of the backscatter integral are in Figure 2.7. The
plots show that the asymptotic approximation converges to the numerical result
as the roughness gets larger:-In the specific case shown (p = 3.5, ko = 1.5m™!,
0o = 90°, ; = 10°, and f = 10GHz (k = 209m™!)), the asymptotic approximation

is valid for a roughness greater than approximately 2.

Asymptotic evaluation for p > 4

As previously mentioned, when evaluating the backscatter integral asymp-
totically, it is necessary to consider the case p > 4 separately from the case p < 4.

When p > 4, the correlation coefficient is dominated by

ColpL, ) ~ 1 = To(#)(pL)* (2.42)

22




4
) —
© )
~ =)
5 k-]
(5 o
©
—Numerical Result =~ — Numerical Result
-- Asymptotic Approximation -- Asymptotic Approximation
-20 -20
0 1 2
10 10 10 10° 10’ 107
Surface Roughness (ok) Surface Roughness (ok)
(a) B4, = 0° (b) 64: = 90°

Figure 2.7: Comparison of the asymptotic expansions for p < 4 with the numerical
results. For the plots, p = 3.5, ko = 1.5m™1, 85 = 90°, 6; = 10°, and f = 10GHz
(k = 209m™1).

where T5(¢) is given by Equation 2.30. Substituting into Equation 2.32 yields

2 2. r o0
o° = (kL) cos 0' /2 d¢/ dppe—iZ(kL) sin 6;p cos :i)e-—‘i(a'k)2 cos? 9.-T2(¢)(pL)2- (243)
0 0

T

At this point, steps that exactly parallel the asymptotic derivation for p < 4 can

be performed, resulting in

oo n ([T a9~ 4Xtane, [ dg o oL(9)7) (240
where 2
6az+5 0—96 z
I($) = /e o df cos’(0 — ¢) exp [—3 < 00" ) ] (2.45)
and
x= (2= 4 zoert (%) (2.46)
“\p—2)  2(cko)? '

As in the case for p < 4, Equation 2.44 contains two-dimensional in-
tegrals that must be numerically evaluated. These integrals are much easier to
evaluate than is the entire backscatter integral. However, unlike the p < 4 case,
it is possible to find an asymptotic expansion that does not contain numerical
integrals. Doing so requires an approximation to be made to W(9), the func-

tion describing the directionality of the waves on the ocean surface. Recall from
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Equation 2.3 that

6 — oAz
bo

2
W(0) = exp [—3 ( ) } , 04, — % <O <0y, + g (2.47)
For purposes of the asymptotic evaluation, this function is approximated with a

rect function, given by

(2.48)

W’(0)— 1 OAZ—%SGSHAz"'%Q'
0 otherwise

Replacing W (6) with W'(8) slightly overestimates the backscatter, it will be shown
that the error is not severe (Figure 2.8). Replacing W (6) with W’(8) also requires
that Sp, the normalization factor for the correlation coefficient, be modified. The
area under W (6) must be replaced with the area under W’(8). Thus, gﬂoerf(lgoi)
is replaced with 6. With these modifications, the dominant behavior of the cor-

relation coefficient becomes

CylpL,$) ~ 1 - TY$)(pL)? (2.49)
where 2 e
-_ 2 Azt 2

Ti($) = i%iﬁ / e 0050~ 9) (2.50)

The integral in T,(¢) can now be evaluated in closed form, giving

Ti() = (H) (81“(;’—0> (200 — sin[26 — (204, + 6o)] +sin[2¢ — (204, — 6o)]). (2.51)

T3(#) can be converted to rectangular coordinates and substituted into
Equation 2.31. The integral in Equation 2.31 can then be evaluated using the
saddle point method. To simplify equations, define

K = (%i—i) (%) . (2.52)

Equation 2.51 can be rewritten, using trigonometric identities, as

Ti(¢) = K{20, + sin24[cos(204, — 0o) — cos(20.4. + 6o))
+ cos2¢[sin(204, + 0o) — sin(204, — 6o)]} (2.53)
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Noting that sin 2¢ = 12+t—:2%s’ cos2¢ = }—;—%, and tan ¢ = ;’:—ﬁ-, Equation 2.53 can

be rewritten as

TyuL,ol) = K{200+ 4_(1(’% g;‘(f;)L)z [c08(20.4 — B) — cos(20.45 + 6o)]

)?/(uL)?
L)*/(uL)?
= m{200[(UL)2 + (vL)?]

+2(uL)(vL)[cos(204, — 0o) — cos(204, + o))

+{(uL)? — (vL)?|[sin(20 4, + 0o) — sin(204, — 6o)]}

K 2 : .
m{(uL) (260 + sin(20.4. + 6o) — sin(204, — 6o)]

+(uL)(vL)[2cos(204, — o) — 2 cos(20 4, + o))

+(vL)?[26p — sin(204. + 0o) + sin(20.4, — 8o)]}
B (L)—i(m‘ (A(uL)’ + B(uL)(vL) + C(vLY’) (2.54)

[sin(204, + 6o) — sin(204. — 6o)]}

where

A = K[20p + sin(20 4, + 0o) — sin(20 4. — 6o))
B = K[2cos(204, — 8p) — 2cos(204;, + o))
C = K|[20p —sin(204; + o) + sin(20 4, — 0o)]. (2.55)

Since (pL)? = (uL)? + (vL)?, it follows that T4(¢)(pL)? = A(uL)® + B(uL)(vL)+
C(vL)2.
Using Equation 2.49 in Equation 2.31 gives an integral that can be

evaluated asymptotically by the saddle point method,
(kL)? cos® 6;

o = / * du / * dp e~ 2(kL)usind; ,—4(ck)? cos? 6:(A(uL)? +B(uL)(vL)+C(vL)?)
™ -00 —00

(2.56)
Proceeding with the saddle point method as outlined by (Kong, 1990,
pp. 307-309), the saddle point with respect to v is vo = =Bu Keeping one term of

2C
the asymptotic series,
o° ~ I;L Cosgf /oo du e-—i2(kL)usin6’,'e—4(0k)2 cos? 0,'(uL)2(A—-42C2-)' (257)
agV T -0
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Figure 2.8: Comparison of the asymptotic expansions for p > 4 with the numerical
results. For the plots, p = 4.5, ko = 1.5m™!, 6y = 90°, 6; = 10°, and f = 10GHz
(k = 209m=1). The first asymptotic expansion is calculated from Equation 2.44,
and the simplified asymptotic expansion from Equation 2.59

Applying the saddle point method a second time, the saddle point is found to be
uo = 0. Keeping two terms of the asymptotic series (two terms are kept to preserve
the behavior of the e~*2(FL)usinéi term) yields

1 C tan?#0;
> __Ctan®; ) 2.
7 ¥ 22 IAC - B? (1 52(4AC — B)> (2.58)

Substituting the definitions of A, B, and C,
5 A X (1 3 [Xta,n2 0,-] 200 — sin(204, + 6o) + sin(204, — 00))

6% — sin® 0, 2 63 — sin® 6y

(2.59)

x=(553) oy - (o0

Plots showing the numerical results of the backscatter integral and the

where

results of Equations 2.44 and 2.59 are shown in Figure 2.8. As is the case with
p < 4, the asymptotic approximation converges to the numerical result as the
roughness gets larger. For the specific case shown (p = 4.5, ko = 1.5m™1, 6 = 90°,
6; = 10°, and f = 10GHz (k = 209m™')), the asymptotic result is valid when
the roughness is larger than approximately 4. The plots also show that the error
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due to the approximation used in deriving the simplified asymptotic approximation
(Equation 2.59) is much less than 1 dB when the surface roughness is larger than 4.
When the roughness is less than 4, the surface is too smooth to permit asymptotic

evaluation.

2.4 Summary

The theory to predict the backscatter from a randomly rough ocean sur-
face has been derived. First, the ocean was modeled as a stochastic process. The
statistics were assumed to be Gaussian, and the mean, variance, and correlation
coefficient were characterized. Using the surface model, the tangent plane approx-
imation, and Green’s theorem, the expected backscatter was derived. The result
was Equation 2.27, the backscatter integral. When p # 4 and the roughness of
the surface is high, the backscatter integral can be approximated asymptotically.
Otherwise, it must be evaluated numerically.

The backscatter integral can now be used to predict the the backscatter
expected from a random surface. In general, the predicted backscatter will be
a function of the azimuth angle (64,). Thus, the theory will be used to predict

azimuth modulation of the radar backscatter.
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Chapter 3

THEORETICAL AZIMUTH MODULATION AT
NEAR-NORMAL INCIDENCE

The theory derived in Chapter 2 predicts azimuth modulation of the
radar backscatter at near-normal incidence angles. When the normalized radar
cross section is plotted as a function of azimuth angle (holding the other parameters
fixed), the difference (in decibels) between its maximum value and its minimum
value is defined as the azimuth modulation magnitude. Directed surfaces, that is,
surfaces for which the power spectral density is a function of wave direction lead
to azimuth modulation. However, when a directed surface becomes very rough,
it scatters power in nearly every direction, and the modulation disappears. In
general, the modulation magnitude also depends on the surface parameters (p, ko,

and ) as well as the radar incidence angle (;) and frequency (f).

3.1 Physical Discussion

It has been shown (Figure 2.6, repeated in Figure 3.1 for convenience)
that there is little azimuth modulation from a the surface that is very smooth. In
fact, when the surface is very smooth, there is little backscattered power unless
0; = 0. Figure 3.1 shows that when all other parameters are fixed, the magnitude
of the modulation peaks for some moderate value of surface roughness. As the
surface becomes progressively more rough, the modulation decreases, eventually
disappearing for very rough surfaces. To gain some intuition about these trends,

consider some simplified scattering problems.

3.1.1 Scattering from a flat surface versus a rough surface

First, consider a scattering surface that is perfectly flat, or in other
words, a surface with standard deviation of o = 0. If §; = 0, the path of the
incident electromagnetic wave is vertical toward the surface. At the surface, the

wave is reflected, and the reflected (scattered) wave returns to the antenna along
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Figure 3.1: Results of integrating the backscatter integral with a modified Romberg
routine. The plots were generated with p = 4.0, ko = 1.5m™!, 6y = 90°, 6; = 10°,
and f = 10GHz (k = 209m~!). Up/downwind corresponds to #4, = 0°, and
crosswind corresponds to 64, = 90°

the same path traversed by the incident wave. However, if 8; > 0, the incident
wave is reflected according to Snell’s law, as shown in Figure 3.2. Little, if any,
scattered power will return to the antenna, regardless of the azimuth angle. Thus,
there is no azimuth modulation.

Now consider the case where the surface begins to become rough. For
rough surfaces, ¢ > 0, and the larger the value of o, the rougher the surface.
If 6; > 0, there may be some facets of the surface perpendicular to the path of
the incident electromagnetic wave. These facets scatter power back toward the
antenna. The amount of power that is backscattered depends on the number and
size of the facets that are perpendicular to the incident path. The number and size
of the perpendicular facets in turn depends on the roughness of the surface and
the incidence angle (8;). If 6; is larger, the surface must become more rough before
the perpendicular facets become significant. Further, the surface may be directed,
or have a preferred direction of wave travel. If the surface is directed, the number
and size of the facets perpendicular to the incident electromagnetic path depends

on the radar azimuth angle (64,).
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X

Figure 3.2: Scattering from a perfectly flat surface (o = 0).

3.1.2 Scattering from a unidirectional surface

To better understand the dependence of the perpendicular facets on az-
imuth angle, consider a unidirectional surface, or a surface with waves traveling
in only one direction. For simplicity, assume further that a single wavenumber
is present on the surface. Such a surface is depicted in Figure 3.3; with the per-
pendicular facets highlighted. The figure shows that there are more perpendicular
facets when 64, = 0° (Figure 3.3a) than when 6,4, = 90° (Figure 3.3b). This leads
to more backscattered power when 64, = 0° than when 64, = 90°. For surfaces
less directed than Figure 3.3, the dependence of the backscatter on the azimuth

angle is less pronounced, but some dependence is still present.

3.1.3 Scattering from a random, rough surface

For very smooth surfaces, the azimuth modulation increases as a func-
tion of surface roughness (see Figure 3.1). However, as Figure 3.1 also shows,
when the surface becomes progressively more rough, the azimuth modulation be-
gins to decrease. In fact, when the surface is very rough, the azimuth modulation
disappears altogether. To understand this modulation decrease, consider Figure

3.4. Figures 3.4a and b depict a moderately rough surface (¢ = 0.04m) while the

30

et e s 2 e ey ———y— 7 17 T



(a) Up/downwind (84, = 0°). (b) Crosswind (64, = 90°).

Figure 3.3: Scattering from a unidirectional surface. Facets perpendicular to the
incident electromagnetic path (§; = 10°) are highlighted. The backscatter in the
up/downwind case is greater than in the crosswind case.

surface in Figures 3.4c and d is 2.5 times as rough (o = 0.1m). The surfaces were
generated using a Gaussian random number generator and filtering the output to
create the correct power spectral density. The highlighted portions of each surface
are the facets that are perpendicular to the incident electromagnetic path. Notice
the contrast in facets between the 4, = 0° and the 6,4, = 90° cases. When the sur-
face is rougher, there is less difference in the size of the perpendicular facets. This
translates into less azimuth modulation. Practical ocean surfaces almost always
exhibit the characteristic of decreasing modulation with increasing roughness; the
surface is seldom smooth enough to observe increasing modulation with increasing

roughness.

3.2 Sensitivity of Azimuth Modulation to Model Parameters

To further understand the azimuth modulation, it is instructive to study
its sensitivity to the various model parameters. Specifically, the parameters of in-
terest are the surface parameters, which are the power parameter (p), the spectral
peak (ko), and the directional parameter (6); and the the radar parameters, which
are the incidence angle (6;) and the frequency (f). Each of these parameters is
discussed in turn. The modulation trends are discussed in terms of practical sur-
faces, that is, surfaces that are sufficiently rough that the modulation is decreasing

with increasing roughness.
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(a) ¢ = 0.04m, up/downwind (64, = 0°) (b) & = 0.04m, crosswind (4. = 90°)

(¢) ¢ = 0.1m, up/downwind (84, = 0°) (d) o = 0.1m, crosswind (64, = 90°)

Figure 3.4: Scattering from rough surfaces. The highlighted portions of the surface
are the facets that are perpendicular to the incident electromagnetic path. Note the
difference in the facets between the up/downwind case and the crosswind case for
each surface. The rougher surface scatters power in more directions and exhibits
less azimuth modulation. The surfaces depicted are 1.28m x 1.28m in size, and
the parameters are p = 4.0, ko = 1.5m™", 6 = 90°, and 6; = 10°.
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3.2.1 Dependence on the power parameter (p)

The dependence of the azimuth modulation on the power parameter
is as shown in Figure 3.5. As seen in the figure, a surfaces with a roughness of
approximately 10 have modulations that vary as a function of p. When p = 3.5,
the modulation is about 1.5dB; when p increases to 4.0, the modulation increases
to about 4dB, and finally, when p has increased to 4.5, the modulation has again
increased to approximately 6.75dB. Thus, the modulation is increasing with in-
creasing p values. To understand this trend, consider the effect of p on the power
spectral density of the surface. The model for power spectral density is k77, If p
is smaller, the spectral power falls off less rapidly with increasing wave number.
Since larger wave numbers correspond to larger slopes on the surface, smaller p
values allow larger slopes to be present on the surface. Hence, the slope variance
on the surface is larger. A larger slope variance leads to surface facets pointing
in more directions, which allows the surface to scatter power in more directions.
When the surface is scattering power in more directions, the azimuth modulation

1s decreased.

3.2.2 Dependence on the low wave number cut-off (k)

It should be clear from the plots in Figure 3.6 that the azimuth mod-
ulation decreases with increasing values of the spectral peak, ko. For a roughness
of 10, a ko of 0.5m™! corresponds to a modulation of approximately 9dB, while ko
values of 1.5m~! and 4.57! correspond to modulations of 4dB and 0.5dB respec-
tively. To understand this trend, consider the relationship between the surface
variance o2, and the power spectral density. The surface variance is the integral
of the power spectral density. Thus, for a fixed ¢ and a power spectral density of
the form k_Pu(k, — ko), a larger ko corresponds to a surface with more power at
larger wavenumbers. Larger wave numbers lead to larger slopes and more slope
variance on the surface. This leads to surface facets pointing in more directions.
Facets pointing in more directions lead to power being scattered in more direc-
tions, which decreases the azimuth modulation. Thus, the modulation decreases

with increasing ko.
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Figure 3.5: Dependence of the modulation on the power parameter (p). The
plots were generated using ko = 1.5m™1, 6 = 90°, ; = 10°, and f = 10GHz
(k = 209m~1). The top row of figures shows o° for 84, = 0° (up/downwind) and
84, = 90° (crosswind). The bottom row shows the modulation magnitude, which
is the difference between the 84, = 0° (up/downwind) curve and the 64, = 90°
(crosswind) curve.
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Figure 3.6: Dependence of the modulation on the low wave number cut-off (ko).
The plots were generated using p = 4.0, 8o = 90°, §; = 10°, and f = 10GHz
(k = 209m="). The top row of figures shows o° for 64, = 0° (up/ downwind) and
84, = 90° (crosswind). The bottom row shows the modulation magnitude, which
is the difference between the 64, = 0° (up/downwind) curve and the 04, = 90°

(crosswind) curve.
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Figure 3.7: Dependence of the modulation on the directional parameter (6p.) The
plots were generated using p = 4.0, ko = 1.5m™!, 6; = 10°, and f = 10GHz
(k = 209m='). The top row of figures shows o° for 4, = 0° (up/downwind) and
4. = 90° (crosswind). The bottom row shows the modulation magnitude, which
is the difference between the 64, = 0° (up/downwind) curve and the 4. = 90°
(crosswind) curve.

3.2.3 Dependence on the directional parameter ()

According to Figure 3.7, the azimuth modulation decreases as 6p, the
directional parameter, increases. Considering a surface with a roughness of 10,
modulations of 8.5, 4, and 2dB are present for 6, values of 60°, 90°, and 120°
respectively. This trend is correctly explained according to intuition. A surface
with a larger 0y values has wave energy traveling in more directions. Thus, there
are surface facets pointing in more directions, and thus, power is scattered in more

directions. The azimuth modulation decreases with increasing  values.
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3.2.4 Dependence on the incidence angle (6;)

As shown in Figure 3.8, the azimuth modulation increases with increas-
ing incidence angle (6;). According to the figure, for a surface with a roughness
of 10, the modulation increases from 1dB to 4dB to 10dB as the incidence angle
increases from 5° to 10° to 20°. To understand this trend, consider the example
surfaces in Figure 3.9. This figure shows that the contrast in the perpendicu-
lar facets for the different azimuth angles is much greater when 6; = 20° than
when 6; = 10°. To understand this, consider what is happening as §; increases.
As 0; increases, the incident electromagnetic path is becoming more shallow, and
the perpendicular facets are becoming steeper. Assuming that the surface is di-
rected, and the perpendicular facets are becoming steeper, the number and size of
the perpendicular facets decreases more rapidly in the crosswind case than in the
up/downwind case (see also Figures 3.4c and d). Hence, the azimuth modulation
increases. For surfaces rougher than that shown in Figure 3.9, the modulation

increase is less pronounced, but it remains present.

3.2.5 Dependence on the radar frequency (f)

Finally, the azimuth modulation dependence on frequency is shown in
Figure 3.10. The standard deviation of the surface (o) rather than the surface
roughness (ok) is plotted along the horizontal axis in Figure 3.10 so that similar
surfaces can be more easily compared. The dependence of the modulation on
radar frequency depends also on the roughness of the surface. When o is small,
the peak of the modulation is increased as a function of frequency. However, ifo=
0.0477m (corresponding to a roughness of 10 when f = 10GHz), the modulation
is approximately 4dB for all frequencies shown. The modulation decreases slightly
as a function of frequency, but the difference between 5.3GHz and 14GHz is less
than 1dB. Thus, for practical surfaces, the modulation is predicted to change very

little as a function of frequency.

3.3 Summary

Azimuth modulation is predicted at near-normal incidence angles. Di-

rected surfaces give rise to azimuth modulation because there are more facets facing
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Figure 3.8: Dependence of the modulation on incidence angle (0;). The plots
were generated using p = 4.0, ko = 1.5m™!, 6, = 90°, and f = 10GHz (k =
209m='). The top row of figures shows o° for 6,, = 0° (up/downwind) and
04, = 90° (crosswind). The bottom row shows the modulation magnitude, which
is the difference between the 8,4, = 0° (up/downwind) curve and the 84, = 90°
(crosswind) curve.
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(a) 6; = 10°, up/downwind (64, = 0°) (b) 8; = 10°, crosswind (64, = 90°)

(c) 6; = 20°, up/downwind (84, = 0°) (d) 6; = 20°, crosswind (84, = 90°)

Figure 3.9: Scattering from a rough surface at two incidence angles. The high-
lighted portions of the surface are the facets that are perpendicular to the incident
electromagnetic path. Note the difference in the facets between the up/downwind
case and the crosswind case for each surface. There is modulation at 20° than
at 10°. The surfaces depicted are 1.28m x 1.28m in size, and the parameters are
o0 =0.04m, p=4.0, kg = 1.5m~1, and 6§, = 90°.
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Figure 3.10: Dependence of the modulation on the radar frequency (f). The plots
were generated using p = 4.0, ko = 1.5m™!, o = 90°, and ; = 10°. The top row
of figures shows o° for 64, = 0° (up/downwind) and 84, = 90° (crosswind). The
bottom row shows the modulation magnitude, which is the difference between the
04, = 0° (up/downwind) curve and thefs, = 90° (crosswind) curve.
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some directions than others. For practical surfaces, the modulation decreases as
the surface becomes rougher, and it disappears for very rough surfaces. Further,
for practical surfaces, the modulation is predicted to increase when the surface
power parameter (p) is increased, decrease when the low wave number cut-off (ko)
or the directional parameter () are increased, increase when the incidence angle
(6;) is increased, and vary little with changes in the radar frequency (f). Physi-
cally, these trends can be explained in terms of the orientation of the facets on a
rough surface.

The orientation of the facets on the surface gives a good physical intu-
ition for the prediction of azimuth modulation of the radar backscatter. However,
it has not been shown if the predictions are correct. To gain confidence in the
predictions, they must be compared to radar data. If the predictions are correct,

the theory can be used to predict azimuth modulation with confidence.
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Chapter 4

EXPERIMENTAL AZIMUTH MODULATION AT
NEAR-NORMAL INCIDENCE

In order to test the performance of the theory, its predictions are com-
pared to radar data. The radar data was generated during an experiment con-
ducted by the Brigham Young University Microwave Earth Remote Sensing (MERS)
research group. The main radar system used during the experiment is known as
YSCAT, and the experiment is known as the YSCAT94 experiment. The YSCAT
radar is an ultra wide band scatterometer and has the capability to operate at
frequencies from 2GHz to 18GHz. It also has the capability to scan over a 160°
range in azimuth angle and from 0° to greater than 90° in incidence angle (Collyer,
1994). In addition to the YSCAT radar, other sensors were present to measure
environmental and surface wave conditions.

The data from the YSCAT radar experiment shows that azimuth modu-
lation is indeed present at near-normal incidence angles. The data also shows that
the azimuth modulation decreases as the roughness of the water surface increases,
as predicted by the theory.

The YSCAT94 experiment was conducted from May-November, 1994
at the Canada Centre for Inland Waters (CCIW) research tower on Lake Ontario,
Canada. A map showing the location of the tower on Lake Ontario is shown in
Figure 4.1. As shown on the map, the location of the tower allowed the wave fetch
to range from lkm to hundreds of kilometers, depending on the wind direction.

This allowed for a variety of wave conditions.

4.1 Data Collection

A variety of radars and sensors were deployed in the YSCAT94 exper-
iment. A diagram showing the locations of the various sensors on the tower is
shown in Figure 4.2, and a photo of the radar deployment is shown in Figure 4.3.

The sensors used for the study in this thesis are the YSCAT radar system, the
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Figure 4.1: Map showing the location of the CCIW Research Tower. From (Collyer,
1994).
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Figure 4.2: Diagram of YSCAT deployment on the CCIW Tower. From (Collyer,
1994).

anemommeters, and the wave gauge array.

4.1.1 The YSCAT radar system

The YSCAT radar system was designed in the Microwave Earth Re-
mote Sensing laboratory at Brigham Young University. It had the capability to
scan through a 160° range in azimuth angle and from 0° to greater than 90° in
incidence angle. It also had the capability to transmit frequencies from 2GHz to
18GHz in either vertical or horizontal polarization modes. It utilized a specially
designed elliptical transmit antenna with a nearly constant beamwidth of 5° over
the frequency range 4GHz to 18GHz. At 2GHz, the beamwidth approached 8°.
YSCAT’s receive antenna was a quad-ridge horn with a beamwidth range of 45°
to 7.5° over the frequency range of 2GHz to 18GHz.

For the YSCAT94 experiment, YSCAT was mounted on the north side
of the CCIW tower 6.26 meters above the water surface. The geometry (see Figure
4.2) was defined such that a radar azimuth angle of 180° corresponded to looking
straight out from the tower or to a compass direction of 20° west of north. Looking

straight out from the tower was the center of YSCAT’s azimuth scan range.
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Figure 4.3: Photo of YSCAT deployment on CCIW research tower. From (Collyer,
1994).

The YSCAT system was controlled by a 486 personal computer. The
computer took as input a file known as a measurement script, and for versatility,
a different script was created for each experimental study of interest. For each
measurement in the script, a desired elevation angle, azimuth angle, transmit fre-
quency, and transmit polarization were specified. The computer then adjusted the
radar to correspond to the desired parameters and sampled the return power on
both horizontally and vertically polarized receive channels. In addition to control-

ling the radar, the computer also sampled weather data, allowing wind information

to be available with the radar data.

4.1.2 YSCAT data collection at near-normal incidence

A measurement script for YSCAT was written specifically for the study
described in this thesis. This script requested measurements at near normal inci-
dence angles and vertical polarization, and the measurements were grouped into
5 different azimuth scans. Each azimuth scan consisted of measurements taken

at a single transmit frequency and incidence angle. The first two azimuth scans
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consisted of measurements taken at a frequency of 5.3GHz; the incidence angles
were 10° and 20° respectively. Similarly, the next two scans were at a frequency
of 10.02GHz using 10° and 20° respective incidence angles. The last scan was at a
frequency of 14GHz and an incidence angle of 10°.

Each azimuth scan requested measurements at 9 different azimuth an-
gles. The first measurement was taken at an azimuth angle of 100° (the lower
limit of YSCAT’s capability), and each successive measurement incremented the
azimuth angle by 20° until an azimuth angle of 260° (the upper limit of YSCAT’s
capability) was reached. The measurement script then proceeded to the next az-
imuth scan.

Since the YSCAT radar system was used for a variety of experimental
studies, several measurement scripts were grouped into a data collection mode.
The script described above was included in YSCAT’s azimuth scan mode. YSCAT
was operated in azimuth scan mode for 2 to 8 days at a time approximately once
every two weeks. When YSCAT was in azimuth scan mode, the script (described
above) for this study was executed approximately once every six hours. It took
YSCAT about 12.5 minutes to complete each azimuth scan in the script, and about

63 minutes to complete the entire script.

4.1.3 Other experimental sensors

As mentioned previously, in addition to YSCAT, other sensors were
deployed on the research tower (see Figure 4.2). Data from these sensors was
sampled at 10Hz and stored .in 17 minuted data files by a second 486 personal
computer. For this study, the quantity of interest from these sensors was the
water surface height as a function of time. This quantity was available from one
of the wave staffs and was used to estimate the surface low wave number cut-off
(ko) and standard deviation (o). Knowledge of these parameters was necessary to

facilitate comparison between the theory and the radar data.
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4.2 Known Measurement Errors
4.2.1 Azimuth slip

There are two known irregularities in the data collection of the radar
deployment. First, as the radar experiment progressed, a failure was detected in
the radar azimuth encoding system. This failure caused the system to slip over
time, creating errors in the positioning of the radar azimuth. The amount of slip
is known over time, and the radar azimuth angles used for data analysis have
corrected using a matlab routine provided by Ryan Reed. The routine corrects the

measured azimuth angle based on the time the measurement.

4.2.2 Clock drift

The other known problem has to do with computer clock drift. Over
a time period of approximately one month, the YSCAT computer clock would
typically run slow by approximately 10 minutes. In the same time period, the
clock in the 486 personal computer collecting data from the other sensors typically
ran fast by approximately 20 minutes. Other time errors occurred intermittently
and were caused by operator errors such as setting the date on one of the computers
incorrectly. It was necessary to quantify these errors to gain confidence that the
surface data from the wave gauge array was taken at approximately the same time
as radar data was taken by the YSCAT computer.

Because the YSCAT computer sampled data from anemometers #1 and
42 (see Figure 4.2) and the other computer sampled the bivane anemometer, wind
speed data was used as the basis for quantifying clock errors. The clock error was
found once each day by forming wind speed data from both computers into vectors.
The vectors were time-shifted with respect to each other, and the mean-squared
error and correlation were computed. The time shift for which the two vectors
were most nearly the same was taken as an estimate of the clock error. It was
insured that the estimates on successive days were consistent with the expected
clock drift. The procedure allowed time corrections to within a few minutes, which

was acceptable for the purposes of this study.
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4.3 Comparison of Experimental Results to Theory.

Figure 4.4 shows some representative results from data gathered at the
YSCAT radar experiment as described Section 4.1.2. The data in the figure were
gathered between July 20, 1994 and July 22, 1994. This data verifies the presence
of azimuth modulation at near-normal incidence angles. Notice that the azimuth
modulation decreases when the wind speed increases. Since in general the rough-
ness of the surface increases when the wind speed increases, verifies the general
trend that the modulation decreases with increasing surface roughness. As pre-
dicted by the theory, the modulation in the data is increasing with increasing
incidence angles, although some of this increase is obscured by variability in the
data. The modulation is further increasing with increasing radar frequency. While
this was not predicted by the theory, the lack of this trend in the theory is at-
tributed to the simplicity of the surface model used. In particular, it is not known
how the directionality of the surface may vary as a function of the wave number
on the surface. In the model used herein, the directionality was assumed to be
independent of surface wave number. If the directionality is modeled as function
of surface wave number, a dependence based on frequency such as has been ob-
served is a likely result. The preliminary results in Figure 4.4 indicated that the
theory is worth pursuing to explain azimuth modulation, although the frequency
dependence is seen to be incorrect.

To investigate the theory, it was compared to the data in two ways.
First, a few representative azimuth scans were chosen. For each scan, the relative
normalized radar cross-section was plotted as a function of azimuth angle. A
theoretical curve was calculated and plotted on the same axes. This allowed the
shape of the modulation curve and the magnitude of the modulation to be verified
for some specific cases. Then, the modulation magnitude was found for all of
the azimuth scans. This modulation magnitude was plotted as a function of the
surface standard deviation (o) which is proportional to the surface roughness. This
allowed the trend of the modulation magnitude as a function of surface roughness
to be verified.
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Figure 4.4: Empirical results from data gathered at the YSCAT experiment. The
data were gathered from July20 through July 22, 1994.
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4.3.1 General data processing

For all of the comparisons of the theory to data, estimates of the low
wave number cut-off (ko) and the surface standard deviation (o) were needed.
These parameters were estimated by considering the water surface height data
from the wave staff array. Separate estimates were formed to correspond to each
azimuth scan completed by YSCAT. The first step in the estimation was to identify
the wave staff data file whose start time was closest to the start time of the azimuth
scan in question. To find the correct file, it was necessary to correct for computer
clock drift as described in the Section 4.2.2. Once the correct file was identified,
the spectrum of the output of one wave staff was then computed by segmenting the
samples in the file into records of length 300 points (30 seconds). Adjoining records
overlapped by 100 points. A periodogram was then computed for each record, and
the periodograms were averaged, giving an estimate of the wave spectrum as a
function of (time) frequency. The frequency axis was converted to wave numbers
using the approximation (valid for long, gravity waves) w? = gk, where w is the
radian frequency, g is the acceleration of gravity (9 = 9.81ms~?), and k, is the
water wave number.

As discussed previously in Section 2.1.2, the waves of interest were those
with heights on the order of one electromagnetic wavelength. These waves were ob-
served to be those with wavenumbers on the order of k, = 1.5m"!. Thus, the part
of the spectrum considered in the estimation process was limited to wavenumbers
k., such that k, > 1.43m~!. The actual cut-off was arbitrary, and it was observed
that small changes made little difference. It was also observed that for large values
of k,, the signal to noise ratio in the spectral estimate was unacceptably small.
However, it was possible to estimate the required parameters using only smaller
k. values where the signal to noise ratio was acceptable. Thus, the noisy part of
the spectrum was identified and discarded. The maximum value of the remaining
part of the power spectrum was taken to be the low wave number cut-off, k. The
spectrum was then integrated over k, > k, to estimate the variance, 2. The

standard deviation (o) was then found by taking the square root of the variance.
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4.3.2 Relative normalized radar cross-section vs. azimuth angle

The first comparison of the theory to the data was to plot the normal-
ized radar cross-section (proportional to return power) is plotted as a function of
azimuth angle. To facilitate comparison to the theory, data from only one az-
imuth scan was included in a single plot. The low wave number cut-off (ky) and
surface standard deviation (o) corresponding to the plotted scan were estimated
from wave staff data as described in Section 4.3.1. Measurements to reliably es-
timate the power parameter (p) and the directional parameter (8o) were lacking,
so p = 4.0 and 0y = 90° were assumed. These are reasonable values which are
consistent with known observations (Donelan and Pierson, 1987). Since the radar
incidence angle and frequency were known, the theory could be used to generate an
expected curve. The theory and data were compared by plotting them on the same
set of axes. During this study, absolute calibration data was not available for the
YSCAT radar system, so the relative normalized radar cross section (normalized
radar cross section with the mean removed from the data) was plotted.

Figures 4.5 and 4.6 show examples of the normalized radar cross-section
plotted as a function of relative azimuth angle. Figure 4.5 shows an example when
the modulation is high, and Figure 4.6 provides an example when the modulation is
low. Precision problems with numerical integration are responsible for the bumps
on the theory curves in the figures.

Examination of the figures shows that many of the modulation trends
are correctly predicted. For example, the theory correctly predicts that the mod-
ulation decreases when the surface roughness increases. Comparison of Figure 4.5
with Figure 4.6 shows that the amount of the modulation decrease is approximately
correct. In addition to predicting the decrease in modulation as a function of sur-
face roughness, the figures also show that the theory predicts the correct shape for
the modulation curve. This shape looks similar to a cosine wave, as noted in the
preliminary results.

As previously mentioned, the theory does not predict the modulation
to change as a function of frequency. However, the modulation in the data is
increasing with increasing frequency, particularly when the surface roughness is

low (and the modulation is high). Thus, the modulation magnitude is predicted
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Figure 4.5: Relative 0° (small surface roughness): Comparison of measured values
to theoretical values. The measured value of the surface standard deviation (o)

was 0.0369, and the measured value of ko was 1.43. The theoretical plots were
generated with o = 0.0369, ko = 1.43, p = 4.0, and 6, = 90°.
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to be larger than observed in the data at 5.3GHz and smaller than observed in the
data at 14GHz. The data also shows that there is some modulation dependence
on frequency when the surface roughness is high and the modulation is low (see
Figure 4.6). However, in this case the dependence is smaller; thus, the prediction
error is also much smaller. As noted previously, the lack of modulation dependence
on frequency in the theory is likely the result of the simplifications made to the
surface model. The prediction is likely to be corrected considering a directional
dependence on wave number in the power spectral density model.

After examining the (relative) normalized radar cross-section as a func-
tion of azimuth angle, it appears that in general, the theory is better at predicting
azimuth modulation when the surface roughness is large. Although this was not
initially expected, it can be explained in terms of the surface model. When the
surface roughness large, the power spectral density most nearly fits the model. In
contrast, when the roughness of the surfaces is low, the wind speed is usually low
as well. When the wind is low the wind direction is highly variable, making the
surface appear to be more isotropic. This leads to less azimuth modulation than
expected. In addition, when the wind is low, non-local or residual surface effects
may be present. This leads to a spectral shape that does not fit the ™7 model.
This, too, leads to theoretical results that do not fit data.

4.3.3 Modulation magnitude vs. roughness

The second comparison of the theory to the data was to plot the mod-
ulation magnitude as a function of surface standard deviation or roughness. As
before, ko and o were estimated for each scan; p = 4.0 and 6y = 90° were assumed;
and the radar frequency and incidence angle were known. Thus, a theoretical
modulation magnitude could be computed for each scan.

To plot the data points, an estimate of the modulation magnitude given
the data from a radar azimuth scan was required. This estimate was formed by
fitting the function A cos(204, + ¢) + B to the return power (in dB) points from a
single radar azimuth scan and taking 2A as the estimated modulation magnitude.
The cosine function was chosen because the azimuth modulation curves (see Figure

4.4 resembled a cosine in shape. The variance of the fit was computed for each
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scan, and scans for which this variance exceeded 0.5A were discarded. These scans
were discarded because in general, they corresponded to surface conditions that
did not fit the k7P power spectral density model. Thus, the data from scans did
not resemble a cosine in shape leading to a large variance in the fit and unreliable
modulation information.

Figure 4.7 shows some of the plots of modulation magnitude as a func-
tion of surface roughness. The measured points in Figure 4.7 represent scans for
which ky = 1.43m~!. The data in the plots appear to have a large scatter, par-
ticularly at 20° incidence, making some trends difficult to identify. However, the
fits of the theory to the data have been quantified by computing the mean squared
error between the data and the theory and dividing by the variance of the data.
Subtracting this parameter from unity gives a measure of the quality of the fit.
This measure gives the percentage of the variability in the data that is explained
by the theory.

When the incidence angle is 10°, 35% of the variability is explained
at 5.3GHz, 71% at 10.02GHz, and 65% at14GHz. Thus, the theory fits best at
10.02GHz. The fit is nearly as good at 14GHz, but its quality is diminished at
5.3GHz. From the figure, it can be seen that too much modulation is consistently
predicted at 5.3GHz, leading to the low fit parameter. As previously discussed,
the simplifications in the model limit its prediction of the modulation trend as
a function of frequency. Thus, the model can be tuned to fit the data at one
frequency by choosing an appropriate value of 6, but this will limit its fit at other
frequencies.

When the incidence angle is 20°, the quality of the data fit is poor such
that computing fit parameter resulted in a value that did not make sense. In fact,
using Figure 4.7, it is difficult to see that the modulation increases with increasing
incidence angle. However, Figure 4.8 shows that this is indeed the case by plotting
the the ratio of the modulation magnitudes for 10° and 20° scans that were taken
immediately following each other. Notice that the ratio of the 20° scan to the 10°
scan is nearly always larger than unity. Referring back to Figure 4.7, the predicted
increase in modulation as a function of incidence angle is more than the actual

increase. However, the variability in the 20° data is so high that some of the
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Figure 4.7: Comparison of measured values of the modulation magnitude to theo-
retical values as a function of surface standard deviation (¢). All of the measured
points shown have a corresponding measured ko = 1.43~!. The theoretical points
were generated with ko = 1.43m™1, p = 4.0, 6, = 90°, and & values to match those

corresponding to the measured points. Numerical problems are responsible for the
bumps on the theory curves.
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Figure 4.8: Ratio of measured modulation magnitude at §; = 20° to measured
modulation magnitude at 6; = 10°. The radar frequency was 10.02GHz, and the
20° scans were taken immediately following the 10° scans.

increase in modulation may be masked, particularly when the surface roughness
is low. The error in predicting the modulation at 20° is largest when the surface
roughness is small. Thus, as found previously, the theory works best when the

surface roughness is high.

4.4 Summary

The theory was tested by comparing it to data taken by the YSCAT
radar system on Lake Ontario, Canada. The trend of decreasing modulation as
the surface roughness increases was verified. The shape of the modulation curve
as a function of azimuth angle was also verified. However, there are problems
predicting the frequency dependence of the modulation. These problems are likely
the result of an over simplified surface model. In particular, if the directionality of
the surface is a function of the wave number, the frequency dependence is likely to
be explained. There are also problems with the incidence angle dependence of the
modulation. However, the extent of these problems is unknown because there are
also problems with the radar data at 20° incidence angle. More experimentation
is needed to clarify the incidence angle trend.

By comparing the theory to radar data, confidence has been gained in

its predictions. The most prevalent trend observed is the decrease in azimuth
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modulation as the surface roughness increases. This prevalent trend, along with
shape of the modulation curve has been correctly predicted. Since these trends are
correctly predicted, the theory can be used to infer information about a random
surface. Thus, the theory has contributed to the understanding of radar backscat-

ter at near-normal incidence.

38



Chapter 5

CONCLUSIONS

In the past, it has often been assumed that there is no azimuth modu-
lation of the radar backscatter at near-normal incidence. However, the YSCAT94
radar experiment shows between 0 and 10 dB of modulation at 10° incidence angle.
Thus, there is a need to understand the physical causes of the modulation and the
effects of the surface and radar parameters on the modulation. The theory derived
in this thesis predicts the shape of the modulation curve (the normalized radar
cross-section plotted as a function of incidence angle), and it correctly predicts the
modulation decrease as a function of surface roughness. It has problems predicting
the modulation change as a function of the radar frequency, but this could likely
be corrected by allowing dependence of the directionality of the surface on wave
number. The model also appears to have problems predicting the magnitude of the
modulation change as a function of incidence angle (although the trend is correctly

predicted), but more experimentation is needed to clarify this trend.

5.1 Contributions

It the past, it has sometimes been assumed that the near-normal radar
backscatter exhibits little or no azimuth dependence (Colton, 1989). Thus, more
observations and understanding relating to near-normal azimuth modulation are
needed. The theory in this thesis has been derived and studied to develop such
understanding. The derivation begins by modeling the ocean surface as a two-
dimensional stochastic process. The surface model includes the following assump-

tions:

1. The surface statistics are Gaussian.
2. The power spectrum has a k;Pu(k, — ko) wave number dependence
-8

2
3. The power spectrum has a exp [——3 (;9(-;‘11) ] directional dependence

4. The directional dependence is independent of wave number.
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This surface model allows the electromagnetic backscatter to be computed using
Green’s theorem and a physical optics approach. In addition to the assumptions
about the surface, the derivation requires the following assumptions about the

radar system:
1. The electromagnetic wave is time-harmonic
2. The ocean surface is in the far-field of the antenna

3. The electromagnetic wavelength is much smaller than the radius of surface

curvature

The third assumption is necessary to insure that the tangent plane or physical op-
tics approximation applies. The result of the derivation is the backscatter integral
(Equation 2.27), the basis for predicting the normalized radar cross-section and
hence the azimuth modulation.

A directed ocean surface leads to azimuth modulation of the radar back-
scatter. The modulation can be explained physically in terms of the orientation of
surface facets in different azimuth directions. The magnitude of the modulation is
a function of the surface parameters (0, ko, p, and 65) and the radar parameters
(6;, and f). The expected trends with respect to these parameters are explained
in terms of their effects on the areas of the surface that are perpendicular to the
incident electromagnetic path.

To verify the theory, it is compared to data from the YSCAT94 radar
experiment. As mentioned above, azimuth modulation of the radar backscatter at
near-normal incidence is observed in the YSCAT data. By programming YSCAT
to take data at several successive azimuth angles, it is possible to construct a plot
of the normalized radar cross-section as a function of radar azimuth angle. The
surface parameters relating the plot are estimated, and a theory plot is constructed.
The shape of the theoretical curve is found to agree well with the shape of the data
curve. At a frequency of 10.02GHz and an incidence angle of 10°, the theoretical
modulation magnitude also agrees well with the data. By plotting the modulation
magnitude in the data as a function of the surface roughness and comparing it to

theory, it is also found that the theory correctly predicts that the modulation will
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decrease as the surface becomes increasingly rough. However, the theory consis-
tently predicts too much modulation at 5.3GHz and too little at 14GHz. Thus, the
theory does not predict the correct modulation trend as a function of frequency.
If the assumption that the directional dependence of the surface spectrum is in-
dependent of wave number is relaxed, the prediction of the modulation trend as a
function of frequency is likely to be improved. The theory also appears to predict
too much modulation at 20° incidence angle. However, because of variability in

the data, more experimentation is needed to understand this trend.

5.2 Extensions

Perhaps the most significant extension of this work is to relax the as-
sumption that the directionality of the surface spectrum is independent of the
surface wavenumber. This requires quantitative understanding of the dependence
of the directionality on the wave number. Significant experimentation may be nec-
essary to develop such an understanding [see (Komen et al., 1994)]. In addition,
difficulty is likely to be encountered in deriving the correlation coefficient from this
more complicated power spectral density model. Significant numerical modeling
is likely to be necessary to do so. If these difficulties can be overcome, however, it
may be possible to extend the theory to predict the correct modulation trend as a
function of radar frequency.

More experimentation is also needed to understand the dependence of
the modulation on incidence angle. It is likely that experimentation in a con-
trolled laboratory environment will help to develop understanding of this trend.
Controlled experimentation could lead to the identification of the source of the
variability in the data, or it could lead to additional physical information to be
included in the model.

Perhaps one more significant extension is to discard the assumption that
the surface statistics are Gaussian. The assumption of Gaussian statistics simplifies
many of the calculations, but because the troughs of ocean waves are known to
be more rounded than the crests, it is not strictly correct. Using a more accurate
statistical distribution, it may be possible to predict the difference between upwind

and downwind backscatter. As understanding of ocean dynamics improves, better
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and better scattering models can be developed. As this happens, it will be possible

to better predict azimuth modulation as well.
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Appendix A

DERIVATION OF CORRELATION COEFFICIENT

To derive the correlation coefficient, recall from Equations 2.4 and 2.5
that

6a:+% — 2 o
Colpr4) =5 [ db exp [—3(0 9”"’)] dk., k7 cos(kup| cos(8 — ¢)]).

AzT 7 0 ko

(A.1)

where Sy is given by

_ 9)kP?

So = ;(P___Z))’“g&_ (A2)
500erf( 280 )

To simplify the derivation, let z = p|cos(6 — ¢)| resulting in
" dky k2P cos(ku2) (A.3)

ko

for the inner integral. This integral can be simplified using Euler’s identity, result-
ing in . .
o0 . 0 .
- dky, kP etFo? 4 — dky, ke ez, (A.4)

ko 2 ko

These two integrals can in turn be simplified by letting ¢t = —ik,z and t = tky2

respectively. Thus,
—12)P—2 oo 5 \P—2  roo
M—— dtt—PHle—t 4 (_z_z)_ dtt~PHlet, (A.5)
2 —izko 2 izko

The commonly tabulated gamma function is defined by
T(a) = / T dttolet, R{a} > 0. (A.6)
0

The restriction on a is necessary to avoid divergence of the integral. For {a} <0,
the integral definition of the gamma function is not valid, and the gamma function
is defined by the Euler infinite limit definition (Arfken, 1985, p. 539). When
R{a} > 0, both definitions are equivalent (Arfken, 1985, pp. 540-541). Note that
the gamma function obeys the property I'(a+1) = aI'(a) with no restriction on the
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argument. When the integral definition is valid, the incomplete gamma function,
is defined by

v(a,z) = /z dtt* e, R{a} > 0. (A.7)
0
Thus,

/ dtt*le"t = I'(a) — v(a,z), R{a} > 0. (A.8)
If ¢ is “small”, the incomplete gamma function can expanded in a Taylor se-
ries. The Taylor series can then be used to evaluate an integral of the form

[ dtt* e, R{a} > 0.
/oo dtt* et =T'(a) — z° i 1) R{a} >0 (A.9)

T (a+ )

(Arfken, 1985, p. 566). The integrals in Equation A.5 look similar to the integral

in Equation A.9, but to apply Equation A.9 to Equation A.5 requires that a = 2—p
which does not satisfy the restriction {a} > 0. However, it can by shown that

/:o dtt*le™t = I'(a) — m“i;&?—l)_;—r)- Va #0,-1,-2,... (A.10)

To see this, first note that Equation A.9 shows that Equation A.10 is true for
R{a} > 0. In particular, Equation A.10 holds for 0 < a < 1. Suppose then
that Equation A.10 holds for n — 1 < @ < n where n is an integer. Then, let
n—2<a<n-—1sothatn—1<a+1<n.

/°° dttrlet = | 4l /°° dt o1~
z aliz T

° B 1 00 (_1)7':1:1'
= -2 e T4+ 2| 1) — gzt
¢ ( (e+1)-e r_orl(a+r+15>

— r(a)—z—a("’”r ;)r'a-{-r‘;l))

_ r(a)—fl—a(g(—lr)fxrﬂ“i%)

_ F(a)—%(1+2( (1):11 . ZO - 143::11))

- r- 5 {1+ B [ - )
- T()-Z (1 a3 T T 1))
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= r(a)—m“ffi—)rff

r=0 7"((1 + 7') (A.ll)
This establishes Equation A.10.
Using Equation A.10 in Equation A.5 yields
—12)P2 , 2 (=) (—izko)
dk kP! k =-(-—-Z-—z-)——I‘2— — (—izkg)*P %
A cos(ky2) 5 (2 — p) — (—izko) 2 2—p+r)
(iz)p_2 2-p ( 1)"' izko)"

& (—1) (koz)*r
2 22— p+2n).
(A.12)

= P2 cos[-é-(p -2)[II(2—-p) — ka?

Using Equations A.12 and A.2 in Equation A.1 and substituting p| cos(f — ¢)| = 2

gives
Colord) =1 + —(;(% [g<p ~2)| 12 - p)kopP*ha(p ~ 2,9
_ = 1)"(kop)" -
"Boerf(ﬁ E (2,,. 2 p+2,r) 1(2 7¢) (A13)
where \
L(v,8) = /:__ df | cos(0 — )|"e -3(=) . (A.14)

An equivalent form for Cy,(p, #) is obtained by Johnson (Johnson, 1994) by ex-
panding Equation A.l in terms of a generalized hypergeometric function.

The derivation for p = 4 must be handled separately because Equation
A.10 is not valid for a equal to a negative integer. Note that p = 4 corresponds to
a = —2. To find a result useful when p = 4, first consider the expansion derived
by (Arfken, 1985, p. 567) for a = 0:

oo L oo (_1)1':1;1'

where 7 is the Euler-Mascheroni constant (y = 0.577215664901 - - -). Now consider

the case where a = —1.
0 oo oo
/ dtt™%e™t = t7le7t — / dtt~le™?
T z T
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(1)

—+7+lnx+2

r=1 )’f'.
=) l)rmr -1 0o (_l)r—lm‘r—l
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= 1 -—1 A.16
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This result can be used to find the series for a = —2 which corresponds to p = 4
oo 2 1”1
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(A.17)

Equation A.17 can be used to evaluate Equation A.5 when p = 4.

(=22)?

2

2k

/°° dtt'se"t+g-£ oodtt'?’e‘t
—tzko 2 1zko

vy 1., 1 1 . (=1)"(=izko)"
—g ~ghnlth) - ot S 2 (") (r +2)! ]
y 1., 1 1 % (=1)" (s2ko)"
~ 3~ 3 lnlizko) izko t Yizk) 2 () (r +2)! ]
7_3 —1)"(koz)
2” Z+_ln (ko) +,§ o (2r+2).]
(A.18)
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Using Equations A.18 and A.2 in Equation A.1 and substituting p| cos(6 — ¢)| = z

gives the correlation coefficient for p = 4.

(kop)® _ § (kop)?
”ngrf(L)Iz(p, AR 2) IOOerf(lzﬁg'o’l)

260

. o (kp) X
%erf( g s hCn ) (A.19)

Cs(p,9)=1 + 6L(2,9)

where I;(v, ¢) is given by Equation A.14, and I3(p, ¢) is given by

€Az+%

hp,9) = |

eAz_%

df cos*(0— ¢) In(kop| cos[f — 8]|) exp [—3 (0——:9;0-41) :| . (A.20)
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Appendix B

DERIVATION OF BACKSCATTER ASSUMING
HORIZONTAL POLARIZATION

The derivation of the backscatter assuming a horizontally polarized
source is now considered. The beginning of the derivation is identical to that
for the vertically polarized case, the first variation being with the equation for the
incident magnetic field (Equation 2.17). Since the source is now assumed horizon-
tally polarized, the incident electric field is given by

= ey E : 1 g ’ .

Ei(F,) — gEoezk.r — Z)_Oezk(z sin @ —z cos&.). (Bl)
Tlo

The incident magnetic field can be found by Faraday’s law and is given by

-

E . ! et . ! .
H(7) = ;09(@ cos 0; + £ sin §;) k(&' sinbi—=" cosbi), (B.2)

Recalling that the normal vector to the surface is given by (Equation 2.16)

R A 9 a
n= Sl P72 (B.3)
3
[1 + (az') (%) ]
the surface current can be found using
To(7") = 20 % Hi(7") |ppier . (B.4)

As in the vertically polarized case, Equation B.4 models the current on the surface
as the current that would be present on a tangent plane at each point. The
tangent plane approximation requires that the radius of curvature on the surface
be large when compared with an electromagnetic wavelength, which is valid for
most surfaces of interest. As will be seen, the tangent plane approximation also
does not account for any difference between horizontal and vertical polarizations.

Substituting Equations B.2 and B.3 into Equation B.4 gives

7= a a 37]
Js(i) = {—x—g—, sin 6; + J(cos 0; + P ,sm0) z—a—/ cos 0;
2F ezk z' sinb; —n(z',y') cos b;) . ,
: F8l2 = (') (B.5)

i+ () + (2]
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The surface current found in Equation B.5 can now be substituted into
Green’s theorem (Equation 2.10). This yields

q ~ikEo 4, (% 3 00
B = R [ iy [ [T a2 s - nta)

§(cos 8; + 2% sin 6;)
1+ (32" + (3]

Integrating the delta function gives

@i2k(z'sin6; -2’ cosb;) (B.6)

N

L
2

E,(?) = ZtkEo ”"/ L dy’ dm'ﬁ(cos@ + g—sm@)

3 !

1

@ ) @) @)

@)+ ()T

2nr -

u|l~ Nt

(B.7)

2 2
As in the vertically polarized case, (gfy) (%’9) and "aa'x"" sin §; are negligible. Thus,
Equation B.7 simplifies to

L
E‘,(’I—") _ —1k cos §; EO :kTA B dy / dz' e i2k(z’ sin 6; —n(z’' ¥ )cos@.’). (B8)

T 2rr -L
Since an expression for |E3(77)|2 is desired, Equation B.8 is expanded, giving

B = ES 8B [* [ [ [

oi2k|(z'~z) sin 9, +(n(z,y)-nlz',y")) cos bi] (B 9)

This expression is identical to Equation 2.22, which was derived assuming vertical
polarization. Thus, when Equation B.9 is substituted into Equation 2.23, the same
expression for the backscatter integral (Equation 2.27) results. Thus, when using
the tangent plane approximation, no dependence of the backscatter on polarization

is predicted.
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Appendix C

MEAN AND FLUCTUATING FIELDS

It is sometimes insightful to separate the scattered electromagnetic fields
into a mean field and a fluctuating field. The mean field is denoted Esm(ﬂ; the
fluctuating field is represented by £, #(7), and, as in previous derivations, the total
scattered field is denoted E,(7). The definitions of Esm(7) and &,(F) are as follows

(recall that angle brackets denote statistical expectation):

Eu(® = (E(P) c.
EqR) = ByR) = Bon(® (C.2)

Thus, Es(f") is the sum of the two parts,
By(7) = B + £5(9). (C.3)

Note that a consequence of these definitions is (&, (7)) =0.
To find the normalized radar cross-section, (|£,(7)|?) needs to be eval-
uated. It follows from the definitions of E,n,(7) and &,;(F) that

(E(A?) = (Em (*)+53f(*>|2>
= ([Eem (r‘)+£,m][ m(7) + Eug (7 W)
= (|Ean(P)?) + (|E0s(F)IP) + (Eom + (B (7)*E05 (7))

(P& (7)) +
= |E A + (1€ (P2 + Esn(P)Ess (7)) + Eoma(F)" (€0t (7))
= |Em(® + (1€ (P)). (C.4)

Recalling the definition of the normalized radar cross-section (see Equation 2.23),

o 47r? E’,(F)
7T I \"E

drr? o 4mrr? .
= m‘gwsm(r)lz L2E2<|58f(r)|2)
= o, +0; (C.5)
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To evaluate the terms in Equation C.5, define
L L
I = /2 dyl/2 dz’ ei2k(z'sin0¢—n(z’,y’)cose.‘). (CG)
-3 " /-2

With this definition,
- k% cos? 0;E?
- 12 e {]
UE(PI) = — =

(see Equations 2.21, 2.22, B.8, and B.9). Thus,

(117 (C.7)

., k?cos?®;, .

Note that evaluating (I1*) leads to Equation 2.27, the backscatter integral.
Next, note that by definition, Eym(7) = (E,(7)). It follows that,
k% cos? 6; E2
4ir?

|Eom () = {E(P)I* = KD)I? (C.9)

Thus, evaluating |Eym(7)|? becomes a problem of evaluating |(I)[?. |(I)|* can be

written

L L
|<I>|2 — | 2L d.’E,Cikal sin ; 2 dyl (e—i2kn(z’,y')cos9.')|2. (C].O)
-4 L

Since n(z’,y’) is a Gaussian random variable with zero mean and variance o2
bl b

its density is known. Thus, (e~*2¥(='¥')c0s6) can be evaluated in terms of the

definition of a statistical expectation.

<e—i2kn(z",y')cosei> _ /;: dz e—i2kzcos9ifn(z)

2k2

— e—2a cos? 6; (Cll)

Substituting back into Equation C.10,

L 2
|(I)|2 R /i do! ei2ke' sinb;

= e 0"k o’ bi [ 4gin 2 (kL = 9,—) (C.12)

T

where sinc(z) = #22Z. Using Equation C.12 in Equation C.9 gives

| Em (7)* = (C.13)

472r2

k%% cos? 0, E? 202 coc2 g, kL sin 6;
1 06—40' k? cos G‘SIIIC2 .
T
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Figure C.1: Fluctuating backscatter compared to total backscatter. Notice that
when the roughness is small, the backscatter contains a large mean part. When
the roughness is large, the fluctuating part dominates the backscatter. The plots
were generated with p = 4.0, ko = 1.5m™!, 6 = 90°, 6; = 10°, and f = 10GHz
(k = 209m~1). Up/downwind corresponds to 64, = 0°, and crosswind corresponds
to 04, = 90°

It then follows that
° (kL)2 COS2 0i 6_4(01‘:)2 cos? 6; sinc2 ((kL) Sin 0,) . (014)

o) =
m e T

Putting it all together, the scattered electromagnetic fields, and hence

0°, can be expressed in terms of a mean part and a fluctuating part. Hence, o

can be written ¢° = o}, + 0}. 0° is given by 52—;%521&”]*) where [ is as defined

in Equation C.6. Pursing the derivation of (II*) leads to the backscatter integral.

o? is proportional to the mean part of the backscatter, and can be expressed as
2°...20. - 9.

(kL) cos 016—4(01&:)2 cos? 9‘sinc2 ((kL) Sin 01) ) (C.15)

T T

0
% can then be found from ¢§ = 0° — o7,. o7, can be interpreted as being pro-
portional to the coherent scattered power, and ¢% as being proportional to the
incoherent scattered power. Figure C.1 compares the total backscatter to the fluc-
tuating part of the backscatter. Intuitively, a smooth surface scatters most of the
power in one direction; hence, for small roughnesses there is a large mean (co-
herent) part present in the backscatter. A rough surface scatters power in many
directions; for large roughnesses, the backscatter is dominated by the fluctuating

(incoherent) part.
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AZIMUTH MODULATION OF THE RADAR
BACKSCATTER AT NEAR-NORMAL

INCIDENCE

Andrew D. Greenwood
Department of Electrical and Computer Engineering

M. S. Degree, June 7, 1995
ABSTRACT

A two dimensional surface model is used to derive the near-normal radar
backscatter from the ocean surface. The model assumes Gaussian surface statistics,
and a kP power spectral density. The directional dependence on the spectrum
is modeled by a Gaussian function. The backscatter is derived using Green’s
theorem and a physical optics approach. The derived backscatter predicts azimuth
modulation at near-normal incidence (0 to 10dB at 10° incidence). The modulation
is characterized and explained physically in terms of the orientation of surface
facets in different azimuth directions. The effects of surface and radar parameters
are discussed. The theoretical results are compared to radar data from the BYU
YSCAT94 radar experiment. The theory correctly predicts a cosine-like shape of
the normalized radar cross-section plotted as a function of azimuth angle. It also
predicts correctly that the modulation will decrease when the surface roughness
increases. However, its predictions of the modulation as a function of frequency
are limited by the assumptions in the surface model. A surface model that includes
a directional dependence on wave number may correct the frequency predictions.
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